Generalization of z-ideals in right duo rings

Maryam Masoudi-Arani1,2, Reza Jahani-Nezhad*1

1Department of Mathematics, University of Kashan, Kashan, Iran
2Department of Fundamental Sciences, Faculty of Fadak, Kashan Branch, Technical and Vocational University (TVU), Isfahan, Iran

Abstract

The aim of this paper is to generalize the notion of z-ideals to arbitrary noncommutative rings. A left (right) ideal I of a ring R is called a left (right) z-ideal if $M_a \subseteq I$, for each $a \in I$, where M_a is the intersection of all maximal ideals containing a. For every two left ideals I and J of a ring R, we call I a left z_J-ideal if $M_a \cap J \subseteq I$, for every $a \in I$, whenever $J \nsubseteq I$ and I is a z_J-ideal, we say that I is a left relative z-ideal. We characterize the structure of them in right duo rings. It is proved that a duo ring R is von Neumann regular ring if and only if every ideal of R is a z-ideal. Also, every one sided ideal of a semisimple right duo ring is a z-ideal. We have shown that if I is a left z_J-ideal of a p-right duo ring, then every minimal prime ideal of I is a left z_J-ideal. Moreover, if every proper ideal of a p-right duo ring R is a left relative z-ideal, then every ideal of R is a z-ideal.

Mathematics Subject Classification (2010). 16D25, 16N20, 16E50, 16D60, 16D99, 16U80

Keywords. z-ideal, duo ring, relative z-ideal, semisimple ring, von Neumann regular ring

1. Introduction

Throughout this article all rings are associative with identity. The notion of z-ideals which are both algebraic and topological objects was first introduced in [6] by Kohls. These ideals play a fundamental role in studying the ideal structure of $C(X)$, the ring of real-valued continuous functions on a completely regular Hausdorff space X, see [6]. Although in [6], he defined these ideals topologically, in terms of zero-sets, he showed that they can be characterized algebraically. Gillman and Jerison in [4], have proved it to be a powerful tool in the study of both algebraic properties of function rings and topological properties of Tychonoff spaces.

It was Mason [11], who initiated the study of z-ideals in arbitrary commutative rings with identity. An ideal I of a commutative ring R is called a z-ideal (z°-ideal) if for each $a \in I$, the intersection of all maximal ideals (minimal prime ideals) containing a
is contained in I. A. Rezaei Aliabad and R. Mohamadian in [12], characterized the z-ideals and z^0-ideals of formal power series ring on a commutative ring. They showed that if R is a commutative ring, then an ideal I of formal power series ring $R[[x]]$ is a z-ideal if and only if $I = (J, x)$, where J is a z-ideal of R. Also, they characterized a relation between the set of z^0-ideals of $R[[x]]$ and the set of z^0-ideals of R.

Let I and J be two ideals of a commutative ring R. I is said to be a z_J-$ideal$ if $M_a \cap J \subseteq I$, for every $a \in I$, where M_a is the intersection of all maximal ideals containing a. Whenever $J \not\subseteq I$ and I is a z_J-$ideal$, we say that I is a $relative \ z$-$ideal$. This special kind of z-ideals introduced and investigated by F. Azarpanah and A. Taherifar in [2]. They have shown that for any ideal J in $C(X)$, the sum of every two z_J-ideals is a z_J-$ideal$ if and only if X is an F-space, where the F-space is a space for which every finitely generated ideal of $C(X)$ is principal. A space X is called P-$space$ if every prime ideal in $C(X)$ is a z-$ideal$. It is in [2] shown that every principal ideal in $C(X)$ is a relative z-$ideal$ if and only if X is a P-space. Also, they characterized the space X for which the sum of every two relative z-ideals of $C(X)$ is a relative z-$ideal$. If I is an ideal of a semisimple ring and $Ann(I) \neq 0$, A. R. Aliabad and F. Azarpanah and A. Taherifar in [1], have shown that I is a relative z-$ideal$ and the converse is also true for each finitely generated ideal in $C(X)$.

These ideals are also studied further by others in commutative rings. In the following, we present a generalization of z-ideals to noncommutative rings and investigate the structure of them in right duo rings, which are rings in which every right ideal is a two-sided ideal. In fact, we generalize the results in [1] to right duo rings. This paper is organized as follows:

In the second section, we study some properties of ideals in right duo rings. In the third section, we shall generalize the concept of z-ideal to noncommutative rings and we study their structure in right duo rings. We show that every z-ideal of a right duo ring is semiprime. Mason in [10], showed that if I is a z-ideal of a semisimple commutative ring, then every minimal prime ideal of I is also a z-ideal. In a right duo ring, we consider sufficient conditions that every minimal prime ideal of a z-ideal is also a z-ideal. We will show that every ideal of von Neumann right duo rings is a z-ideal. Also, if every left ideal of a right duo ring R is a z-ideal, then R is a von Neumann ring. Furthermore, every left ideal of a semisimple right duo ring is a z-ideal.

In the fourth section, we generalize left relative z-ideals to noncommutative rings. We define the concept of p-right duo rings to obtain equivalent condition to minimal prime ideals of an ideal, and then study left relative z-ideals of their rings. We will present sufficient conditions in order that if every proper ideal of a ring R is a left relative z-ideal, then every ideal of R is a z-ideal.

Let us close this section by mentioning some symbols. Let R be a ring and I an ideal of R. The set of all prime ideals of R is denoted by $\text{Spec}(R)$. Also, $\text{Min}(I)$ is the set of all minimal prime ideals containing I, for each ideal I of R, and the Jacobson radical of R is denoted by $\text{rad}(R)$.

2. Some properties of structure of right duo rings

Recall that a ring R is called a right duo ring if each right ideal of R is a two sided ideal. We can similarly define the notion of a left duo ring. A ring R is said to be a duo ring if R is a right and left duo ring. Commutative rings and division rings are clearly duo ring. Furthermore, any valuation ring arising from a Krull valuation of a division ring is always duo ring, see [8, Exercise 19.9]. It is easily seen that any finite direct product of a right duo ring is a right duo ring. Proposition 1.1 of [3] says that any homomorphic image of a right duo ring is a right duo ring, and so is any factor ring of it. Gerg Marks in Proposition 5 of [9] shows that any power series ring of a right self injective von Neumann right duo ring is a right duo ring. In particular, the power series ring of a division ring is a right
Let 2.1 be a right duo ring and $x \in R$. Then

1. $RxR = xR$.
2. $Rx \subseteq xR$.

We know that a ring R is called a Dedekind-finite ring if whenever $x, y \in R$ and $xy = 1$, then $yx = 1$. Now, we assume that R is a right duo ring and $ab = 1$, for some $a, b \in R$. Then there exists an element $r \in R$ such that $ab = br$, by Lemma 2.1. Hence, we have $a = a.1 = a(ab) = a(br) = (ab)r = 1.r = r$, and so $1 = ba$. Therefore, every right duo ring is Dedekind-finite, see [8, Theorem 3.2].

It is well known that if P is a prime ideal of a right duo ring and $xy \in P$, then $x \in P$ or $y \in P$, because $xy \in P$ implies that $xRy \subseteq xyR \subseteq P$, by Lemma 2.1. Since P is a prime ideal, we have $x \in P$ or $y \in P$. Therefore, we have the following Lemma:

Lemma 2.2. Let R be a right duo ring and P be a proper ideal of R. Then the following statements are equivalent:

1. P is a prime ideal.
2. For every $x, y \in R$, if $xy \in P$ then $x \in P$ or $y \in P$.

Therefore, if P is a prime ideal of R and $x^n \in P$, for some $x \in R$ and $n \in \mathbb{N}$, then $x \in P$.

Let R be a ring and I be an ideal of R. We denote by \sqrt{I} the subset

$$\{r \in R \mid \exists n \in \mathbb{N}, r^n \in I\}$$

of R. It is easily seen from Lemma 2.1 that if P is a prime ideal of a right duo ring R, then $\sqrt{P} = P$.

Lemma 2.3. Let R be a right duo ring and I and J be ideals of R. Then

$$\sqrt{I} + \sqrt{J} \subseteq \sqrt{I + J}.$$

Proof. Let $a \in \sqrt{I}$ and $b \in \sqrt{J}$. Then there exist $n, m \in \mathbb{N}$ such that $a^m \in I$ and $b^n \in J$. Now, we claim that $(a + b)^{m+n} \in I + J$. In fact, $(a + b)^{m+n}$ is the sum of 2^{m+n} elements of the form $f = c_1c_2 \cdots c_{m+n}$ where each $c_i = a$ or b. If at least m of these c_is are a, then there exists $a' \in R$ such that $f = a^ma'$, by Lemma 2.1, and so $f \in I$, because $a^m \in I$. If the number of the $c_i = a$ is smaller than m, then at least n of them are b, and hence there exists $b' \in R$ such that $f = b^nb'$, by Lemma 2.1. Thus $f \in J$, because $b^n \in J$. Therefore $(a + b)^{m+n} \in I + J$.

Proposition 2.4. Let R be a right duo ring and I be an ideal of R. Then \sqrt{I} is an ideal of R.

Proof. Clearly, $0 \in \sqrt{I}$. If $a, b \in \sqrt{I}$, then $a + b \in \sqrt{I}$, by Lemma 2.3. Now, assume that $a \in \sqrt{I}$ and $r \in R$. Hence there exists $n \in \mathbb{N}$ such that $a^n \in I$, and so there exists an element $r' \in R$ such that $(ra)^n = a^n r' \in I$, by Lemma 2.1. Therefore $ra \in \sqrt{I}$ and similarly we show that $ar \in \sqrt{I}$.

Let R be a ring and $a \in R$. The intersection of all maximal ideals of R containing a will be denoted by M_a. We set $M_a = R$ when a is a unit.

Lemma 2.5. Let R be a right duo ring and $a, b \in R$. Then $M_{ab} = M_a \cap M_b$. In particular, if $a \in R$ we conclude that $M_{an} = M_a$, for every $n \in \mathbb{N}$.

M. Masoudi-Arani, R. Jahani-Nezhad
Proof. Clearly, for every \(x \in M_a \) we have \(M_x \subseteq M_a \). Thus \(M_{ab} \subseteq M_a \) and \(M_{ab} \subseteq M_b \), and so \(M_{ab} \subseteq M_a \cap M_b \), for each \(a, b \in R \). Conversely, let \(x \in M_a \cap M_b \). We show that every maximal ideal containing \(ab \) is also containing \(x \). Assume that \(N \) is a maximal ideal of \(R \) such that \(ab \in N \). Then \(a \in N \) or \(b \in N \), by Lemma 2.2. If \(a \in N \), then \(x \in M_a \cap M_b \subseteq M_a \subseteq N \). If \(b \in N \), then \(x \in M_b \subseteq N \). Therefore \(x \in N \). Thus \(M_a \cap M_b \subseteq M_{ab} \), and consequently \(M_{ab} = M_a \cap M_b \). \(\square \)

3. Generalization of \(z \)-ideals in a right duo ring

The \(z \)-ideals are studied further in commutative rings. These ideals are useful concept in studying the ideal structure of the ring \(C(X) \) of continuous real-valued functions on a topological space \(X \). In the following, we shall present a generalization of \(z \)-ideals to noncommutative rings.

Definition 3.1. A left (right) ideal \(I \) of a ring \(R \) is called a left (right) \(z \)-ideal if \(M_a \subseteq I \), for all \(a \in I \).

In the following we show that every one sided \(z \)-ideal is an ideal.

Proposition 3.2. Let \(R \) be a ring and \(I \) be a left (right) \(z \)-ideal of \(R \). Then \(I \) is an ideal of \(R \).

Proof. Let \(I \) be a left \(z \)-ideal of \(R \) and \(a \in I \). If \(N \) is a maximal ideal of \(R \) containing \(a \), then \(ar \in N \) for every \(r \in R \). Thus \(M_{ar} \subseteq M_a \). On the other hand, since \(I \) is a left \(z \)-ideal, we have \(M_a \subseteq I \). Therefore, \(ar \in M_{ar} \subseteq M_a \subseteq I \), and so \(ar \in I \). Hence \(I \) is an ideal. \(\square \)

Here in after a left (right) \(z \)-ideal of a ring is called a \(z \)-ideal, by Proposition 3.2.

Example 3.3. Every intersection of maximal ideals of a ring \(R \) is a \(z \)-ideal. In fact, every intersection of \(z \)-ideals is a \(z \)-ideal.

Lemma 3.4. Let \(R \) be a ring and \(I \) be a left (right) ideal of \(R \). Then the following statements are equivalent:

1. \(I \) is a \(z \)-ideal.
2. For every \(a \in R \) and \(b \in I \), if \(M_a \subseteq M_b \) then \(a \in I \).

Proof. \(1 \Rightarrow 2 \). Let \(a \in R \) and \(b \in I \). Since \(I \) is a \(z \)-ideal and \(b \in I \), we have \(M_b \subseteq I \). Hence, if \(M_a \subseteq M_b \), then \(a \in M_a \subseteq M_b \subseteq I \), and so \(a \in I \).

\(2 \Rightarrow 1 \). Let \(I \) be a left ideal and \(a \in I \). For each \(x \in M_a \), we have \(M_x \subseteq M_a \). By hypothesis \(x \in I \), and so \(M_a \subseteq I \). Therefore \(I \) is a \(z \)-ideal. \(\square \)

Let \(R \) be a ring and \(I \) be a left (right) ideal of \(R \). The intersection of all \(z \)-ideals containing \(I \) will be denoted by \(I_z \). For each element \(a \in I_z \) and for every \(z \)-ideal \(J \) of \(R \) containing \(I \), we have \(a \in J \). Then \(M_a \subseteq J \), and so \(M_a \subseteq I_z \). Therefore, we have the following Lemma:

Lemma 3.5. For every left (right) ideal \(I \) of a ring \(R \), the intersection of all \(z \)-ideals containing \(I \), which is denoted by \(I_z \), is a \(z \)-ideal. In particular, \(I_z \) is the smallest \(z \)-ideal containing \(I \).

Lemma 3.6. Let \(R \) be a ring. Then the following statements hold.

1. For every left ideals \(I \) and \(J \) of \(R \), if \(I \subseteq J \), then \(I_z \subseteq J_z \).
2. If \(\{I_\lambda\}_{\lambda \in \Lambda} \) is any family of left ideals of \(R \), then
 \[
 \bigcap_{\lambda \in \Lambda} I_\lambda \subseteq \bigcap_{\lambda \in \Lambda} (I_\lambda)_z.
 \]

Proof. 1. Since every \(z \)-ideal containing \(J \) contains \(I \), we see \(I_z \subseteq J_z \).

2. For every \(\mu \in \Lambda \), we have \(\bigcap_{\lambda \in \Lambda} I_\lambda \subseteq I_\mu \). Hence our claim is true, by part (1). \(\square \)
It is immediate that for every z-ideal I, we have $I_z = I$. In the next two Propositions, we study the structure of z-ideals in right duo rings.

Proposition 3.7. Let R be a right duo ring and I be an ideal of R. Then $I \subseteq \sqrt{I} \subseteq I_z$.

Proof. Clearly, $I \subseteq \sqrt{I}$. Now, we assume that $x \in \sqrt{I}$ and J is a z-ideal containing I. Thus there is a positive integer n such that $x^n \in I \subseteq J$. Hence $x \in M_x = M_{x^n} \subseteq J$, by Lemma 2.5. Therefore $x \in I_z$, and so $\sqrt{I} \subseteq I_z$. \square

Recall that a proper ideal I of a ring R is said to be a semiprime ideal if for every ideal J of R, $J^2 \subseteq I$ implies that $J \subseteq I$. As an immediate consequence of Proposition 3.7 and [7, Theorem 10.11], we get the following result

Corollary 3.8. Let R be a right duo ring and I be a z-ideal of R. Then $\sqrt{I} = I$. In particular, I is a semiprime ideal of R.

Proposition 3.9. Let R be a right duo ring and I be an ideal of R. Then the following statements hold.

1. $(\sqrt{I})_z = I_z$.
2. If I is a z-ideal, then $(\sqrt{I})_z = I$.
3. $\sqrt{I_z} = (\sqrt{I})_z$.

Proof. 1. Every z-ideal containing \sqrt{I} also contains I. Therefore $I_z \subseteq (\sqrt{I})_z$. Conversely, Proposition 3.7 gives $\sqrt{I} \subseteq I_z$. This means that I_z is a z-ideal containing \sqrt{I}. Thus $(\sqrt{I})_z \subseteq I_z$, and consequently $(\sqrt{I})_z = I_z$.
2. Since I is a z-ideal, we have $I_z = I$. The proof is completed by (1).
3. We know that I_z is a z-ideal of R. Corollary 3.8 yields $\sqrt{I_z} = I_z$. Therefore $\sqrt{I_z} = (\sqrt{I})_z$, by (1). \square

The following Proposition is a generalization of [11, Proposition 3.1] to noncommutative case.

Proposition 3.10. Let R be a right duo ring. Then the following statements are equivalent:

1. For any z-ideals I and J, $I + J$ is a z-ideal.
2. For any ideals I and J, $(I + J)_z = I_z + J_z$.
3. The sum of any nonempty family of z-ideals is a z-ideal.
4. For every nonempty family $\{I_\alpha\}_{\alpha \in A}$ of ideals,

$$\left(\sum_{\alpha \in A} I_\alpha \right)_z = \sum_{\alpha \in A} (I_\alpha)_z.$$

Proof. 1 \Rightarrow 2. Since I_z and J_z are z-ideals, $I_z + J_z$ is a z-ideal containing $I + J$, by hypothesis. Hence $(I + J)_z \subseteq I_z + J_z$. It follows from Lemma 3.6 that $I_z + J_z \subseteq (I + J)_z$. Therefore $(I + J)_z = I_z + J_z$.

2 \Rightarrow 3. Let $\{I_\alpha\}_{\alpha \in A}$ be a family of z-ideals and $a \in \sum_{\alpha \in A} I_\alpha$. Then there exists a finite subset F of A such that $a \in \sum_{\alpha \in F} I_\alpha$. Since I_α is a z-ideal, we have $(I_\alpha)_z = I_\alpha$, for every $\alpha \in F$. A simple induction argument shows that

$$\left(\sum_{\alpha \in F} I_\alpha \right)_z = \sum_{\alpha \in F} (I_\alpha)_z = \sum_{\alpha \in F} I_\alpha.$$

Consequently, $\sum_{\alpha \in F} I_\alpha$ is a z-ideal, and so

$$M_\alpha \subseteq \sum_{\alpha \in A} I_\alpha \subseteq \sum_{\alpha \in A} I_\alpha.$$
3.6 Let I be a family of ideals. Since $I_\beta \subseteq \sum_{\alpha \in A} I_\alpha$, for all $\beta \in A$, we have $(I_\beta)_z \subseteq (\sum_{\alpha \in A} I_\alpha)_z$, for all $\beta \in A$, by Lemma 3.6. Therefore

$$\sum_{\alpha \in A} (I_\alpha)_z \subseteq (\sum_{\alpha \in A} I_\alpha)_z.$$

Since $(I_\alpha)_z$ is a z-ideal containing I_α, for all $\alpha \in A$, we may conclude from assumption that $\sum_{\alpha \in A} (I_\alpha)_z$ is a z-ideal containing $\sum_{\alpha \in A} I_\alpha$. Hence

$$\sum_{\alpha \in A} I_\alpha = \sum_{\alpha \in A} (I_\alpha)_z.$$

Therefore

$$\sum_{\alpha \in A} I_\alpha = \sum_{\alpha \in A} (I_\alpha)_z.$$

4 \Rightarrow 1. If I and J are z-ideals, then $I_z = I$ and $J_z = J$. By hypothesis, we have $(I + J)_z = I_z + J_z$. Therefore $(I + J)_z = I + J$, and so $I + J$ is a z-ideal.

Lemma 3.11. Let R be a right duo ring and P be a prime ideal of R. Let $n \in \mathbb{N}$, I_1, \ldots, I_{n-1} be ideals and I_n be a left ideal of R. Then the following statements are equivalent:

1. $I_j \subseteq P$, for some $1 \leq j \leq n$.
2. $\bigcap_{i=1}^n I_i \subseteq P$.
3. $I_1 I_2 \cdots I_n \subseteq P$.

Proof. 1 \Rightarrow 2. $\bigcap_{i=1}^n I_i \subseteq I_j \subseteq P$.

2 \Rightarrow 3. Since I_n is a left ideal of R, we have $I_1 I_2 \cdots I_n \subseteq I_n$. On the other hand, I_i is an ideal, for every $1 \leq i \leq n - 1$, and hence $I_1 I_2 \cdots I_n \subseteq I_i$, for all $1 \leq i \leq n$. Thus $I_1 I_2 \cdots I_n \subseteq \bigcap_{i=1}^n I_i \subseteq P$.

3 \Rightarrow 1. Suppose that $I_i \not\subseteq P$ and $x_i \in I_i \setminus P$, for every $1 \leq i \leq n$. Thus

$$x_1 x_2 \cdots x_n \in I_1 I_2 \cdots I_n \subseteq P$$

which yields $x_j \in P$, for some $1 \leq j \leq n$, by Lemma 2.2. This contradicts the choice of x_j.

Proposition 3.12. Let R be a right duo ring and I an ideal of R. If I is a finite intersection of maximal ideals of R, then any minimal prime ideal of I is a z-ideal.

Proof. Since I is a finite intersection of maximal ideals, Lemma 3.11 implies that any minimal prime ideal of I is a maximal ideal. Hence each minimal prime ideal of I is a z-ideal.

Recall from [7, Definition 10.3] that a nonempty set S of a ring R is said to be m-system if for any $a, b \in S$, there exists $r \in R$ such that $arb \in S$.

Theorem 3.13. Let R be a right duo ring, I a z-ideal of R and Q be a minimal prime ideal of I. If for every $a, b \in R$ with $a \notin Q$, there exists $r \in R \setminus Q$ such that $ab = br$, then Q is a z-ideal.

Proof. Suppose Q is not z-ideal. Then there exist elements $a \in R \setminus Q$ and $b \in Q$ such that $M_a \not\subseteq M_b$, by Lemma 3.4. We now assume that

$$S = (R \setminus Q) \cup \{ b^n c \mid n \in \mathbb{N}, c \in R \setminus Q \}.$$
We first prove that $r_1r_2 \in S$, for every $r_1, r_2 \in S$. Consider $r_1, r_2 \in S$.

- If $r_1, r_2 \in R \setminus Q$, then $r_1r_2 \notin Q$, by Lemma 2.2, and so $r_1r_2 \in S$.
- If there are $c_1, c_2 \in R \setminus Q$ such that $r_1 = b^n c_1$ and $r_2 = b^m c_2$, for some positive integers n and m, then $c_1 b^m = b^n r$, for some $r \in R \setminus Q$, by hypothesis. Therefore
 \[r_1r_2 = b^n c_1 b^m c_2 = b^{n+m} r c_2 \in S \]
 because $r, c_2 \in R \setminus Q$, and so $rc_2 \notin Q$, by Lemma 2.2.
- If $r_1 \in R \setminus Q$ and $r_2 = b^n c$, for some $n \in \mathbb{N}$ and $c \in R \setminus Q$, then there exists an element $r \in R \setminus Q$ such that $r_1 b^n = b^n r$, by hypothesis. This yields
 \[r_1r_2 = r_1 b^n c = b^n rc. \]
 Since $rc \notin Q$, we have $r_1r_2 \in S$. Also, we see that $r_2 r_1 = b^n c r_1 \in S$. Hence for every $r_1, r_2 \in S$ we have $r_1 r_2 \in S$. Therefore S is an m-system of R.

Now, we show that $I \cap S = \emptyset$. If $x \in I \cap S$, then $x \in I \subseteq Q$ and $x \in S$. Hence $x = b^n c$, for some $n \in \mathbb{N}$ and $c \in R \setminus Q$. From Lemma 2.5 we see that
 \[ac \in M_{ac} = M_a \cap M_c \subseteq M_b \cap M_c = M_{b^n} \cap M_c = M_x \subseteq I \]
because $M_a \subseteq M_b$ and I is a z-ideal. This yields $ac \in Q$. Hence $a \in Q$ or $c \in Q$, by Lemma 2.2. This contradicts the choice of a and c. Therefore $I \cap S = \emptyset$. By Zorn’s Lemma, there exists an ideal $I \subseteq P$ which is maximal with respect to being disjoint from S. From [7, Proposition 10.5] it follows that P is a prime ideal. Since $S \cap P = \emptyset$ and $b \in S$, we have $I \subseteq P \subseteq Q$. However, this contradicts our assumption that Q is a minimal prime ideal of I. Therefore Q is a z-ideal.

We know that the Jacobson radical of a ring R, which denoted by $\text{rad}(R)$, is the intersection of all maximal right (or left) ideals of R. Now, if R is a right (or left) duo ring, then every maximal right (or left) ideal is a maximal ideal. Therefore, if R is a right (or left) duo ring, then we can say that $\text{rad}(R)$ is the intersection of all maximal ideals of R.

Example 3.14. Let D be a division ring and \mathbb{C} be the field of complex numbers. Let $R = D \times \mathbb{C}[x]$. We know that R is a duo ring. If $f \in \text{rad}(\mathbb{C}[x])$, then $1 - xf$ is a unit of $\mathbb{C}[x]$, by [7, Lemma 4.1], which yields $f = 0$. Hence $\text{rad}(\mathbb{C}[x]) = 0$. This implies that $\text{rad}(R) = \text{rad}(D) \times \text{rad}(\mathbb{C}[x]) = 0$, and so $I = \{0\}$ is a z-ideal of R. If P is a prime ideal of R, then $P = 0 \times \mathbb{C}[x]$ or $P = D \times 0$, where Q is a prime ideal of $\mathbb{C}[x]$. Obviously, $D \times 0$ and $0 \times \mathbb{C}$ are minimal prime ideals of I which $0 \times \mathbb{C}$ is maximal, and so is a z-ideal. Consider $(a, f), (c, g) \in R$ such that $(a, f) \notin D \times 0$. It is clear that $ac = cr$, for some $r \in D$. Thus
 \[(a, f)(c, g) = (ac, fg) = (cr, gf) = (c, g)(r, f). \]
Since $(a, f) \notin D \times 0$, we have $f \neq 0$, and so $(r, f) \notin D \times 0$. Therefore $D \times 0$ is a z-ideal, by Theorem 3.13.

Proposition 3.15. Let R be a right duo ring and I be a left ideal of R. Then $(I^n)_z = I_z$, for every $n \in \mathbb{N}$.

Proof. Clearly, $(I^n)_z \subseteq I_z$. For every $x \in I$, we have $x^n \in I^n \subseteq (I^n)_z$, and so $M_x \subseteq (I^n)_z$. From Lemma 2.5, we see that $x \in M_x = M_x^n \subseteq (I^n)_z$. Hence $I_z \subseteq (I^n)_z$.

By Lemma 3.5, $(I^n)_z$ is a z-ideal, and so $I_z \subseteq (I^n)_z$. Therefore $(I^n)_z = I_z$. \[\square \]

Recall that a ring R is said to be a von Neumann regular ring if for any $a \in R$, there exists an element $r \in R$ such that $a = ar$. Furthermore, for any ideal I of a von Neumann regular ring R, it is clear that R/I is also a von Neumann regular ring. Therefore, we have

Proposition 3.16. Let R be a right (or left) duo ring. If R is a von Neumann regular ring, then every ideal of R is a z-ideal.
Proof. Let I be a proper ideal of R. Since $\frac{R}{I}$ is a von Neumann regular ring, we have $rad(\frac{R}{I}) = 0$, by [7, Corollary 4.24]. On the other hand, $\frac{R}{I}$ is also a right (or left) duo ring. Thus $rad(\frac{R}{I})$ is the intersection of all maximal ideals of $\frac{R}{I}$. Hence I is the intersection of all maximal ideal of R containing I, and so I is a z-ideal.

Proposition 3.17. Let R be a right duo ring. If every left ideal of R is a z-ideal, then R is a von Neumann regular ring.

Proof. Let $a \in R$ and $I = Ra$. By hypothesis, I is a z-ideal, and so $Iz = I$. Hence $(I^2)z = Iz = I$, by Proposition 3.15. On the other hand, from Lemma 2.1, we see that $I^2 = RaRa = aRa$. Since I^2 is a left ideal, I^2 is a z-ideal, and so $(I^2)z = I^2$. Hence $I^2 = (I^2)z = Iz = I$. Then we may conclude from $a \in I = I^2 = aRa$ that there exists an element $r \in R$ such that $a = ara$. Therefore R is a von Neumann regular ring.

The following result, which is a generalization of [10, Theorem 1.2] to noncommutative case, follows immediately from Proposition 3.16 and Proposition 3.17.

Corollary 3.18. Let R be a duo ring. Then R is a von Neumann regular ring if and only if every ideal of R is a z-ideal.

Recall that if I and J are two left ideals of a ring R, then the subset $\{ x \in R \mid xI \subseteq J \}$ is denoted by $(J : I)$. It is easily seen that $(J : I)$ is an ideal of R. In particular, for each left ideal I, the subset $(0 : I)$, which will be denote by $Ann_l(I)$, is also an ideal of R. We call it the left annihilator of I.

Proposition 3.19. Let I and J be two left ideals of a right duo ring R. If J is a z-ideal, then $(J : I)$ is a z-ideal of R.

Proof. By Lemma 3.4, it is sufficient to show that for every $a \in R$ and $b \in (J : I)$, if $M_a \subseteq M_b$, then $a \in (J : I)$. Now, we assume that $a \in R$, $b \in (J : I)$ and $M_a \subseteq M_b$. Thus for every $x \in I$, we have $bx \in J$. Moreover

$$M_ax = M_a \cap M_x \subseteq M_b \cap M_x = M_{bx}$$

by Lemma 2.5. Since $bx \in J$ and J is a z-ideal, $M_{bx} \subseteq J$, and so $ax \in M_{ax} \subseteq M_{bx} \subseteq J$. Therefore $a \in (J : I)$.

Lemma 3.20. If e is an idempotent element of a right duo ring R, then $Re = Ann_l(R(1 - e))$.

Proof. For every $r \in R$, we have $reR(1 - e) \subseteq re(1 - e)R = 0$, by Lemma 2.1. Hence $Re \subseteq Ann_l(R(1 - e))$. We now assume that $r \in Ann_l(R(1 - e))$. Thus $r - re = r(1 - e) = 0$, and so $r = re \in Re$.

From [7, Theorem 2.5], it follows that every right ideal of a ring R is a direct summand of R if and only if every left ideal of R is a direct summand of R. A ring satisfying these equivalent conditions is called a semisimple ring.

Proposition 3.21. Let R be a semisimple right duo ring. Then every one sided ideal of R is an ideal.

Proof. Since R is a right duo ring, every right ideal of R is an ideal. By [7, Theorem 4.25], semisimple rings are exactly the left Noetherian von Neumann regular rings. Let I be a left ideal of R. Since R is left Noetherian, every left ideal of R is finitely generated, and so $I = Re$, for an idempotent element e of R, by using the characterization (3) of [7, Theorem 4.23]. Hence $I = Ann_l(R(1 - e))$, by Lemma 3.20, and consequently I is an ideal of R.
As observed in the proof of Proposition 3.21, every ideal of a semisimple right duo ring is an annihilator of a left ideal. On the other hand, we know from [7, Theorem 4.25] that \(rad(R) = 0 \), for every semisimple ring \(R \), and hence the zero ideal of \(R \) is a \(z \)-ideal. Now, we may by using Proposition 3.19 conclude that the following result.

Corollary 3.22. Every ideal of a semisimple right duo ring is a \(z \)-ideal.

4. Relative \(z \)-ideals in a right duo ring

The main goal of this section is to introduce left relative \(z \)-ideals. We define the concept of \(p \)-right duo rings to obtain equivalent condition to minimal prime ideals of an ideal, and then study left relative \(z \)-ideals of their rings. Finally, we prove that if every proper ideal of a \(p \)-right duo ring \(R \) is a left relative \(z \)-ideal, then every ideal of \(R \) is a \(z \)-ideal.

Definition 4.1. Let \(J \) be a left ideal of a ring \(R \). A left ideal \(I \) of \(R \) is said to be a left \(z \)-ideal if \(M_a \cap J \subseteq I \), for every \(a \in I \). Whenever, for a left ideal \(I \), there exists a left ideal \(J \) such that \(J \not\subseteq I \) and \(I \) is a left \(z \)-ideal, we say that \(I \) is a left relative \(z \)-ideal and \(J \) is called a \(z \)-factor of \(I \).

Recall that a ring \(R \) is said to be a reduced ring if \(R \) has no nonzero nilpotent element. In the following, we introduce a class of left relative \(z \)-ideals in a right duo ring. Before giving it, let us state the following Lemma which follows immediately from Lemma 2.2.

Lemma 4.2. For each right duo ring \(R \), if \(rad(R) = 0 \), then \(R \) is a reduced ring.

Proposition 4.3. Let \(R \) be a right duo ring with \(rad(R) = 0 \). If \(I \) is a left ideal of \(R \) such that \(Ann_l(I) \neq 0 \), then \(I \) is a left relative \(z \)-ideal.

Proof. First, we show that \(M_a \cap Ann_l(I) = 0 \), for every \(a \in I \). Suppose that \(x \in M_a \cap Ann_l(I) \). Then \(M_x \subseteq M_a \) and \(xa = xI = 0 \), for every \(a \in I \). From Lemma 2.5, it thus follows that \(x \in M_x = M_x \cap M_a = M_{xa} = M_0 = rad(R) = 0 \).

Hence \(M_a \cap Ann_l(I) = 0 \). We now put \(J = Ann_l(I) \), and show that \(J \not\subseteq I \). If \(J \subseteq I \), then \(J^2 \subseteq JI = Ann_l(I)I = 0 \). Thus \(J^2 = 0 \), and so \(J = 0 \), because \(R \) is a reduced ring, by Lemma 4.2. But this contradicts the assumption that \(J = Ann_l(I) \neq 0 \). Therefore \(J \not\subseteq I \), and so \(I \) is a left relative \(z \)-ideal.

Definition 4.4. A right duo ring \(R \) is called a \(p \)-right duo ring if for every prime ideal \(P \) of \(R \) and every elements \(a, b \in R \), which \(a \notin P \), there exists \(r \in R \setminus P \) such that \(ab = br \).

In the following, we give some examples of \(p \)-right duo rings.

Proposition 4.5. Let \(R \) be a prime right duo ring. If \(R \) has a unique nonzero prime ideal, then \(R \) is a \(p \)-right duo ring.

Proof. Let \(P \) be the unique nonzero prime ideal of \(R \) and \(a, b \in R \) such that \(a \notin P \). If \(b = 0 \), then \(ab = b1 \). Now, we assume that \(b \neq 0 \). Since \(R \) is a right duo ring, \(ab = br \), for some \(r \in R \). On the other hand, \(P \) is the unique nonzero prime ideal of \(R \) and \(a \notin P \). Thus \(a \) is a unit element of \(R \) which yields \(b = a^{-1}br = br' r \), for some \(r' \in R \). It follows \(b(1 - r'r) = 0 \). Since \(R \) is a prime right duo ring and \(b \neq 0 \), we have \(r'r = 1 \). Therefore \(r \notin P \). \(\square \)

Example 4.6. Let \(D \) be a division ring and \(R = D \times Z \). We show that \(R \) is a \(p \)-right duo ring. It is easily seen that \(R \) is a right duo ring. If \(P \) is a prime ideal of \(R \), then \(P = D \times 0 \), or \(P = 0 \times Z \) or \(P = D \times pZ \), for some prime number \(p \). We assume that \((a, b), (c, d) \in R \) and \((a, b) \notin P \). It is clear that \(ac = cr \), for some \(r \in D \). Thus

\[(a, b)(c, d) = (ac, bd) = (cr, db) = (c, d)(r, b).\]
We consider the following three cases:
1. If $P = D \times 0$, then $b \neq 0$, because $(a, b) \notin P$, and so $(r, b) \notin P$.
2. If $P = 0 \times \mathbb{Z}$, then $a \neq 0$, because $(a, b) \notin P$. Now, if $c \neq 0$, then $r \neq 0$, and so $(r, b) \notin P$, and if $c = 0$, we have
 \[(a, b)(c, d) = (0, bd) = (0, db) = (c, d)(1, b)\]
 which $(1, b) \notin P$.
3. If $P = D \times p\mathbb{Z}$, for some prime number p, then $p \nmid b$, because $(a, b) \notin P$, and so $(r, b) \notin P$.

Proposition 4.7. Let R be a p-right duo ring with $\text{rad}(R) = 0$ and P be a prime ideal of R. Let Γ be the set of all z-ideals of R contained in P. Then Γ (partially ordered by inclusion) has a maximal element. Furthermore, every maximal element of Γ is a prime z-ideal of R.

Proof. Since $\text{rad}(R) = 0$, the zero ideal of R is a z-ideal, and so $\Gamma \neq \emptyset$. If P is a z-ideal, then clearly P is the only maximal element of Γ. We now assume that P is not z-ideal. If Σ is a chain in Γ, then it is quite obvious that $\bigcup I_a \in \Sigma$ is a z-ideal contained in P. Therefore Γ has a maximal element J, by Zorn’s Lemma. Hence $J \subseteq P$, because P is not z-ideal. Suppose that Q is a minimal prime ideal of J such that $J \subseteq Q \subseteq P$. Theorem 3.13 implies that Q is a z-ideal, because R is a p-right duo ring, and so $Q \in \Gamma$. Since J is a maximal element in Γ, we have $J = Q$. Therefore J is a prime z-ideal. \[\square\]

Proposition 4.8. Let R be a ring and I be a proper ideal of R. Let
\[\Gamma = \{ S \subseteq R \mid S \text{ is an } m \text{-system and } S \cap I = \emptyset \}.\]
If P is a prime ideal of R, then $P \in \text{Min}(I)$ if and only if $R \smallsetminus P$ is a maximal element of Γ.

Proof. We know from [7, Corollary 10.4] that an ideal P of R is prime if and only if $R \smallsetminus P$ is an m-system. Therefore, if $T = R \smallsetminus P$ is a maximal element of Γ, then P is a prime ideal of R. Also, $T \cap I = \emptyset$ implies that $I \subseteq P$. Now, we assume that there exists a prime ideal Q of R such that $I \subseteq Q \subseteq P$. It follows that $(R \smallsetminus Q) \cap I = \emptyset$ and $R \smallsetminus Q$ is an m-system, by [7, Corollary 10.4]. Thus $R \smallsetminus Q \in \Gamma$. Since $T \subseteq R \smallsetminus Q$ and T is a maximal element of Γ, we have $R \smallsetminus Q = T$, and so $P = Q$. Therefore $P \in \text{Min}(I)$.

Conversely, if $P \in \text{Min}(I)$, then $T = R \smallsetminus P$ is an m-system, by [7, Corollary 10.4]. Furthermore, $T \cap I = \emptyset$. Thus $T \in \Gamma$. Suppose that there exists $S \in \Gamma$ such that $T \subseteq S$. Hence S is an m-system and $S \cap I = \emptyset$. By Zorn’s Lemma, there exists an ideal $I \subseteq Q$ which is maximal with respect to being disjoint from S. From [7, Proposition 10.5], it follows that Q is a prime ideal. Since $S \cap Q = \emptyset$ and $T \subseteq S$, we have $Q \cap T = \emptyset$. Hence $I \subseteq Q \subseteq P$, and consequently $Q = P$, because $P \in \text{Min}(I)$. It follows from $P \cap S = \emptyset$ that $S \subseteq R \smallsetminus P = T$, and so $T = S$. Therefore, T is a maximal element of Γ. \[\square\]

It is well known that, if I is an ideal of a commutative ring R, then $P \in \text{Min}(I)$ if and only if for each $a \in P$, there exist $c \in R \smallsetminus P$ and $n \in \mathbb{N}$ such that $(ac)^n \in I$. We need generalization of this conclusion for the noncommutative rings. In the following Lemma, we will generalize it to right duo rings.

Proposition 4.9. Let R be a p-right duo ring and I be a proper ideal of R. If P is a nonzero prime ideal of R containing I and $T = R \smallsetminus P$, then the following statements are equivalent:

1. $P \in \text{Min}(I)$.
2. For every $x \in P$, there exist $y, z \in T$ and $n \in \mathbb{N}$ such that $yx^n z \in I$.

Proof. 1 \Rightarrow 2. Let $P \in \text{Min}(I)$ and $0 \neq x \in P$. If
\[\Gamma = \{ S \subseteq R \mid S \text{ is an } m \text{-system and } S \cap I = \emptyset \},\]
Then T is a maximal element of Γ, by Proposition 4.8. Now, we assume that

$$T' = \{ yx^n z \mid y, z \in T, n \in \mathbb{N} \cup \{0\} \}.$$

Let $y_1x^m z_1, y_2x^n z_2 \in T'$. From Lemma 2.2, it is clear that $z_1y_2 \in T$, and hence there is an element $r \in T$ such that $z_1y_2x^n = x^nr$, because R is a p-right duo ring. Thus

$$y_1x^m z_1y_2x^n z_2 = y_1x^{m+n} z_2 \in T'.$$

Therefore T' is an m-system. Obviously, $x \in T' \setminus T$, consequently $T \subsetneq T'$. Hence $T' \notin \Gamma$, by the maximality of T. However, this yields $T' \cap I \neq \emptyset$. Therefore, there exist $y, z \in T$ and $n \in \mathbb{N}$ such that $yx^n z \in I$.

2 \Rightarrow 1. Let Q be a prime ideal of R such that $I \subseteq Q \subseteq P$. For each $x \in P$, there exist $n \in \mathbb{N}$ and $y, z \in T$ such that $yx^n z \in I \subseteq Q$, by hypothesis. Since Q is a prime ideal and $y, z \notin Q$, we have $x \in Q$, by Lemma 2.2. Therefore $Q = P$, and so $P \in \text{Min}(I)$.

In the following Proposition, which is an analogue of [1, Lemma 2.1], we give conditions that, whenever J is a left ideal, then every minimal prime ideal of a left z_J-ideal, is also a left z_J-ideal.

Proposition 4.10. Let R be a p-right duo ring, I be an ideal and J be a left ideal of R. If I is a left z_J-ideal, then every minimal prime ideal of I is a left z_J-ideal.

Proof. Let $P \in \text{Min}(I)$. For every element $a \in P$, there exist elements $b, c \in R \setminus P$ and $n \in \mathbb{N}$ such that $ba^n c \in I$, by Proposition 4.9. Since I is a left z_J-ideal, we have $M_{ba^n c} \cap J \subseteq I$. Now, it follows from Lemma 2.5 that

$$M_b \cap M_a \cap M_c \cap J = M_b \cap M_a^n \cap M_c \cap J = M_{ba^n c} \cap J \subseteq I \subseteq P.$$

Obviously, $M_b, M_c \subseteq P$, because $b, c \notin P$. It follows that $M_a \cap J \subseteq P$, by Lemma 3.11, and so P is a left z_J-ideal of R.

Proposition 4.11. Let R be a right duo ring and J be a left ideal of R. If P is a prime ideal of R for which $J \not\subseteq P$, then P is a left z_J-ideal if and only if P is a z-ideal.

Proof. It is clear that if P is a z-ideal, then P is also a left z_J-ideal. Conversely, if P is a left z_J-ideal, then $M_a \cap J \subseteq P$, for each $a \in P$. Since $J \not\subseteq P$, Lemma 3.11 yields $M_a \subseteq P$, for each $a \in P$. Hence P is a z-ideal of R.

Let R be a p-right duo ring and I be an ideal of R. From Lemma 2.2, it is clear that $\sqrt{I} \subseteq P$, for each $P \in \text{Min}(I)$. On the other hand, if $P \in \text{Min}(I)$ and $x \in R \setminus P$, we conclude from Proposition 4.9 that $x^n \notin I$, for every $n \in \mathbb{N}$, and so $x \notin \sqrt{I}$. Therefore, we have

$$\sqrt{I} = \bigcap_{P \in \text{Min}(I)} P.$$

The following Lemma corresponds to [1, Lemma 2.2].

Lemma 4.12. Let R be a p-right duo ring, I be an ideal and J be a left ideal of R. If I is a left z_J-ideal, then $I_z \cap J \subseteq I_z$.

Proof. As we have seen in the preceding paragraph

$$\sqrt{I} = \bigcap_{P \in \text{Min}(I)} P.$$

From Proposition 3.9, it follows that

$$I_z \cap J = (\sqrt{I})_z \cap J = \left(\bigcap_{P \in \text{Min}(I)} P \right)_z \cap J.$$
Moreover, Lemma 3.6 yields
\[
\left(\bigcap_{P \in \text{Min}(I)} P \right)_z \subseteq \bigcap_{P \in \text{Min}(I)} P_z.
\]

Thus
\[
I_z \cap J \subseteq \left(\bigcap_{P \in \text{Min}(I)} P_z \right) \cap J.
\]

Since \(I \) is a left \(z_J \)-ideal, from Proposition 4.10, we see that \(P \) is a left \(z_J \)-ideal, for every \(P \in \text{Min}(I) \). However, we conclude from Proposition 4.11 that \(J \subseteq P \) or \(P \) is a \(z \)-ideal, for every \(P \in \text{Min}(I) \).

We now assume that \(P \in \text{Min}(I) \). If \(P \) is a \(z \)-ideal, then \(P_z = P \), and so \(P_z \cap J = P \cap J \). If \(J \subseteq P \), then we also have \(P_z \cap J = P \cap J \). Therefore
\[
\left(\bigcap_{P \in \text{Min}(R)} P_z \right) \cap J = \left(\bigcap_{P \in \text{Min}(R)} P \right) \cap J = \sqrt{I} \cap J
\]
and from (4.1) we get
\[
I_z \cap J \subseteq \sqrt{I} \cap J.
\]

Let us finally prove that \(\sqrt{I} \cap J \subseteq I \). If \(x \in \sqrt{I} \cap J \), then there is a positive integer \(n \) such that \(x^n \in I \). Since \(I \) is a left \(z_J \)-ideal, we have \(M_{x^n} \cap J \subseteq I \). Hence, from Lemma 2.5, it follows that
\[
x \in M_x \cap J = M_{x^n} \cap J \subseteq I.
\]
Thus \(\sqrt{I} \cap J \subseteq I \), and consequently \(I_z \cap J \subseteq \sqrt{I} \cap J \subseteq I \).

Lemma 4.13. Let \(R \) be a \(p \)-right duo ring and \(J \) be a left ideal of \(R \). If \(I \) is an ideal of \(R \), then \(I \) is a left \(z_J \)-ideal if and only if \(I \) is a left \(z_{I+J} \)-ideal.

Proof. If \(I \) is a left \(z_{I+J} \)-ideal, then clearly \(I \) is a left \(z_J \)-ideal. Conversely, let \(I \) be a left \(z_J \)-ideal. Since \(I \subseteq I_z \), from Lemma 4.12 and modular law follow that
\[
I_z \cap (I + J) = I \cap (I_z \cap J) \subseteq I.
\]
For every \(a \in I \), we have \(M_a \subseteq I_z \), because \(I \subseteq I_z \) and \(I_z \) is a \(z \)-ideal. Hence
\[
M_a \cap (I + J) \subseteq I_z \cap (I + J) \subseteq I.
\]
Therefore, \(I \) is a left \(z_{I+J} \)-ideal.

Lemma 4.14. Let \(R \) be a right duo ring. If \(I \) and \(J \) are two left ideals of \(R \) such that at least one of them is ideal, then \(I \cap J \) is a left \(z_J \)-ideal if and only if \(I \) is a left \(z_J \)-ideal.

Proof. We first assume that \(J \) is an ideal. If \(I \) is a left \(z_J \)-ideal, then for every \(a \in I \cap J \), we have \(M_a \cap J \subseteq I \), and so \(M_a \cap J \subseteq I \cap J \). Hence \(I \cap J \) is a left \(z_J \)-ideal.

Conversely, let \(I \cap J \) be a left \(z_J \)-ideal and \(a \in I \). We must show that \(M_a \cap J \subseteq I \). We now assume that \(x \in M_a \cap J \). Thus \(xa \in I \cap J \), because \(J \) is an ideal. Since \(I \cap J \) is a left \(z_J \)-ideal, \(M_{xa} \cap J \subseteq I \cap J \). From Lemma 2.5, we see that
\[
x \in M_x \cap M_a \cap J = M_{xa} \cap J \subseteq I \cap J \subseteq I.
\]
Therefore \(M_a \cap J \subseteq I \), and so \(I \) is a left \(z_J \)-ideal.

Now, if \(I \) is an ideal, then we can prove this Lemma by a similar argument.

The following result is an analogue of [1, Proposition 2.5].

Proposition 4.15. Let \(R \) be a \(p \)-right duo ring and \(M \) be a maximal ideal of \(R \). If \(I \) is an ideal of \(R \), then \(I \) is a \(z \)-ideal if and only if \(I \cap M \) is a \(z \)-ideal.
Proof. If I is a z-ideal, then clearly $I \cap M$ is a z-ideal. We now assume that $I \cap M$ is a z-ideal of R. If $I \subseteq M$, then $I = I \cap M$, and so I is a z-ideal. If $I \nsubseteq M$, then $M_a \subseteq I \cap M$, for every $a \in I \cap M$, and so $M_a \cap M \subseteq I \cap M$. Thus $I \cap M$ is a z_{M}-ideal. It follows from Lemma 4.14 that I is a left z_{M}-ideal. Now, Lemma 4.13 implies that I is a left z_{I}-ideal, because $I + M = R$. However, I is a z-ideal of R. □

The following Proposition is an analogue of [1, Proposition 2.6] and [2, Proposition 2.2].

Proposition 4.16. Let R be a p-right duo ring and J be an ideal of R with $J \nsubseteq \text{rad}(R)$. If J is not a z-ideal, then there exists an ideal I of R such that $I \nsubseteq J$ and I is a left z_{J}-ideal which is not a z-ideal.

Proof. Since $J \nsubseteq \text{rad}(R)$, there is a maximal ideal M of R such that $J \nsubseteq M$. Thus $I = J \cap M$ is an ideal of R and $I \nsubseteq J$. Obviously, for every $a \in I$, $M_a \cap J \subseteq M \cap J = I$, and so I is a left z_{J}-ideal of R. From Proposition 4.15, it follows that J is a z-ideal if and only if I is a z-ideal. Therefore, the desired conclusion trivially holds. □

Lemma 4.17. Let R be a p-right duo ring and I be an ideal of R. If I is a left relative z-ideal of R, then the set

$$\Gamma = \{ J \mid J \text{ is a } z\text{-factor of } I \}$$

has a maximal member with respect to inclusion. Furthermore, every maximal element of Γ properly contains I.

Proof. Obviously, $\Gamma \neq \emptyset$. If Σ is a non-empty totally ordered subset of Γ, then clearly $L = \bigcup_{J \in \Sigma} J$ is a left ideal which $L \nsubseteq I$. We will show that I is a z_{L}-ideal. For every $a \in I$, we have

$$M_a \cap L = M_a \cap \left(\bigcup_{J \in \Sigma} J \right) = \bigcup_{J \in \Sigma} (M_a \cap J) \subseteq I,$$

because J is a z-factor of I, for all $J \in \Sigma$, and so $M_a \cap L \subseteq I$. Hence I is a left relative z_{L}-ideal, and consequently I is an upper bound for Σ in Γ. From Zorn’s Lemma, we see that Γ has a maximal element.

Now, we show that every maximal element of Γ properly contains I. If J is a maximal element of Γ, then I is a left z_{J}-ideal and $J \nsubseteq I$. Hence I is a left $z_{I + J}$-ideal, by Lemma 4.13. Since $I + J \nsubseteq I$, $I + J$ is a z-factor of I, and so $I + J \in \Gamma$. Therefore, by the maximality of J, we deduce that $J = I + J$, and consequently $I \nsubseteq J$. □

Lemma 4.18. Let R be a right duo ring and I, J and L be left ideals of R such that $I \subseteq J$. If I is a left z_{J}-ideal and J is a left z_{L}-ideal, then I is a left z_{L}-ideal.

Proof. Since I is a left z_{J}-ideal, we have $M_a \cap J \subseteq I$, for every $a \in I$. Moreover, $M_a \cap L \subseteq J$, for every $a \in I$, because $I \subseteq J$ and J is a left z_{J}-ideal. Thus $M_a \cap L \subseteq M_a \cap J \subseteq I$, for every $a \in I$. Therefore I is a left z_{L}-ideal. □

Theorem 4.19. Let R be a duo ring such that every proper ideal of R is a left relative z-ideal. If R is a p-right duo ring, then every ideal of R is a z-ideal.

Proof. It is clear that R is a z-ideal. Let I be a proper ideal of R. Then I is a left relative z-ideal, by hypothesis. It follows from Lemma 4.17 that there exists a maximal z-factor J of I such that $I \nsubseteq J$. We claim that $J = R$. If $J \neq R$, then J is also a left relative z-ideal, and hence we can assume that L is a z-factor of J such that $J \nsubseteq L$, by Lemma 4.17. It follows that I is a left z_{J}-ideal and J is a left z_{L}-ideal. From Lemma 4.18, we may conclude that I is a left z_{L}-ideal. Since $I \nsubseteq J \nsubseteq L$, L is a z-factor of I, which contradicts the maximality of J. Therefore, $J = R$, and so I is a z-ideal. □

Acknowledgment. We would like to thank the referee for the valuable suggestions and comments.
References