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Abstract

In this work, we study existence and uniqueness of solutions for a coupled system of nonlinear fractional
differential equations involving two Caputo-Hadamard-type fractional derivatives. By applying the Banach’s
fixed point theorem and Shaefer’s fixed point theorem, the existence of solutions is obtained.The results
obtained in this work are well illustrated with the aid of examples.
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1. Introduction and Preliminaries

The fractional-type differential equations are generalizations of classical integer order differential equa-
tions and they are increasingly used to model problems in finance, fluid dynamics, biology and other areas of
application. Recently, many studies on fractional differential equations, involving fractional derivative opera-
tors such as Riemann-Liouville fractional derivative [I1], 20], Caputo fractional derivative |3} [5, [7], Hadamard
fractional derivative [I0] I8, 19], and Caputo-Hadamard fractional derivative |2 4, [6], have appeared during
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the past several years. Moreover, by applying a variety of fixed point theorems (such as Banach contrac-
tion principle, Krasnoselskii’s fixed point theorem, Schaefers fixe point theorem, Leray-Schauder’s nonlinear
alternative and Leray-Schauder’s degree theory) several scholars presented the existence results for various
classes of fractional differential equations, see for example [5 [6], [T, 15 [I7] and the references cited therein.
The study of coupled systems of fractional differential equations is also very significant as such systems
appear in a variety of problems of applied nature, see [1| 8, 13| [14]. Some recent works on coupled systems
of fractional differential equations with different fractional derivative operators can be found in [II, 9] 17, 21]
and the references cited therein. In this paper, we consider a coupled system of Caputo-Hadamard-type
fractional differential equations

DO (DY + M) u(t) — f(tu(t),v(t) =1%(tu(t),v(t),t€[l,e,

0<Bryon <1,1<Br1+a1 <2, 61 >0, (1)
D% (D2 + Xg) v (t) — g (t,u (), v (t) = 19 (t,u(t) v (1)), t € [L,e],

0< B <1,1<Bor+an <2, 6>0,

supplemented with nonlocal Hadamard fractional integral conditions

alPu(n) =m,bl%x (&) = v2,p1,q1 > 0,1 <M, & < e,a,beR, @)
clP?v (n2) = 01,dI%v (§2) = 02,p2,q2 > 0,1 <12, &2 < e,c,d € R,

where f, g, and v : [1,¢] x R? — R are given continuous functions, I% IPi % are the Hadamard fractional
integrals and D%, D% (i = 1,2) are the Caputo-Hadamard fractional derivatives. The Hadamard fractional
integral [I), 12], 16] of order « for a continuous function ¢ : [1,4+00) — R is defined by

o 1 ¢ t a_lgp(s)
HI @(t)zl—‘(a)/l log; S dS,Oé>O,

with T' (o) = [;° e“u®"'du. The Caputo-Hadamard fractional derivative [2, 12} [16] of order a for a continuous
function ¢ : [1,+00) — R is defined by

G0 = it [ (e) e = a0 0,

where n = [o] + 1 and 0" = (t%)n.
Lemma 1.1. [2,[12,16] Let x(t) € AC} [a,b] where 0 < a < b < co and AC} [a,b] = {g : [a,b] = C, 6" g (t) € AC [a
We define

n—1

I°DPa(t) = a(t) + > ci(logt)’,
=0

where ¢; € R, i =1,2,...,n—1 and n = [p] + 1.

Lemma 1.2. [775,[17] Let S be a Banach space. Assume that A:S — S is a completely continuous operator
and that the set A ={x € S:2=0A(z),0 <o <1} is bounded. Then, A has a fized point in S.

We prove the following auxiliary lemma.

Lemma 1.3. Let II; # 0 and hy € C([1,¢e],R). Then the solution of the problem
DBI(DOZ1 + )\1)’&(75) = hl(t),t € [1,6],0 < fBr,a1 <1,1<fB14+a; <2, (3)
with the Hadamard fractional integral conditions

aIp1u<771) =7 blqlu(gl) =7, I< nhgl < eva'ab € Ra (4)
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15 given by
Ay (logt)*t — AsT (o + 1 @ o
4 ( gr[)lr(al i 1() 1 +1) (71 — aIP TPy (y) + Aal?t W(m))
As (logt)™ — AT (a1 + 1
A Og1‘1)1F (o —1|- 1()041 ) (72 — bITTF Ry (€1) + AT N Ty ('51)> ’

where

I = AiAs—AA3#0,

A — a(logﬁl)pﬁal _ a(logﬁl)pl
YT Ttartl) P T 1)
b (log &)1+ _ b(log&)?”

A = T~ v — T/ 1\
’ (g1 +ao1+1) RN CTESY

Proof. Using Lemma 1.1 , we can write

w(t) = IPhy(t) — AT () + eg (logt)™ + eq, (6)

1
I'(a;+1)

where ey and ey are arbitrary constants. By taking the Hadamard fractional integral of order p; for @, we
have

log t)Pr e (log t)P*
TP (t) = TPrteatBup gy — N, P11, (¢) + ( ) 7
u(t) 1(®) ! u () eOF(p1+a1+1) 611“(101—%1) 0
Now we multiply by a and in particular, for ¢ = 11, we obtain
al’'z(m) = al” () — e\ P () (8)
logt p1tai log ¢)P!
rae, sty (ogt)
I'(pr+o1+1) [(p1+1)
Using the boundary conditions , we find that
eol1 + e1hy = 41 — aIP TP () + X TP () (9)
and
eo\3 + e1Ay = Yo — qu1+a1+'Bltp(€1) + b/\1Iq1+°‘1u (fl) . (10)
Solving @ and for eg, e1, we get
A
e = H;i [71 — alP () 4+ a\ Py (771)}
A
_I_T‘i [72 — pINFOTB (£ ) A Ty (fl)} :
and
A
e = 1% {72 _ b141+a1+6190(§1) oA Ty, (51)]
A
_Hii ['}’1 — It (n)) e\ TP Ty (771)} '

By substituting the value of ey and e in @, we obtain the solution (5. O



M. Houas, Adv. Theory Nonlinear Anal. Appl. 5 (2021), 316329} 319

Lemma 1.4. Let IIy # 0 and hy € C([1,€],R). Then the solution of the problem
{ DB2(D%2 + Xo)u(t) = ho(t),t € [1,€],0 < Bo, 0 < 1,1 < Py + g < 2

clP?v (772) =01, dIv (52) = 02, 1< 772752 <e,¢, de R7
1S given by
v (t) = I1°"P2hy (1) — NI (1) (12)
AQ (log t)OQ - A1P
1IL,I" (a2 +1
A4 (10g t)a2 — Agr
Il (g + 1

1
az +1) <U1 _ cIprtoatBap, (n2) + AgclP2razy (772))

a9 + 1) (02 . qu2+a2+,th2 (52) 4 /\2d1q2+azv (&)) ,

~— | — | —~

p2tag

(log n2) ~ c(logmz)P?

C

T(pstas+1) 27 T(pp+1)’
d (log &) %22 _ d(logé&n)?”
r

(rtoas+1) ' T(p+l)

and
I, = A1A4 — AgAg, 11, 7é 0.

Proof. The proof it is similar to that of Lemma 1.4. O

Let us now introduce the space
W = {(u,v) :u,v € C([1,T],R)} endowed with the norm |ju, v, = ||u|| + ||v||}, where

[ull = sup{|u(®)|, ¢ € [1,T1}, [[v]| = sup{lv(®)], € [L, TT}

It is clear that (W,|.||y;) is a Banach space. Throughout this paper, for convenience, the expressions
I¢ (s,u(s),v(s))(t), and I¥z (s) (t) mean

t w—1
Poals) o) 0 = oy [ (l6l) o)

() () = F(lw)/lt <logi>w_1z(s)d8.

S

ds
.

2. Existence and uniqueness result

In view of Lemma 1.3 and Lemma 1.4 | we define the operator H : W — W by:

H (u,0) (1) = < o ) telle,

where

) (1,0 () )
_ Ia1+/31f (S, u (8) U (3)) (t) + Ia1+ﬁl+91h1 (s,u (S) ,U (8)) (t) — M I%u (S) (t)

A (1Ogt)a1_A F(a +1) p1+a1+p51
2 mr(alil) S PR (s )y (5)) ()

—aIPr Tt (s (s) v (s)) (1) + AaIP T (s) (771)}

A4 (logt)® — AsT (g + 1) o1 4B
B LT (g +1) [72 —bITHOTIS (5,u(s) v (s)) (1)

—bI N AR (5 (), 0 (s)) (€1) + AbIT Ty (s) (51)} ;
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and
Hy (u,0) (t) (14
_ Ia2+ﬂ2 (s,u(s),v(s))(t) + ]a2+ﬂ2+02¢) (s,u(s),v(s)) (t) — A2Il™v (s) ()

Ay (10g1€[):;‘ (_042 +F1§a2 k [0’1 — cIPFO2 g (5,0 (s) v (s)) (n2)

et (5,1 (5), 0 (5)) (1) + MacTP 0 () ()]

)
Ay (1 AsT ( 1)
— 4(og;1)2r (azj—l 062+ |:0'2—dfq2+a2+ﬁ29 (S,U(S),’U(S)) (52)

dlq2+a2+ﬁ2+92¢ (s,u(s),v(s)) (&) + Aod[©2T02y (s) (52)} .

For the sake of convenience, we impose the following conditions:
(C1): f,o:[l,e] x R x R — R are continuous functions and there exist constants k1 > 0,k > 0 shch
that for all ¢t € [1,¢] and w;,v; € R(i =1,2),

’f (tvulavl) - f(t,’u,g,’UQ)’ < kl ’ul - u2‘ + ”Ul - 02‘7

and
oo (&, w1, v1) — 0 (£, u2,v2)| < ko (Jur —ug| + |vr — v2]).
(C2) : g,¢ : [1,e] x R x R — R are continuous functions and there exist constants I > 0,12 > 0 shch that
forall t € [1,e] and w;,v; € R (i =1,2),

lg (t,u1,v1) — g (t,uz,v2)| <y (Jur — ua| + [v1 — v2|).

and
W (t,ur,v1) — P (8 uz,v2)| < o (Jur — ugf + [v1 — v2]) .
We also introduce the following quantities:
Vio: o= 1 L lal 18] + (A4 T (01 + 1) (log )™+ "
- D+ pi+1) IIL|T (a1 + )T (p1 + a1 + B + 1)

Bl [|Aa] + [A3]T (@1 + 1)] (log &)™ 1%
L[ T (1 + )T (g1 + a1+ B+ 1)
1 jal [[A2] + [A1]T (a1 + 1)] (log y )P T +17+01
' +61+61+1) 4T (g + )T (pr+o + 1+ 601 +1)
8] [|Aa] + [A3| T (a1 + 1)] (log &) Fer A+
ML T (a1 + 1) T (¢ + 1+ 81+ 01 +1)
1 lal [|A2] + [A4| T (@1 + 1)] (log ma)™ ™
I'(ag+1) TH|T (a1 +1)T (p1 + g + 1) ’
6] (|A4] + [A3]T (a1 +1)) (log &))" ™!
T (1 + 1) (g1 + o1 + 1)
1
~ MIT (e +1)

)

Vo @ =

Vs = |\]

il

[[Ag] 4+ |A1|T (ar + 1) |y1| + |Ag] + |A3| T (a1 + 1) |72]] .
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1 L lelllAz] +[Aq| I'(as + 1)] (log )22+
I'(ag + B2+ 1) 2| T (a2 + 1) T (p2 + a2 + B2 + 1)
] [| Aa] + |As| T (g + 1)] (log &) %27
[To| T (a2 + 1) T (g2 + a2 + B2 + 1)
1 || [Ag| + |A1| T (o + 1)] (log )P o2 P2 40
['(az+ B2+ 62+1) [To| T (g + 1) T (p2 + a2 + B2 + 02 + 1)
|d] [|A4] + |A3|T (ag + 1)] (log &) =2 HF2+0
M| T (g + 1) T' (g2 + 2 + B2 + 02 + 1)
1 el [|Ag] + |A1| T (ag + 1)] (log )"
I'(ag+1) Tl T (g + 1) T (p2 + ag + 1) ’
|d] (|Aq] +[A3] T (a2 + 1)) (log &)=
2| T (a2 + 1) T (g2 + a2 + 1) ’

1
= T (e 7D A2l + 18117 (@2 + D on] + 8] + 4] T (a2 + o]l

(1)1::

: (16)

(I)QZ:

O3 1 = |\

Dy

Theorem 2.1. Assume that conditions (C1) and (C1) hold and suppose that 11y # 0 and Iy # 0. If these
mequalities

1 1
k1V1+ koVo 4+ V3 < 5, L P14+ 19Dy + 3 < 5, (17)

are valid, then system —(@ has a unique solution.
Proof. Let us fix sup,cpy o [f (£,0,0)| = L < 00,supyey ¢ |9 (£,0,0)| = M < oo and define

k1V1+ koVo +Vy 1P + 19Dy + Dy <
3= (LVi+MVy+V3) 5 — (L@ + M'®y+ @3) | ~

We show that HB, C B,, where B, = {(u,v) € X XY :||(u,v)|| <r}.For (u,v) € B, and by (H1), we have

|ftu,v)| < [f(Gu,v) = f(0,0)] 4+ [f (£,0,0)] < ki lull + k1 ol + L
< Eil|u,vlly + L < ke + L,
(18)
[ (t,u,0)] < ot u,v) =@ (E,0,0)] + ¢ (£,0,0)] < k2 [lul| + k2 [lvf| + M
< kQ HU,UHW + M < kQT-i-M,
Similarly,we have
g (tu,0)] < hlull+ Lol + L <l olly + L <hr+ L,
(19)

W (o) < b ful 4l ol + M < I vl + M < Dr + A
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By , we can write

|y (w,0)]
< sup {IPHT (s (s) 0 O+ 17 s (), 0 (6D O+ Il 1 o (3] )
tell,e
[Ag| (logt)™" + |[A1|T (o1 +1) pitar+Br
T ot D) (Inl+1lal 2 £ (s,u(s),v ()] (m)
o [a] IO (5, (s) 0 ()] (m) + (A faa| 70 Ju ()] () )
[Adl (log ) + |As|T (a1 +1) rorts
JaTarTh
e e ) (Irel + 1o £ (s, (s) 0 ()] ()
[ TP (5, (5) v ()] (€0) + [l oL T2 Ju (5)] (61) ) |
) 1 lal (JAz] + A4 T (a1 + 1) (log )P+ 4
T T+ Bi+1) LT (e + 1) T (p1+ a1+ B+ 1)
q1t+o1+B51
b1 (| Aa + 43| T (o1 + 1)) (log &) (T4 1)
IL[T (a1 + 1) T (1 + o1 + B1 + 1)
1 [al (JAs] + [A1] T (a1 + 1)) (log P+ 41
(o +B1+61+1) [T (1 + 1) T (p1 + o1 + B1 + 01+ 1)
LAl + 8] T (01 +1)) (log &)™ o]
LT (e + 1) T (g1 + a1+ B1+ 601+ 1) 2
gy + LA AT o 1) g
"I (g +1) L T (o1 + DT (pr + ay + 1)

|61’ (’A4‘ + ’A?,’ r (a1 + 1)) (logé‘l)q1+al:| .
LT (a+ 1T (g + a1 +1)

1
I
| T (e + 1)
= (LR V1 (Mr 4 02) Vo Var 4 Vi,

[[Az| + [A1|T (a1 + 1) || + [A4] + |A3| T (@1 + 1) |12]]

which implies that

|H1 (u,v)|| < (LV1+ MVae+V3)r+k1Vi+ kaVa+Vy <

In a similar manner, using ([19)), we obtain

[ Ha (u,v)]| < (L/q)l + M @y + cI>3> r+ 0P+ P+ Py <
From the definition of ||.||;,, we can write

1 (u, 0) [l = [ H1 (w, 0)[| + [[Hz (u, 0)|| <7
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Now, for u;,v; € By,i = 1,2, we have
‘Hl (Ul,’l}l) - Hl (UQ,UQ) (t)‘
< sup {I"”Bl |f(s,u1 (s),v1 () = f (s,u2(s),v2(s))] (¢)

te(l,e]
I (5) = w2 ()] ()
FIUPE o (5,01 ()01 (5)) = @ (s w2 (5) 02 ()] (1)
L [Aa] (tog )™ + A1| T (0a + 1)
‘H1| r (Oél + 1)
< [lal I £ (5,0 (5) 01 () = f (5,2 (5) v (5))] 0m)

+[a] IO o (5 uy (s) 01 (5)) — @ (8, u2 (s) 02 (5))] ()
+ Ml fa] TP Juy () — g (s)] (m)]
|A4| (log ) + [A3|T (g + 1)
| T (e + 1)
X [Ibl T9FOEP £ (5 uq (5) 01 () = f (s,u2 (s) , 02 (5))] (1)

+ [ IO oo (5,01 (5), 01 (5)) — @ (s, u2 (5) , v2 (5))] (&1)
Al DI 117 g (s) — w2 (s)] (61)] }

1 la| (|A2] + [A1| T (a1 + 1)) (log ny )PrFeath
T(ar+p1+1) I |T (a1 + )T (p1 + a1 + Br + 1)

[b] (| Ad] + |A4] T (a1 + 1)) (log &) 1+
| T (e +1) T (g1 + a1 + 1 + 1)

[ 1 la| (|A2] + [A1|T (aq + 1)) (lognl)P1+a1+B1+01

IN

F (lur = wzl| + [lor = val])

(o +f1+61+1) | T (a1 + 1) T (pr + a1 + B + 61 +1)

1b] (|A4| + |A3| T (o1 + 1)) (log & )2 ForThr+o
|H1‘F(O¢1 +1)F(q1 —|—a1+51 +91 +1)

e [ 1 lal (|A2| + A1 T (a1 + 1)) (log i)™ ™
F(a1+1) \Hlyl“(al—i—l)r(m—i—al—i—l)
ML T 1) g
L T (a1 + )T (g1 + o +1) P
= [k1V1+ k2Va + V3] ([Jur — ug|| + [|Jv1 — v2]]),

ko (lur = w2l + [lor = val])

and, consequently, we obtain

| Hy (u1,v1) — Hy (u2,v2)|| < [k1V1 + k2Va + V3] ([[ur — uz|| + [|vr — v2l]) -

Similarly, we can have

||Ha (u1,v1) — Ha (u2,v9)|| < [[1®P1 + laPo + 3] (||ur — ue|| + [Jv1 — v2]]) .
Consequently, we obtain

| H (u1,v1) — H (u2,v2)]|yyr
< [kiVi+kaVa+ Vs + 4 P; + 12®s + 3] (||lur — ua|| + ||vr — v2]])
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Since k1V1 + koVa + V3 + [1®1 4+ [0Py + 3 < 1, therefore, H is a contraction. So, by Banach’s fixed point
theorem, the operator H has a unique fixed point, which is the unique solution of system —. This

completes the proof. O
Example 2.1. Consider the following system
D5t (D% + %) u(t) — m (sinw (t) — coswv (t))
_ 7 1 |u(t)] ()]
=1Is [551&2-‘,-1 <|uZ€)H—1 + |v8€)|+1)] b€ (L,
pu l—e~t lu@®)] lv(®)]
4 ( o so) ~ S (2\u<t>|+1 + 3|v<t>|+2) (20)
19
=12 [49(t2+2) (cosu( )+ cosv(t))|,te[l,el,
2 _1 57 1
Iﬁu(%) = (log8 — log5) 3 ,Ieou (%) = 10g7 log4)™3
1 42 _9
| LTiv(§) = (1—log2)™1, 2150 (v2) = 2 (log2) 75T
For this example, we have
1
f(t,u,v) ) (sinu — cosv),
1—e™" ([ Ju(®) [v] )
t,u,v) = ,
9 ) 57(t+ 1) <2|u|+1 3| +2
1 |ul Kl
t =
@ (tuv) 55t2+1<|uy+1 EESYA
1
Y (t,u,v) = I (cosu + cosv).

With the given data, we find that

Ay —0.26587, Ay ~ —0.66963, A5 ~ 0.37963, Ay ~ 0.58793,
H1 = AA4 — A2A3 >~ 0097899,
Vi ~ 2.5882, Vs, =0.91463, V3 ~ 0.25392,
and
Ay~ —4.8983 x 1073, Ay ~ —2.243 x 1072,
As ~ —1.177x 1072 Ay ~ —3.4429 x 1072,
Iy = A1As— AsAg~—9.5358 x 107°,
d, 2.1432, ®y = 0.407 70, B3 ~ 0.59613.

So, fort € [1,€] and (u,v1), (u2,ve) € R%, we have

1

|f (& ur,v) = f (8 uz,02)| < mﬂul — ug| + v — v2]),
1

tiur,v1) = g(tuz,v2)| < —————— (Jur —uz| + |v1 —v2|),

oo, 00) =t 02)] € o (ol o v
1

l (£, u1,v1) — @ (tug,v2)| < m(’ul—uz\‘ﬂvl—vﬂ)v
1

|92 (£, u1,v1) = g2 (£, u2, v2)] (lur = ug| + o1 —va]) .

49 (12 + 2)
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It follows that
1 1 1 1

b= ky= —— = Iy = .
LT 252 4e) T 1407 552+ 177 49(e2+2)

Then,
k1V1+ kaVo + V3 + 1P + lo®Py + $3 = 0.976 76 < 1.

By Theorem 2.1 , we conclude that the system (@) has a unique solution on [1,e].

3. Existence result

We show the existence of solutions for the system (I)-(2) by applying Lemma 1.2.

For the forthcoming result, we impose the following conditions:

(C3) : fyp:[l,e] x R x R — R, are continuous functions and there exist real constants w; > 0,71 > 0
such that for any t € [1,e] and u,v € R, we have

[f (G (t), o) <wi, et ut),v(t)] < ws.

(Cy) : 9,7 : [1,e] x R x R — R, are continuous functions and there exist real constants we > 0,709 > 0
such that for all u,v € R and t € [1, €], we have

‘g (t,u(t),v(t))\ < i, W (tvu(t)vv(t))‘ < wo.

Theorem 3.1. Assume that hypotheses (Cs) and (Cy) hold. Furthermore, assume that Iy # 0 and Iz # 0.
Then, system —(@ has at least one solution.

Proof. By continuity of functions of f, g ¢ and 1), the operator H is continuous.

Now, we show that the operator H is completely continuous.

(I) First, we show that H maps bounded sets of W into bounded sets of W. Let us take ¢ > 0 and
B. = {(u,v) € W : |lu,v|y < €}. Then for (u,v) € B., we have

HHl (u,v)H
< t?ﬁp] {Ia1+51 If (s,u(s),v(s))|(t)+ JeatBi+o: 1Y (s,u(s),v ()] (8) + M| I [o (s)] ()
Aol o )" + AT (e + 1 S
‘H1|F(a1:_1) : (”MHG\I B £ (s 0 (s), v () (m)
+ a| JPitaa+pi+61 lo(s,u(s),v(s))] (m)+ [A]|a1] Pitan u (s )
|A4| (log )" +|A3|T (a1 + 1) B
S T T D (el I A s u () v () )

[ TP o (5, (5) v ()] (€0) + [l oL T2 Ju (5)] (60) ) |
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By (C3), we obtain
1 H1 (u, v)]

1 n Ja| (|A2] + [A1| T (o1 + 1)) (log ny)? T 77
(a1 +p1+1) 1| T (a1 + 1) T (pr + a1 + B + 1)

[b] (|Ad] + |As] T (a1 + 1)) (log &) 1+
4T (o + 1) T (1 + a1 + 1 + 1)

1 4 lal (o] + M| T (0 +1)) T
[+ p1+01+1) 1T (1 + 1) T (p1 + 1 + B1 + 01 + 1)

1b] (|A4| + |A3| T (o1 + 1)) (log & )1 For oo

w1

M| T (a1 + DD (g tar+ B+ 6 +1) | 2
+\A‘[ : lal ([Aa] + [ A1 T (@1 + 1)) (log )"
M (e +1) T (a1 + )T (pr + a1 + 1)

|b1] (JA4] + |A3|T (o1 + 1)) (10g£1)‘“+a1] _
| T (1 + 1) (g1 + o1 + 1)
PR S
I | T (a1 + 1)
= v1‘*‘)1 + v2w2 + V35 + V4,

|Ag| + |AL|T (o + 1) [y1] + |Ag] + |A3| T (01 + 1) |42]]

which implies that

|H1 (u,v)|| < Viws + Vaws + Vge + V4. (21)
As before, it can be shown that

”HQ (u,v)” < Py + Powog + P3e + By (22)
It follows from and that

I H (u,v) ||y
< Viwi + Vows + V3e + V4 + @1 + Powg + Pze + Oy < 00.

(II) Next, we show that H is equicontinuous. Let (u,v) € B: and t;,t2 € [1,€] with ¢; < t5. Then we have
|Hy (u, ) (t2) — Ha (u,v) (t1))]

B S
w2 a1+p1+601 a1+51+01 a1+p1+61
+ (‘ltl — (log t +‘1t—1t )
T (on + B £ 01) (log t2) (logt) (logto — logty)
6 A (03 [0 (03
ok (ogta)™ = (logt)™ |+ (g t2 -~ log )
[As||(logta)™" — (logt1)™| ] + 1 la| (log gy )P T+
T[T (a1 + 1) I'(pi+ a1+ 61)
wy |a] (logmy )P T P00 2 |\ |a] (log g )P T
I'(pi+a1+p61+61) I'(p1+a1)
|A4]|(logta)™" — (logty)™| sl wi [b] (log &) Tt
I T (a1 + 1) I'(gp+ a1+ 61)

wy [b] (log &) T 0 g |\ [b] (log &) T
I'(gp+ a1+ 81+ 61) I'(g1 + 1) ’
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which imply that ||H; (u,v) (t2) — H1 (u,v) (t1)|| — 0 independent of u and v as to — ¢;. Analogously, we
obtain

|Hy (u,v) (t2) — Hy (u,v) (t1)]

L(‘l t a2tB2 ¢ az+B2
I (oa+ o) (logtz) (logt1)

IN

+ ’(log ty — logty)2 P2

)

+F (az +w;2 - 92) (‘(log t2)a2+,32+92 o (log tl)a2+,52+92 + ‘(log ty — IOg tl)a2+ﬁg+92 )
g N N .
T £a22|) (I(logt2)°* — (log t1)"*| + | (log t2 — log 1))
Aol ogt2)* — (log 1) (|| o1 el (log )™
| T (g + 1) T (p2 + o + o)
s || (logma)P2Te2HP2H02 23,1 || (log ny P2 o2
[ (p2 + g + B2 + 02) T (p2 + az)
Al l(ogta)™ — logt0)*?] (|| | =1 ]d](og) e
’H2| I (0(2 + 1) T (q2 + o + ,62)

w3 |d| (log &) @272 102 ¢ |\ |d] (log &)
I'(qg2 + a2+ B2+ 62) I'(g2 + a2) ’

which imply that ||Hs (u,v) (t2) — Ha (u,v) (t1)|]] — 0 independent of v and v as to — t;. Therefore, the
operator H (u,v) is equicontinuous. Combining (I) and (1) and using the Arzela-Ascoli theorem, we conclude
that H is completely continuous operator.

(II1I)Finally, it will be verified that the Q = {(u,v) € W, (u,v) = pH (u,v),0 < p < 1}, is bounded. Let
(u,v) € Q, then (u,v) = puH (u,v), for some 0 < pu < 1. Hence, for t € [1, €], we have

u(t) = pHy (u,0) (8), v (t) = pHa (u,0) (1)

By (C3) and (Cy), we have
[ull < 1 (Viwr + Vows + Vae + Va), (23)

and
[v]| < p (P11 + Powa + Pge + Dy) . (24)

It follows from and , that

| (us v) [l
p[Viws + Vaws + Ve + Vi, +@1wq + Powg + Pae + Dy

<
< Viwy + Vows 4+ V3e + Vy, + @11 + Powwg + P3e + Py.

Consequently,
[1(, 0) |y < 0.

This shows that the set is bounded.
Thanks to (I),(II) and (I1I), and by Lemma 1.2, we deduce that H has at least one fixed point, which
is a solution of system ([I)-(2). O
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Example 3.1. Fort € [1,¢], consider the following system

27 (16 () sinu(®)  |(®)|Bi—e) _ 71 (  |u(t)+o(t)|(3—1)?
D (D2° + T9> u(t) = T adgyonn = 1 (\ﬁt+s’(\u(t)|+|v(t)\+1)) ’

13 8 1 e~lu®—v®)l17 2L (|cosu(t)|+et~® |sinv(t)]
D (D“ - *) y(t) — STl A v ey e

9

A0y (38) = (log 8 — log 5)_% ;3110w (8) =6(log8 — log3)_T10 ,

350 (8) =2 (log8 — log5) 5, 1150 (3) = 2 (log5 — log 2) % .

We have
21n () |si 3t — 3-1)°
2 +1 det (|y (t)| + 1) ViE+8(Jul + [v] +1)
7|u7v| t—e :
e +7 |cosu| + e |sin v]
t - - t = :
g(,u,v) (t+3)3 ,¢(,’UJ,’U) 522 4+ 1Int —2 34— 1
and

Ay~ —1.7185, Ay ~ —3.3346, Ay ~ —2.1289, A4 ~ —3.0654,
Ay =~ 0.31790,As =~ 0.63322, Az ~ 2.0448, Ay ~ 3.3336,

We remark that

I; = AjAy— AyAg ~ —1.8311,
HQ = A1A4 — AgAg ~ —0.235 06,

and )
- 1
oD ) < S0t o) <

So, by Theorem 3.1, system has at least one solution on [1,e].

[N e

f(t,u,v) < ;,go(t,u,v) <
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