Length-weight relationship of eight decapod crustaceans of the Sığacık Bay, Aegean Sea coast of Turkey

Tahir Özcan¹*, Tuncer Katağan²

¹Department of Marine Biology, Fisheries Faculty, Mustafa Kemal University TR-31200, Iskenderun, Hatay, Turkey
²Department of Hydrobiology, Fisheries Faculty, Ege University, TR-35100 Bornova-Izmir, Turkey

Abstract

The parameters of the length-weight relationship of the form \(W = aL^b \) are presented for 8 species of crustaceans caught along the Sığacık Bay, Aegean Sea coast of Turkey. Samples from commercial trawlers were taken during September 2005 to July 2006. The ‘b’ value ranged between 0.568 and 3.156.

Keywords: Length-weight relationship, Decapoda, deep-water, Sığacık Bay, Aegean Sea, Turkey

Introduction

The length-weight relationship (LWR) is an important factor in the biological study of fishes and their stock assessments. Length-width and length-weight relationships are often used to calculate the standing stock biomass or condition indices, and in addition are used in the analysis of ontogenetic changes and several other aspects of fish or crustacean population dynamics (Lagler 1968). The most frequently used dimensions among a variety of body measurements in penaeid shrimps (and other crustaceans) are carapace length, body length, total length, body width, and wet weight (Sukumaran and Neelakantan 1997; Primavera et al. 1998).

The previously available data on the decapod fauna found in the deep waters of the Sığacık Bay was presented by Özcan and Katağan (2009), who reported 21 decapod species (7 Natantia, 2 Macrura Reprantia, 2 Anomura, 10 Brachyura). There are limited studies on the LWR of the deep water decapod species from the Aegean sea (Vafidis et al. 2004; Tosunoglu et al. 2007; Koçak et al. 2008; Vafidis et al. 2008).

The present study aimed to determine the equations that best expressed the relationship of
wet weight (WW) to cephalothorax width (CW), carapace length (CL) and total length for each species of deep water decapods.

Materials and Methods

The samples were collected at depths from 200-600 m off the Sığacık Bay (38°05'N 26°35'E to 37°59'N 26°54'E), Aegean Sea, during six commercial trawler surveys from September 2005 to July 2006 (Fig. 1). The trawler was equipped with 20 mm mesh size net at the cod-end. Hauling lasted about one hour at a towing speed of approximately 1.5 knots. A total of 6 trawler hauls were carried out during the surveys. Decapod species were fixed in 4% formaldehyde and were weighed in the laboratory with a digital weight and measured with a digital caliper. The carapace length and total length and sexes were determined. The length-weight relationships of all collected samples were determined by the expression \(W = aL^b \), where \(W \) is the derived weight (g), \(L \) is the total length (mm), carapace length (mm) or width (mm) and \(a \) and \(b \) of the parameters of equation.

The parameters \(a \) and \(b \) of the length-weight relationships were estimated by the linear regression method. Equations expressing the length-weight relationships of deep water decapod species were calculated.

The species were identified according to the studies of Zariquiey Álvarez (1968), Ingle (1993), Noël (1992) and Falciai and Minervini (1996). Nomenclature of the species follows Marine species (2009).

Results and Discussion

In this preliminary study, the length-weight relationship of deep water decapod species from Sığacık Bay were determined. The parameters of the length–weight relationship estimated for 8 species belonging to 7 families comprising a total of 263 individuals are presented in Table 1. Two species (Nephrops norvegicus and *Parapenaeus longirostris*) are considered commercial important species and 6 species are taken as non-target or discrad species. The number of specimens, total length, carapace length and carapace width ranges (minimum and maximum), parameters of length-weight relationships (\(a \) and \(b \)), 95% confidence intervals of \(b \) and the coefficient of determination \(\left(r^2 \right) \) are given in Table 1. Cases of...
Table 1. Regression equations for 8 crustacean species from Sığacık Bay. n: sample size, min: minimum, max: maximum, a: intercept of the relationship, b: slope of the relationship \(W=\text{aL}^b \), \(r^2 \): coefficient of determination

<table>
<thead>
<tr>
<th>Species</th>
<th>Carapace length (mm)</th>
<th>Carapace width (mm)</th>
<th>Weight (g)</th>
<th>n</th>
<th>a</th>
<th>b</th>
<th>(r^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solenocera membranacea (Risso,1816)</td>
<td>35.19 - 66.33</td>
<td>0.85 - 3.09</td>
<td>3.09</td>
<td>20</td>
<td>0.000</td>
<td>2.294</td>
<td>0.729</td>
</tr>
<tr>
<td>Plesionika heterocarpus (Costa, 1871)</td>
<td>32.63 - 92.07</td>
<td>1.00 - 4.07</td>
<td>4.07</td>
<td>74</td>
<td>0.191</td>
<td>0.568</td>
<td>0.207</td>
</tr>
<tr>
<td>Parapenaeus longirostris (Lucas, 1846)</td>
<td>31.7 - 109.09</td>
<td>0.57 - 2.42</td>
<td>2.42</td>
<td>17</td>
<td>0.000</td>
<td>2.046</td>
<td>0.888</td>
</tr>
<tr>
<td>Chlorotocus crassicornis (Costa, 1871)</td>
<td>43.59 - 61.91</td>
<td>0.51 - 1.63</td>
<td>1.63</td>
<td>28</td>
<td>0.000</td>
<td>2.156</td>
<td>0.509</td>
</tr>
<tr>
<td>Aegaeon lacazei (Gourret, 1887)</td>
<td>36 - 50.2</td>
<td>0.55 - 1.45</td>
<td>1.45</td>
<td>16</td>
<td>0.000</td>
<td>2.439</td>
<td>0.588</td>
</tr>
<tr>
<td>Macropipus tuberculatus (Roux, 1830)</td>
<td>14.7 - 37.1</td>
<td>1.001 - 8.37</td>
<td>8.37</td>
<td>74</td>
<td>0.062</td>
<td>1.189</td>
<td>0.288</td>
</tr>
<tr>
<td>Nephrops norvegicus (Linnaeus, 1758)</td>
<td>12.6 - 26.5</td>
<td>1.001 - 8.37</td>
<td>8.37</td>
<td>74</td>
<td>0.003</td>
<td>2.287</td>
<td>0.541</td>
</tr>
<tr>
<td>Munida rutlanti Zariquiey-Alvarez, 1952</td>
<td>18 - 20.6</td>
<td>1.63 - 2.00</td>
<td>2.00</td>
<td>8</td>
<td>0.017</td>
<td>1.579</td>
<td>0.756</td>
</tr>
</tbody>
</table>

Cases of allometric growth are indicated with bold of exponent b.

Allometric growth are indicated with bold of exponent \(b \). The estimated values of \(b \) ranged between 0.568 (Plesionika heterocarpus) and 3.156 (N. norvegicus) (Table 1).

The \(b \) values indicate that Munida rutlanti specimens show negative allometric growth in both sexes (t-test, P<0.05). Length-weight relationship parameters of \(M. \) rutlanti were calculated as \(W = 2.1623 \times TL - 4.018 \) for males, and \(W = 2.7417 \times TL - 5.083 \) for females, respectively (Koçak et al. 2008). The length-weight relationship of \(P. \) longirostris was determined as \(W = 0.0031 \times TL^{3.108} \), \(r^2 = 0.98 \) for total length and \(W = 0.546 \times CL^{2.743} \), \(r^2 = 0.97 \) for carapace length (Tosunoğlu et al. 2008).

Length–weight relationships were negatively allometric for males of studied pandalids (Plesionika martia; Plesionika antigai; \(P. \) heterocarpus and Chlorotocus crassicornis). In contrast, females showed an isometric pattern, apart from \(P. \) heterocarpus for which the pattern was negatively allometric (Vafidis et al. 2008).

In this study, Solenocera membranacea, \(P. \) heterocarpus, \(P. \) longirostris, Macropipus tuberculatus and \(M. \) rutlanti negative allometric, \(N. \) norvegicus positive allometric, \(C. \) crassicornis and Aegaeon lacazei showed the isometric growth.

In conclusion this study has been on deep water decapod species from Sigacık Bay. Commercial and uncommercial LWR of 8 decapod species may be useful in the biological study of deep water decapod species.

Acknowledgements

The authors would like to thank Dr. Halit Filiz and Dr. Gökçen Bilge (Muğla University, Fisheries Faculty) for their help in collecting and sorting the benthic material.

References

