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1. Introduction

In 1992, T. Twaniec and C. Sbordone [22] introduced the grand Lebesgue spaces LP) (Q),
1 < p < oo, on bounded sets Q C R? with applications to differential equations. A
generalized version LP)Y (Q) appeared in L. Greco, T. Iwaniec and C. Sbordone [18].
During last years these spaces were intensively studied for various applications (see, e.g.,
[1,16-18,20,22,23]). The variable exponent Lebesgue spaces (or generalized Lebesgue
spaces) LPO) appeared in literature for the first time in 1931 with an article written by
Orlicz [25]. Kovacik and Rakosnik [24] introduced the variable exponent Lebesgue space
LP()(RY) and Sobolev space WEP()(R?) in higher dimensional Euclidean spaces. There are
several applications of these spaces, such as, elastic mechanics, electrorheological fluids,
image restoration and nonlinear degenerated partial differential equations (see [10,11,14]).
The spaces LP)(R?) and LP(RY) have many common properties, such as Banach space,
reflexivity, separability, uniform convexity, Holder inequalities and embeddings. A crucial
difference between LP()(R?) and LP(R?) is that the variable exponent Lebesgue space is
not invariant under translation in general, see [13, Lemma 2.3] and [24, Example 2.9]. For
more information see [10,14]. The grand variable exponent Lebesgue space LP()? (Q) was
introduced and studied by Kokilasvili and Meski [23]. In their studies they established
the boundedness of maximal and Calderon operators in these spaces. The space LP()-0 ()
is not reflexive, separable, rearrangement invariant and translation invariant. There are
several published papers about direct and inverse theorems of approximation theory in
some function spaces weighted, variable or non-weighted, see, [2-8,12,19, 21].
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In this study we obtain some inequalities involving trigonometric polynomial approx-

imation in a certain subspace of the weighted variable exponent grand Lebesgue space

and inverse theorems of approximation in L

. Also we give some basic properties of these spaces. Finally, we prove some direct
p(.),0
w .

2. Notations and preliminaries

In this section, we give some essential definitions, theorems and remarks for weighted
grand variable exponent Lebesgue spaces.

Definition 2.1. Let T := [0, 27] and let p(.) : T — [1,00) be a measurable 27-periodic
function such that

1 <p =essinfp(z) < esssupp(z):=p" < oco.
z€T z€T

Assume that p(.) satisfies the local log-continuity condition, i.e., there exists a constant
C > 0 such that the inequality

¢

—log|z —y|

holds for all z,y € T with |z — y| < 3 (briefly p(.) € P(T)). We also define a subclass
Py(T)={p()eP(T):1<p}.

Definition 2.2. Let p(.) € P(T). Variable exponent Lebesgue space LP() := LP()(T) is
defined as the set of all measurable, 27-periodic functions f on T such that g, )(Af) < oo
for some A\ > 0, equipped with the Luxemburg norm

: . /
11,0 = inf {3 >0 gy () <1}
where o, )(f) = [ |f(2)[P®) dz. The space LP() is a Banach space with the norm -l
T

Ip(z) — p(y)| <

Moreover, the norm ||.||,, y coincides with the usual Lebesgue norm ||.||,, whenever p(.) = p
is a constant function. If pt < oo, then f € LP0) if and only if 0p()(f) < oo
Definition 2.3. A Lebesgue measurable and locally integrable function w : T — (0, 00)

is called a weight function. Suppose that p(.) € P(T). The weighted modular is defined
by

0p()w(f) :/If(x)|p(”") w(z)dx.
T

The weighted variable exponent Lebesgue space L{L(') = Lﬁ,(') (T) consists of all measurable
1
fwrO < 00. Also, IEY s a uniformly convex

functions f on T for which || f]|, ), =
’ ()

Banach space, thus reflexive.

Remark 2.4. Let w be a weight on T and p(.) € P(T).
(i) Relations between the modular g,().(.) and ||.[,),, are as follows:

1 1

min{@p(.),w(f)P ,@p(.),w(f);*} <N llpyw < m&X{Qp(.),w(f)” 7Qp(~),w(f)pl+}7

. + - + -
min (| £170) o 1100 b < 0p ) < max {IFI70) o IF15 ) ) -
(i) If 0 < C' < w, then we have LZJ(') < LP0) | since one gets easily that

¢ [ @PD da < [1@P w@)ds
T T
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and C'|[fll,) < [Iflly0)w (see [9]). Moreover, due to |T| < co and 1 < p(.) we have
LA(T) < LPO(T) — LY(T).

Definition 2.5. Let # > 0 and p(.) € P(T). The grand variable exponent Lebesgue
space, LP()? ig the class of all measurable functions f for which

0
[fllpye = sup  er == [|f]l,)—c <o0.
O<e<p——1
When p(.) = p is a constant function, these spaces coincide with the grand Lebesgue
spaces LP)0 (T).

Definition 2.6. Let w be a weight on T and p(.) € P(T). The weighted grand variable

exponent Lebesgue spaces Lﬁ,(')’e = Lﬁ,(')’e (T) is the class of all measurable functions f
for which
9
1l ywe = Sup &7 = 1l e < 00
O<e<p——1

Remark 2.7. Let w be a weight on T and p(.) € P(T).
(i) It is easy to see that the following continuous embeddings hold

PO ey POy POy [ 0<e<p —1
due to |T| < oo (see [12,23]).

1
(ii) For f € e (T) the norm equality [[f|l,() .0 = wap() is not valid in

p(.),0

LAY (T (see [17]).

Example 2.8. Let o > 0, § = 1, p(.) = p =constant and choose a weight w(z) = . If
we take f(x) = z for 8 > —a — 1, then we have f € LZ,) (0,1). But, (fw%)pis is not
integrable in (0,1) for any 0 < e < p—1 and so fw% ¢ LP) (0,1) (see [16]).

Proposition 2.9 (Nesting Property). If 0 < C < w, p(.) € P(T) and 6, < 02, then we
have the following continuous embeddings

LPG) ey [P0 oy 002y pp()=e oy PO s L 0<e<p — 1
due to |T| < oo (see [12,23]).

Remark 2.10. Let w be a weight on T and p(.) € P(T). There are several differences
between Lﬁ,(') and qu(.),e‘ For instance, the set of the bounded functions is not dense

in qu(')’e, and the closure of L*° (T) in the norm of Lﬁ,(')’g can be characterized by the
functions f such that

0
;gr[l)sup gp-—¢ Hf”p(.)fe,w =0

)0, Also, the space

(see [1]). Moreover, the closure of simple functions is not dense in et
Lﬁ,(')’e is not reflexive, not separable and not rearrangement invariant. Since the closure of
L?ZJ(') in Lfv(')’e does not coincide with the latter space, that is, Lﬁ,(') is not dense in Lfv(')’e,

then we redefine this set in the following theorem as a subspace of L7 (see [12,23]).

Theorem 2.11. Let w be a weight on T and p(.) € P (T). The following statements hold:

(i) The space 29 s complete.

(ii) The closure of Lﬁ;(') m LZ](’)’Q consists of functions f, which belong to Lﬁ)(')’e, for
6
which lime 07~ || f{ ) —c.o =0
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Proof. (i) Let (fn),cn be a Cauchy sequence in J AR

N (n) > 0 such that, whenever n,m > N (n) we have

. Then for all n > 0 there exists

6
0 n
gr ~¢ an - mep(,)faw < § (21)

for any ¢ € (0,p~ —1). Therefore (fy),y is a Cauchy sequence in LAY for arbitrary
e € (0,p~ —1). Then there is an f in L]Z,(')*E such that

Hf - anp(.)fz-:,w —0 (22)

for every € € (0,p~ — 1) (note that the function f is unique for all ¢ € (0,p~ — 1), see
[23]). For n > N (n), there is an eo(n) € (0,p~ — 1) such that

n
3
by using the definition of the supremum. Moreover, there exists N1 € N such that for
m > Np we have

o
1f = frllpywe < €0(m)?™ == [1f = fallpy—co(m)w + (2.3)

6
—_— n
gr” o) Hf - mep(.)st(n),w < § (24)
due to (2.2). If we combine (2.3), (2.4) and (2.1), then we get

7]
- n
If— anp(,),w,e <eo(n)r = ||f - fn||p(.)—80(n)7’w + 3

] [
—_— —_— /’7
< e0(n)? = [lfa = fmnllp)—comyw T €07 I = Frnllp)—co(myw + 3
n.n .
< LT T
= 3tgtg=h

for n > N (n) and m > Nj. This completes the proof of (i).

(ii) Denote by {Lﬁ,(')} the closure of qu(') in qu(')’g. For f € {L‘Z}(')} we can

p(.),w,0 p(.),w,0

obtain that there is a sequence (fy),cy in L2 such that 1f = fallp()we — O by the
definition of the closure set. Then, for fixed § > 0, there exists N = N (d) > 0 such that,
whenever n > N (§) we obtain

4]

1f = fallpywe < 5 (2.5)

It is well-known that the continuous embedding i (T) — e (T) holds if and only if
q(.) > p(.) because of |T| < oo [24]. Hence we get
6 0
7 Wl e < (L ITDET = [fullygy = 0 (2.6)
as ¢ — 0. If we take €9 > 0 such that 0 < ¢ < g9, then we can write

d

[
er = [ fallp()ew < 7 (2.7)

Finally, if we collect (2.5) and (2.7), then we have

_0 _0 _0
gr —¢ Hf”p(.)—&w < e ||f - anp(,)—a,w +er e HfTLHp(.)—a,w

IN

)
1f = Fallp(ywo + 5 <9

as ¢ — 0. O
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Definition 2.12. We denote the closure of L5 by Lg&g’e. For f € Lg&gﬂ (T) we have

0
;1_1)1[1)517 - Hf”p(.)fs,w =0
by the last theorem (see [12]).

Proposition 2.13. Let w be a weight on'T andp(.) € P(T). Then, (Lﬂ(')’e (T) 5 M1-1lp(),00 9)
is a Banach function space (see [1]).

We denote the Hardy-Littlewood maximal operator M f of f by

M(x) = sgp,}, / FB)]dt, teT,

where the supremum is taken over all intervals I whose length is less than 2.

The boundedness of the Hardy-Littlewood maximal operator M on the space L%(,')’e,
0 > 0, p(.) € Py(T), was proved in the following theorem for power weights of the form
W(x) = |x — zo|", where zg € T, —1 < v < p(zp) — 1.

Theorem 2.14. ([17]) Let p(.) € Po(T), ¢ € (—m,7), § > 0, and —1 < v < p(xg) — 1.

Then the operator M is bounded in L%(/')’e, i.e. forall f € L%(,')’e there exists a C > 0 such
that the inequality

IM f ey wo < ClUFlpeywio
holds with W (x) = |z — xo|” .

In what follows, all weights W considered will be power weight of the form W(x) =
|z — z0|” satisfying the hypothesis of the last theorem.

Since W (x) = |z — xo|” satisfies the A, ) condition of Muckenhoupt weights, then we

),0

have the continuous embedding L%(,' < LY(T) [8]. This means that we can consider the

corresponding Fourier series of f € L];‘(,')’e given by

ao

fla)~ 2

(/) + Y (ak (f) coskx + by, (f) sinkz) (2.8)
k=1
where ag(f) =71 [; f (t)dt and
ap(f) =71 / f(t)cosktdt, by (f)= 7r_1/ f(t)sinktdt, k=1,2,...

T T

The n-th partial sums of the series (2.8) is defined by

Sp(x, f) = Z Ap(f)(x) = %Q(f) + Z (a (f)coskx + by, (f)sinkz) .

k=0 k=1

Definition 2.15. Let W (z) = [ — xz9|”, 0 > 0, p(.) € Py (T), r =1,2,...and f € Lgf",%,’e.
Then the r-th modulus of smoothness Q. (f,.),()w, : [0,00) = [0,00) is defined as

Q. (f,6 = su 13 , reN,
(f20)p0) w0 O<hI;5HthHp(.),W,9

where

ALf() =Y (=)o, f(@+st), t>0,
s=0
and b, s are binomial coefficients.
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Remark 2.16. Using Theorem 2.14 we get

sup | p} <C < 0.
0o hos HthHp(,),W,e Hpr(,),W,a

This shows that the function ;. (f,0),, e is well defined.

Remark 2.17. The modulus of smoothness Q. (f, 5) ) W,0 has the following properties:

(i) @ (f,0),()w, is a non-negative, non—decreasmg function of 6 > 0.
(i) (f1+f2» Do < Qe (f15)p0)wie + L (f25 )0 w0
() Tims 209 (7>8) w0 = 0.

Definition 2.18. The best approximation error E, (f) p(), W0 of fe Lk V%/ is defined by

En (P = mE {1 = Tallyywa : T € T}
where II,, is the set of trigonometric polynomials of degree at most n.

),0

Definition 2.19. The Sobolev space W;;(.) we is the class of functions f € LI;I(,' such
that f() e L%(,')’e and
r — (r)
1m0 = 1w + 70 g < 20
for r =1,2,.... Also the space W;(.) we 15 a Banach space with respect to H'”Z(.),W@' We
define
) ()0
Wopwe = {1 £ € L’ N Wi w -
3. Main results
The main results of this paper are the following theorems.
Theorem 3.1. Let W (x) = |z — zo|”, 0 > 0, p(.) € Po (T) andr,n € N. If f € Wg s /0,

then
c

il (r)
En oo wo < o (s )p<.>,w,e
with a constant ¢ > 0 independent of n.
Corollary 3.2. Under the conditions of Theorem 3.1,

€l ¢

En (Hpoywe < o7

with a constant ¢ > 0 independent of n =0,1,2,3,....

p(.),W,0

Theorem 3.3. Let W(z) = |z — x0|”, 0 > 0, p(.) € Po(T) and r,n € N. If f € Lov%/ ,
then
1
E,(f < Q) (f, )
(Fpeywo n) e
with a constant ¢ > 0 independent of n.

Theorem 3.4. Let W (z) = |x —z0|", 8 > 0, p(.) € Po(T) and r,n e N. If f € Lg V%,Q,
then
1 c —
& (fr) <SS BT E (P
with a constant ¢ > 0 independent of n.

To prove main results we need some lemmas and propositions given below.
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Lemma 3.5. Let W(z) = [z — xo|”, 6 > 0, p(.) € Po(T) and r € N. If f € Wg 0,
then

Q (f,0) 0y wp < 0" Hf(r)

with a constant ¢ > 0 independent of n.

Proof. Since
ot ot
ATF() ://.../f(’“) (4t + .o+ t,) dty...db,,
00 0

applying (r times) the generalized Minkowski’s inequality we get

p(.),W,0

h h
1/, ci(p .
E/Atfdt il )/HAtpr(.),W,Gdt
0 p(.),W,0 0
h t t
< hr;(fl)/ /”_/f(r) (At + o+ 1) dty.dty dt
o 1o 0 p(.),W.,0
Wl o
rC1 (P T
0 0 0 0 p(')7W76
h 1 t t
< hTCQ}(Lp)/ = /"'/f<r><-+t1+---+t7«—1>dt1---dt7“—1 o
0 0 0 p(.),W,9
h 1 h
< < h’““(i’r)/ {h/f‘” (-+t1)dt1} dt
0 0 p(.),W,0
1 h
< calp, )R f(T) 0 Weﬁ/dt:&l(p’r)hr f(r) P W’
0

and taking supremum on 0 < h < 4, we obtain the required inequality

Q (f,0)p0)wo < 6" || f7)

p(.),W,0
O

Definition 3.6. Let W(z) = |z — 20|”, 8 > 0, p(.) € Py(T), r € Nand f € Lgf‘}/’e, We
define Peetre’s K-functional as

K (£:6) ()0 —mf{Hf 9l w0 97| H gEWSvPCW"’bO}'

(), W0

Theorem 3.7. Let W(z) = |z —xo|”, 8 > 0, p(.) € Po(T), r e N. If f € Lov%/ , then
there are some constants cg, ¢y > 0 independent of & such that

ceSr (f, )p()we K. (f, ) VW0 = < er (f, 5)p(.),W,9
Proof. Let f € Lg(l'/%}g and g € W{ ()We' By Lemma 3.5 and Remark 2.17,
Q- (f,0)pywe = e (f=9,0)p0 w0+ (9,0),0) w0

e (15 = allyyo + 5 9, o)

IN
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and taking infimum with respect to g € W (), W0 in the last inequality we have

QT (f? 6)p(.)7W,9 < CKT (f’ 5)p(.)7W,9

In order to prove the reverse of the last inequality we define the function

h h
fré (5/ hT’ r+s+1 <S>O/...Q/f(a:—}—T;‘S[tl+.._+tr])dt1.--dt7~)dh (3.1)

for 6 > 0 and r > 1. Then, differentiating 7 — 1 times and setting ¢ := ~*t,. we see that

(r—1)
T+ T [t1 + .. +tr]> dtl---dtr}

I8
TSt

7"—8

m=0

h
_ r r—1
= /(7‘ > yAA s (x+t)dt,

0
and then by (3.1)

x+T Sh

V(@) 5/m Z / 1yl ( )AC L F(tdt b dh. (3.2)

Now we prove fris € Lg(i/%} . Differentiating the relation (3.2) we obtain

(@) 5/h7“{ HM(S) (Tisym;?hf(x)}dh

and denoting t := =*h we have

") 2’”“ - /
frs (95)‘ ( ) T_S 6/A’“:Shf(x)dh
2

IN

2r+l r—1 1 ™ )
) () ) | [ e
= (3)
r—s(d
2T+1 r—1 T r T (2)
< Ar AT
-~ 5’!’ Sgo <S> (7/- _ 3) r— 35 / dt + ﬂ(; 0/ tf(x)dt ,
which implies the inequality
F e < 260057 (F.0)0 w0 < a1 1w (3.3)

Since f € LOV%/ , then f s € Lg(v%/ .
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Let f € Lgf‘},’e. For 6 > 0 and r =1, 2,..., we have

| frs(x) - 5/{hr/ ../hAiwf(a;)dtl...dtr}dh
) 0

and by the generalized Minkowski’s inequality

5 h o h h
2 1 1 [
s = Fllyywo < colprr)s / . / / ; / Bl s, Fdy dta...dt, S dh
s 0 0 0 (), W0
9 o 1 h h h+to+... 4+t
:c6(p,r)g/ - // ; A ft dty...dt, $ dh. (3.4)
% 0 0 to+...+t, p(),W,0
Since
h+t2+--~+tr 1 h+t2+~~~+tr t2+~~-+t7‘
; AT fdt = |5 ( / AT fdt — / AL fdt)
tot... 4+t ’ p(.),W,0 0 0 p(.),W,0
. (htta+..+t) /7
< A" fdt
~ |[(h+ta+ ...+ tn) /7 / ;f
0 p(.),W,0
. (tat..+tr)/r
A" fdt
R T / of
p(.),W,0
] (htto+...4tr) /7
= sup / A fdt
(httottty)r<s || (B Ht2+ o+ 1) /7 G
0 p(), W6
1 (t2+---+tr)/7"
+ sup A fdt
(tototty)fr<s || (T2 + oo+ 10) /7 "
P(). W0
Qr (f,0) 0y w0 T 2 (F,6) 0y, w0 = 220 (f50) 0w » (3.5)

then combining (3.4) and (3. 5) we have

h
1
Hfr’d_fHP(.),Wﬂ < p’ 5/{ / /QT fv W@dtQ dt }dh
0

< clpr) (19), )W&g/dh—cm e (30)

2

Finally, if we use (3.3) and (3.6), then we get

f()

7

Ko (e < M= Fll g wg + 0
< C7Q (fa ) (),w,0

p(),W,0

This completes the proof.

. . .. . p(.),0
The following lemma is a Bernstein inequality for Ly;’".



208 I. Aydin, R. Akgiin

Lemma 3.8. Let W(z) = |z — x0|”, 0 > 0, p(.) € Po(T), r € N. If T,, is a trigonometric
polynomial of degree at most n, then

HTT/LHp(.),W,Q < en || Tallpy,wo
Proof. 1t is well-known that
sup oy (z, )| < eMf(z)

with a constant ¢ > 0 independent of f and x € T, where oy, (z, f) is the Cesaro means
for a function f € LI;[(,’)’Q [27]. Using Theorem 2.14 we have

< |l fllpeywie - (3.7)

sup |oy, (-, f)]
n p(.),W,0

Since
/T n(t — x)dt, with D, ( *+ZCOS]7§

it is well-known that
T! (z) = 2nop_1 (z,Ty)
and, hence,
1T < 20 00—t o Tl w0 < 260 [Tl
This completes the proof. ]
Lemma 3.8 can be generalized for r-th derivative of T},. For this we need a Minkowski’s

inequality for integrals. The following results were proved, when W = 1, by Danelia and
Kokilashvili [12, Proposition 2.4]. The same proof also suits our case below.

Lemma 3.9. Let W(z) = |z —xo|”, 8§ > 0, p(.) € Po(T), and f € L 9

measurable function on T x T, then, the following integral inequality holds

/f dy <C/||f W) wo dy-
),W,0
As a corollary of the last two lemmas we get:

Corollary 3.10. Let W(x) = |z —zo|”, 8 > 0, p(.) € Po(T) and r € N. If T, is a
trigonometric polynomial of degree at most n, then

HT,(LT) < en” | Tally ) wie

f f(r,y) a

p(.),W,0
4. Proof of main results

Let n € N and
Duf (@)=~ [ @ =0 30 (00 (1)

be the Jackson operator (polynomlal) where | 5 | denotes the integer part of a real number
and Jo,, is the Jackson kernel

1 sin(nz/2) 4 1 /™ [sin(nt/2) 4
o) = %Q,n(sm@p)) = [ (n@/z)> dt.
It is known that ([15, p.147])

27

ini’) < 2. < in3
2v2 T TR
Jackson kernel Jp,, satisfies the relations
%fT Jon(u)du =1,
<1l
>3

L fo () du (4.2)
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Lemma 4.1. Let W(z) = |z —xo|", § > 0, p(.) € Po(T), and f € LY. If f €
W(l)’p(.) Wo then

En (Hpeywe < I = Dafllpywe = S [ (4.3)
holds for n € N.
Proof of Lemma 4.1. From (4.1), Theorem 2.14, and (4.2), we have

If— an||p(.),w,9 = H — flz— t))(l/t)th,L%JH(t)dt
p(-),W,0
= H thL J41( t)l/ f'(r)drdt
vt p(-),W,0
< =tz () |2 / P dt
- W/T 21341 )Ht z—tf (r)dr p(.), W0
1 s
S HMf’Hp(.),W,e;/O tJo, 241 (t)dt
C , e
B 1 ey w0 < o 1 Moy weo
Hence (4.3) holds. 0

Proof of Theorem 3.1. Let f € Wé’p(%w’(,, neN,0,cT,, E, (f/)p(_),w,e =|f - @an(,),Wﬁ

and /2 be the constant term of ©,,, namely,

5=iA@n(t)dt:71T/T(®n(t)—f’(t))dt.

Then

N

1
1B8/2] < o 1f" = ©nll,
C

C
% Hf, - @an(.),w,a - %En (f,)p(.),W,Q'

IN

On the other hand
1f = ©n=B/2),owe = Ea(f)poywet H/B/?”
< Eu ()0 we to- HWHL1 n (F) o) we
= (1 t5 ”WHLI) En () p(ywa-
Set uy, € T, so that u), = ©,, — /2. Then
En (Hpoywe = En(f = tn)pywe
=18 = ©n = B/2) 00

C 1
(e 52 1Vl ) 3B ()00

for all f € Wo () W0° If feWj (), W0 for some r, the last inequality gives

IN

IN

c 1
S w 2 (r)
En (flpoywe < C(1+27r I ||L1) —B, (f )

- %E” (f(r))p(.),w,e'

p(.),W,0
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Proof of Theorem 3.3. Let f € Lg’(l'/%}a. Using Theorem 3.1 and Corollary 3.2 we have

En(Dpoywe < En(f =9y wo + En (9w

- el )
< c{Hf 9llpcywe +9" |9 p(-),Wﬁ}'

for g € Wg,p(-),Wﬂ and 6 = % Using Theorem 3.7 and taking infimum on g € Wap(%wﬂ,

we obtain

1
B, (f gcQT<f,>  neN.
( )p(')’W’e v/ p(.),W,0

O

Proof of Theorem 3.4. Let T, be a best approximation trigonmetric polynomial for
fe Lp( 20 For any n € N we choose n € N such that 2 < n < 2™+ If we use the

subadd1t1v1ty property of Q, (f, ) ),w,0 > then we have

Qr (f,0) 0w < Qo (f = Tame1,0) 0y wig + Qe (Tam+1,0) 0y g -

On the other hand, it is well-known that

21
S Pos <2 S B Do
J=20"141

by Theorem 3.1 in [26]. If we take § = %, then we get
QT (f — T2m+1 s 6)p(.),VV,9 < c ||f - T2m+l ”p(.),W,9
= cEm1(f)p(),wie
c m T
< ;22( T By (f)p() w0

om

IN

k=2m—-141
Using Lemma 3.5, Lemma 3.8 and (4.5) one can find that
QT‘ (T2m+l 5 6)])(.),W,6

T (”')
S 06 2m+1 () W0
- { Ve (1 1) }
p(-),W,H
< 1Tl +22(z+1 o), 7l
= W9 21+1 (.),VV,@
< {Eo ()W, T Z 20+ g, (f)p(.),w,e}
1=0
m 21
= Eo(Hpoywve +2°Er(fpoywe + 27> Y KT EW(f)p)we
=1 k=2i-141
< {Eo )WO"‘ZkT "Ex(f) ()W,9}~
=1

027 > KT E(f)p) e

(4.4)

(4.6)

(4.7)
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If we combine (4.4), (4.6) and (4.7), then we find

<

1 c &
Q<f> < =N (k+1)" E(f , neN.
n)oomwe = ( ) k (Fpiywa

0

The notation O indicates that A = O (B) if and only if there exists a positive constant
¢, independent of essential parameters, such that A < ¢B.

Corollary 4.2. If E, (f),ywe =0 (n"%), a >0, then under the conditions of Theorem
3.4 we have

0 (69) , T >,
 (£,0), w0 =13 O (5@ log (%)) T =a,
O (") , < a.

Definition 4.3. Let W(z) = |z — a0, 8 > 0, p(.) € Po(T), f € L5, @ > 0 and
r:=[a] +1 ( [o] is the integer part of o ) We define the generalized Lipschitz class as

L o = {F € I Q0 (£,0)0) o = 0 (67}

Corollary 4.4. Let W(z) = |z — x0|", § > 0, p(.) € Po(T), f € L} V%/ and o > 0. Then
the following statements are equivalent:

(1) f e Lipyiy we
(11) ETL (f)p()7W79 - O (’I’L_a), n e N

Theorem 4.5. Let W(z) = |z — 0|7, 0 > 0, p(.) € Py (T), f € Lgf{%}e and r € N. If

Zk‘T lEk 9<OO

then, f € W;(.)p,w,e and

En (f(r))p(.)J/V,G s¢ (”TE" (Dpoywet D KB (f)p(-)we)

k=n+1

with a positive constant ¢ independent of f and n.

Proof of Theorem 4.5. For the polynomial T}, of the best approximation to f we have
by Lemma 3.8 that

| - TP

H—l )
pOWE = C (r) 280 | Tyier — Tosllp g w0

< 20 (r) 20 By (f)yy s -

Hence
oo
Y M Toivr = Toillpywe = ZHTQ(Ql— zr
i=1

S C Z mr_lEm (f)p(.),W,9 < 0.

o
p(.),W,0 + z; [ Toitr = Toill, ) wie
1=

Therefore

This means that {T5:} is a Cauchy sequence in LI;I(/')’ . Since Ty — fin LZI;‘(,')’Q and W;(_)
is a Banach space we obtain f € W;(.) W

w0
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On the other hand since

| 1

< i 10|

ot 3 [ 1y
) W6 k=m+2

p(.),W,@ ( ) w,0

for 2™ < n < 2™+t we have

H 2m+2 TL

< 2B, (£)ywe < e+ 1) En (Fpywo-

p( ) W0
Also we find
HTQ(QLI _TQ(:) s < ¢ Z 2(k+1)TE2k (f)p(,),I/V,@
k=m-+2 PR k=m-+2
00 ok
< e X X HTEDym
k=m-+2 p=2k—141
= c Y VTE(Nwe
y=2m+l41
< ¢ Z V' E, (o) we
v=n+1
This completes the proof. ]

A polynomial T € II,, is said to be a near best approximant of f € ng(‘./%/,e for W(z) =
|z — 207, 0 >0, p(.) € Py(T), if

||f TH ),W,0 < CE (f)p(.)J/V,G? n= 1527 BRI

Theorem 4.6. Let W(z) = |z — z0|”, 6 > 0, p(.) € Po(T), r,n € N. If T, € 11, is a near
best approximant of f € W’ (), W00 then there exists a constant ¢ > 0 dependent only on

r, W and p(.), such that
(r) _ p(r)
Hf In p(.),W,0

Corollary 4.7. Suppose that W(z) = |x —x9|”, € > 0, p(.) € Po(T), r,m € N, f €
Wg(.),w,ea and

< b (1) B

p(),W,0°

Zl/o‘ 1E W < 0

for some a > 0. Hence there emsts a constant ¢ > 0 dependent only on o, r, W and p(.)
such that

« ™ ]' = oa+r— s oa—
Q. (f1, E)p(.),W,O <c {n,, Z(V +1)°% 1Eu(f)p(.),w,9 + Z v 1Eu)f)p(.),W,9}'

v=0 v=n-+1

2n
Proof of Theorem 4.6. Weset W,,(f) := Wy (z, f) := n%rl > Su(z, f), n=0,1,2,....

Since
Wi (., ) = W, £),

then we have

[F0 =T < [FCO =Wl )]

p(.),W,0

+ [T W) - T £
= L+ L+ 1s.

F W) - T W)

p(.),W,e p(-),VV,e
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We denote by T, (z, f) the best approximating polynomial of degree at most n to f in
LZIZ‘(,')’H. In this case, from the boundedness of W, in L];[(,')’G, we have

b Hf(a)()_T:("f(a)>Hp(-),W,e+‘T;("f(a))_wn(-,f(o‘))H
< WO E (1) )+ Wl T = 1)

< W) By (F)

p(-),W,G

(- (),W,0

(LW
From Lemma 3.8 we get
I <c (p7 W7 9) n ”Tn(7 Wn(f)) - Tn(7 f)”p(.),W,@
and
I3 c(p,W,0) 2n)* [Wa (., f) = T WD o), wie
c(p, W,0) (2n)" En (Wn(f))p()wio -

IN N

Now we have

HTn(w Wn(f)) - Tn(-v f)Hp(,),W,e < ||Tn(-7 Wn(f)) - Wn(-a f)Hp(.),VV,@

+Wale, 1) = FOllpoywe + 1FC) = Tals, ooy we
< c(p,W,0) E, (Wi ))p(_)J/I/,G +c(p,W,0) E, (f)p(_),W,G
+c(p, W, 0) En (f)p)wio -
Since
En (Wa£))pywo < € (0. W,0) En (£ w0+
then we get

|F90 =T ) < c(p,W.0) Ba(f )y w0

e (p, W.0) 1 B (Wa(£))y() w0

p(.),W,0

+e(p, W,0) n“Ey (f) ), we + ¢ (0, W,0) 20)% En (W (f)) (), w0

< c(p,W,0)E, (f(o‘))p('),wﬁ +c(p, W,0) n®En () )0

Since, according to Theorem 3.1,

c (pv W7 0) (o)
En Nyt = T iy 0 ) 0 (48)
we obtain
(@) _ mile) ()
Hf ()-Ty ("f)Hp(.),Wﬁ <c(p,W.0) B (f )p(.),w,e
and the proof is completed. ]
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