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Abstract

In this study we consider translation-factorable (TF-type) surfaces in Euclidean 4-space E4. We have calculated the Gaussian and mean
curvature of the TF-type surfaces. Further, we give some sufficient conditions to become flat or minimal for these surfaces. Finally, we give
some examples of TF-type surfaces and plot the projection of the graphics into the Euclidean 3-space.
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1. Introduction

Classical differential geometry provides a complete local description of smooth surfaces. The first and second fundamental forms of surfaces
provide a set of differential-geometric shape descriptors that capture domain-independent surface information. Gaussian curvature is an
intrinsic surface property which refers to an isometric invariant of a surface. Both Gaussian and mean curvatures have attractive characteristics
of translational and rotational invariance. A depth surface is a range image observed from a single view which can be represented by a digital
graph (Monge patch) surface. In [1], Yu. A. Aminov introduced the surface M in E4 given by X(u,v) = (u,v,z(u,v),w(u,v)), where z and
w are differentiable functions. This representation is called a Monge patch. Also, in [6], the authors investigated the curvature properties
of these type of surfaces. An interesting classes of the surfaces given with the Monge patch are that translation and factorable surfaces.
Translation surfaces have been studied from the various viewpoints by many differential geometers in Euclidean and pseudo-Euclidean
spaces (see, [2], [4], [8], [14], [15], [17], [18], [19], [21]). The another important classification surfaces given with the Monge patch is
factorable surfaces or it is called homothetical surfaces [16]. There has been classification of factorable surfaces in the 3- dimensional
Euclidean, Lorentz-Minkowski and pseudo-Galilean space ([3], [5], [18], [22]) and also 4-dimensional Euclidean and pseudo-Euclidean
space ([7], [9], [10], [11]).
In this paper, firstly, we give some basic concepts of the surfaces in E4. Further this section provides some basic properties of surfaces in E4

and the structure of their curvatures. In the third section, we consider a translation-factorable surface in Euclidean 4-space, which is defined
in Euclidean 3-space by Difi et. al. [13]. In [20] the authors gave the classification of flat and minimal translation-homothetical (TH) surfaces
in E3 and E3

1. In this paper we characterize such surfaces (TF-surfaces) in terms of their Gaussian curvature and mean curvature functions.
We give a classification for flat and minimal translation-factorable surfaces in E4. Finally, we give some examples and plot their graphics.

2. Basic Concepts

Let M be a smooth surface in 4-dimensional Euclidean space E4 given with the surface patch X(u,v) : (u,v) ∈ D⊂ E2. The tangent space to
M at a point p = X(u,v) of M is spanned by {Xu,Xv}. In the chart (u,v) the coefficients of the first fundamental form of M are given by

E = 〈Xu,Xu〉 ,F = 〈Xu,Xv〉 ,G = 〈Xv,Xv〉 , (2.1)

where 〈,〉 is the Euclidean inner product. We assume that W 2 = EG−F2 6= 0, i.e. the surface patch X(u,v) is regular. For each p ∈M,
consider the decomposition TpE4 = TpM⊕T⊥p M where T⊥p M is the orthogonal component of the tangent plane TpM in E4, that is the
normal space of M at p.
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Let χ(M) and χ⊥(M) be the space of the smooth vector fields tangent to M and the space of smooth vector fields normal to M, respectively.
Given any local vector fields Xi and X j, (1≤ i, j ≤ 2) tangent to M consider the second fundamental map h : χ(M)×χ(M)→ χ⊥(M);

h(Xi,X j) = ∇̃Xi X j−∇Xi X j, (2.2)

where ∇ and ∇̃ are the induced connection of M and the Riemannian connection of E4 , respectively. This map is well-defined, symmetric
and bilinear.
For any orthonormal frame field Nk,(1≤ k ≤ 2) of M, the shape operator A : χ⊥(M)×χ(M)→ χ(M);

ANk X j =−
(

∇̃x j Nk

)T
, (2.3)

This operator is bilinear, self-adjoint and satisfies the condition:〈
ANk X j,Xi

〉
=
〈
h(Xi,X j),Nk

〉
= ck

i j 1≤ i, j ≤ 2, 1≤ k ≤ 2, (2.4)

where ck
i j are the coefficients of the second fundamental form. The coefficients of the second fundamental form of a surface M can be

calculated by

ck
11 = 〈Xuu,Nk〉 ,

ck
12 = 〈Xuv,Nk〉 , (2.5)

ck
22 = 〈Xvv,Nk〉 .

The equation (2.2) is called Gaussian formula, and

h(Xi,X j) =
2

∑
k=1

ck
i jNk, 1≤ i, j ≤ 2. (2.6)

Then the Gaussian curvature K of a regular patch X(u,v) is given by

K =
1

W 2

2

∑
k=1

(ck
11ck

22− (ck
12)

2). (2.7)

Further, the mean curvature vector of a regular patch X(u,v) is given by

−→
H =

1
2W 2 ∑

k=1
(ck

11G+ ck
22E−2ck

12F)Nk. (2.8)

The norm of the mean curvature vector
∥∥∥−→H ∥∥∥ is called the mean curvature of M. Recall that a surface M is said to be flat (respectively

minimal) if its Gaussian curvature (respectively mean curvature) vanishes identically [12].

3. Translation-Factorable Surfaces in E4

In this section, we consider translation-factorable surfaces in E4 which is defined by the means of Monge patch. Firstly, we give definition of
the translation and factorable surfaces in E4.

Definition 3.1. [2] A surfaces M defined as the sum of two space curves α(u) = (u,0, f1(u), f2(u)) and β (v) = (0,v,g1(v),g2(v)) is called
a translation surface in E4. So, a translation surface is defined by a patch

X(u,v) = (u,v, f1(u)+g1(v), f2(u)+g2(v)). (3.1)

Definition 3.2. [10] Let M be a surface given by an explicit form z(u,v) = f1(u)g1(v) and w(u,v) = f2(u)g2(v) is called a factorable
surface in E4. The factorable surface is defined by a patch

X(u,v) = (u,v, f1(u)g1(v), f2(u)g2(v)). (3.2)

Definition 3.3. A surface M is translation-factorable (TF-type) surface if it can be parametrized by

X(u,v) = (u,v,A( f1(u)+g1(v))+B f1(u)g1(v),C( f2(u)+g2(v))+D f2(u)g2(v)),

where A,B,C and D are non-zero real numbers.

Remark 3.4. In [2] we have if A,C 6= 0 and B,D = 0 in, then the surface is a translation surface. In [10] we have if A,C = 0 and B,D 6= 0,
then surface is a factorable surface.
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So, we consider TF-type surface in Euclidean 4-space given with the parametrization

M : X(u,v) = (u,v, f1(u)+g1(v)+ f1(u)g1(v), f2(u)+g2(v)+ f2(u)g2(v)). (3.3)

The tangent space of M is spanned by the vector fields

Xu = (1,0, f ′1g1 + f ′1, f ′2g2 + f ′2) (3.4)

Xv = (0,1, f1g′1 +g′1, f2g′2 +g′2).

Hence the coefficients of the first fundamental form of the surfaces are

E = 〈Xu,Xu〉= 1+( f ′1g1 + f ′1)
2 +( f ′2g2 + f ′2)

2

F = 〈Xu,Xv〉= ( f ′1g1 + f ′1)( f1g′1 +g′1)+( f ′2g2 + f ′2)( f2g′2 +g′2) (3.5)

G = 〈Xv,Xv〉= 1+( f1g′1 +g′1)
2 +( f2g′2 +g′2)

2,

where 〈,〉 is the standard scalar product in E4. Since the surface M is non-degenerate, ‖Xu×Xv‖=
√

EG−F2 6= 0. For the later use we
define a smooth function W as W = ‖Xu×Xv‖.
The second partial derivatives of X(u,v) are given by

Xuu = (0,0, f ′′1 g1 + f ′′1 , f ′′2 g2 + f ′′2 )

Xuv = (0,0, f ′1g′1, f ′2g′2) (3.6)

Xvv = (0,0, f1g′′1 +g′′1 , f2g′′2 +g′′2).

Further, the normal space of M is spanned by the orthonormal vector fields

N1 =
1√
Ẽ
(− f ′1g1− f ′1,− f1g′1−g′1,1,0),

N2 =
1√
ẼW̃

(F̃( f ′1g1 + f ′1)− Ẽ( f ′2g2 + f ′2), F̃( f1g′1 +g′1)− Ẽ( f2g′2 +g′2),−F̃ , Ẽ) (3.7)

where

Ẽ = 1+( f ′1g1 + f ′1)
2 +( f1g′1 +g′1)

2

F̃ = ( f ′1g1 + f ′1)( f ′2g2 + f ′2)+( f1g′1 +g′1)( f2g′2 +g′2) (3.8)

G̃ = 1+( f ′2g2 + f ′2)
2 +( f2g′2 +g′2)

2,

W̃ =

√
ẼG̃− F̃2 =W.

Using (3.6) and (3.7) into (2.5), we can calculate the coefficients of the second fundamental form as follows:

c1
11 =

f ′′1 g1 + f ′′1√
Ẽ

, c1
12 =

f ′1g′1√
Ẽ
, c1

22 =
f1g′′1 +g′′1√

Ẽ

c2
11 =

1√
ẼW̃

(Ẽ( f ′′2 g2 + f ′′2 )− F̃(, f ′′1 g1 + f ′′1 )) (3.9)

c2
12 =

1√
ẼW̃

(Ẽ f ′2g′2− F̃ f ′1g′1)

c2
22 =

1√
ẼW̃

(Ẽ( f2g′′2 +g′′2)− F̃( f1g′′1 +g′′1)).

We obtain the following result.

Proposition 3.5. Let M be TF-type surface given with the parametrization (3.3) in E4. Then the Gaussian curvature of M can be given by

K =
1

W 4

{
G̃
[

f ′′1 g′′1(g1 +1)( f1 +1)− ( f ′1g′1)
2]+ Ẽ

[
f ′′2 g′′2(g2 +1)( f2 +1)− ( f ′2g′2)

2]
−F̃
[

f ′′2 g′′1(g2 +1)( f1 +1)+ f ′′1 g′′2(g1 +1)( f2 +1)−2 f ′1g′1 f ′2g′2
] }

. (3.10)

Proof. Using the equations (3.5) and (3.9) into (2.7) we obtain (3.10).

Corollary 3.6. Let M be TF-type surface given with the parametrization (3.3) in E4. Then M has vanishing Gaussian curvature if and only
if

G̃
[

f ′′1 g′′1(g1 +1)( f1 +1)− ( f ′1g′1)
2]+ Ẽ

[
f ′′2 g′′2(g2 +1)( f2 +1)− ( f ′2g′2)

2]
−F̃
[

f ′′2 g′′1(g2 +1)( f1 +1)+ f ′′1 g′′2(g1 +1)( f2 +1)−2 f ′1g′1 f ′2g′2
]
= 0.

(3.11)
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Theorem 3.7. Let M be TF-type surface given with the parametrization (3.3) in E4. If M is a flat surface then it is parametrized by as
follows;
1) z(u,v) = c1g1(v)+ c1 +g1(v), w(u,v) = c2g2(v)+ c2 +g2(v),
2) z(u,v) = c1 f1(u)+ c1 + f1(u), w(u,v) = c2 f2(u)+ c2 + f2(u),
3) z(u,v) = c1g1(v)+ c1 +g1(v), w(u,v) = c2 f2(u)+ c2 + f2(u),
4) z(u,v) = c1 f1(u)+ c1 + f1(u), w(u,v) = c2g2(v)+ c2 +g2(v),
5) z(u,v) = c1, w(u,v) = c2g2(v)+ c2 +g2(v),
6) z(u,v) = c1, w(u,v) = c2 f2(u)+ c2 + f2(u),
7) z(u,v) = c, w(u,v) = dec1uec2v−1,
8) z(u,v) = c,w(u,v) = f2(u)g2(v)+ f2(u)+g2(v) satisfying

f2(u) = ((1− k)(c3u+ c4))
1

1−k −1,

g2(v) =

(
(k−1)(c5v+ c6)

k

) k
k−1

−1,

9) z(u,v) = c1 f1(u)+ c1 + f1(u), w(u,v) = d,
10) z(u,v) = c1g1(v)+ c1 +g1(v), w(u,v) = d,
11) z(u,v) = cec1uec2v−1, w(u,v) = d,
12) z(u,v) = f1(u)g1(v)+ f1(u)+g1(v), w(u,v) = d, satisfying

f1(u) = ((1− k)(c3u+ c4))
1

1−k −1,

g1(v) =

(
(k−1)(c5v+ c6)

k

) k
k−1

−1,

13) z(u,v) = c1c5ec2uec6v−1, w(u,v) = c3c7ec4uec8v−1; c4c6 = c2c8,
14) z(u,v) = c1c5ec2uec6v−1, w(u,v) = c3c7ec4uec8v−1; c2c4 =−c6c8,
where c,d,k,ci are real constants, i = 1, ..,8, k 6= 0,1.

Proof. Let M be TF-type surface given with the parametrization (3.3) in E4. If the TF-type surface is flat then the equation (3.11) is satisfied.
i) If we take f ′1(u) = 0 and f ′2(u) = 0 or g′1(v) = 0 and g′2(v) = 0 or f ′1(u) = 0 and g′2(v) = 0 or f ′2(u) = 0 and g′1(v) = 0 in Eq. (3.11), one
can obtain K = 0. So the surface parametrization (1), (2), (3) and (4) is obtained, respectively.
ii) If f ′1(u) = 0 and g′1(v) = 0, then from the Eq. (3.11) we obtain

f ′′2 g′′2(g2 +1)( f2 +1)− ( f ′2g′2)
2 = 0. (3.12)

If we take f ′2(u) = 0 and g′2(v) = 0, respectively, then we obtain the surface parametrization (5) and (6).
Furthermore, if f ′2(u)g

′
2(v) 6= 0, then from (3.12) we get

f ′′2 (u)( f2(u)+1)
( f ′2(u))

2 =
(g′2(v))

2

g′′2(v)(g2(v)+1)
= k, (3.13)

where k is a constant.
a) If k = 1, from (3.13) we obtain the differential equations f ′′2 (u)( f2(u)+1) = ( f ′2(u))

2 and (g′2(v))
2 = g′′2(v)(g2(v)+1). Solving these

differential equations we have f2(u) = c3ec4u−1 and g2(v) = c5ec6v−1. Then we obtain the parametrization (7) of TF-type surface.

b) If k 6= 1, the solutions of the differential equations (3.13) are f2(u) = ((1− k)(c3u+ c4))
1

1−k −1 and g2(v) =
(
(k−1)(c5v+c6)

k

) k
k−1 −1. So,

we obtain the parametrization (8) of TF-type surface.
iii) If f ′2(u) = 0 and g′2(v) = 0, then from the Eq. (3.11) we obtain

f ′′1 g′′1(g1 +1)( f1 +1)− ( f ′1g′1)
2 = 0. (3.14)

So, in a similar way for the Case ii) we obtain TF-type surfaces given with the parametrization (9)-(12).
iv) Let in the Eq. (3.11)

f ′′1 g′′1(g1 +1)( f1 +1)− ( f ′1g′1)
2 = 0, (3.15)

f ′′2 g′′2(g2 +1)( f2 +1)− ( f ′2g′2)
2 = 0

with

f ′′2 g′′1(g2 +1)( f1 +1)+ f ′′1 g′′2(g1 +1)( f2 +1)−2 f ′1g′1 f ′2g′2 = 0 (3.16)

or

F̃ = f ′1 f ′2(g1 +1)(g2 +1)+g′1g′2( f1 +1)( f2 +1) = 0. (3.17)

So, the Eq.(3.15) is equivalent to (3.12) and (3.14). Hence, the Eq. (3.15) is arranged with respect to u and v we obtain

f ′′i ( fi +1)
( f ′i )

2 =
(g′i)

2

g′′i (gi +1)
= m, i = 1,2 (3.18)
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where m is a constant. In that case, solution of the differential equations (3.18) we get,

f1(u) = c1ec2u−1, f2(u) = c3ec4u−1, (3.19)

g1(v) = c5ec6v−1, g2(v) = c7ec8v−1.

If we use the functions in Eq. (3.19) together with (3.16) and (3.17) we get c4c6 = c2c8 and c2c4 =−c6c8 respectively. So, we obtain the
parametrization (13) and (14) of TF-type surface. This completes the proof of the theorem.

Proposition 3.8. Let M be TF-type surface given with the parametrization (3.3) in E4. Then the mean curvature vector field of M is given by

−→
H =

1

2
√

ẼW 2
[Eg′′1( f1 +1)+G f ′′1 (g1 +1)−2F f ′1g′1]N1

+
1

2
√

ẼW 3

{
Ẽ
[
Eg′′2( f2 +1)+G f ′′2 (g2 +1)−2F f ′2g′2

]
− F̃

[
Eg′′1( f1 +1)+G f ′′1 (g1 +1)−2F f ′1g′1

] }N2. (3.20)

Proof. Using the equations (3.5) and (3.9) into (2.8) we obtain (3.20).

Corollary 3.9. Let M be TF-type surface given with the parametrization (3.3) in E4. Then M has vanishing mean curvature if and only if

G̃
(
Eg′′1( f1 +1)+G f ′′1 (g1 +1)−2F f ′1g′1

)2
+ Ẽ

(
Eg′′2( f2 +1)+G f ′′2 (g2 +1)−2F f ′2g′2

)2

−2F̃
(
Eg′′1( f1 +1)+G f ′′1 (g1 +1)−2F f ′1g′1

)(
Eg′′2( f2 +1)+G f ′′2 (g2 +1)−2F f ′2g′2

)
= 0.

Corollary 3.10. Let M be TF-type surface given with the parametrization (3.3) in E4. Then M is minimal if and only if

Eg′′i ( fi +1)+G f ′′i (gi +1)−2F f ′i g′i = 0, i = 1,2, (3.21)

holds.

Theorem 3.11. Let M be TF-type surface given with the parametrization (3.3) in E4. If M is a minimal surface then it is parametrized by as
follows;
1) z(u,v) = c1v+ c2, w(u,v) = c3v+ c4,
2) z(u,v) = c1u+ c2, w(u,v) = c3u+ c4,
3) z(u,v) = c1u+ c2, w(u,v) = c3v+ c4,
4) z(u,v) = c1v+ c2, w(u,v) = c3u+ c4,
5) z(u,v) = c, w(u,v) = (u+d) tan(av+b)−1,
6) z(u,v) = c, w(u,v) = (v+d) tan(au+b)−1,
7) z(u,v) = (u+d) tan(av+b)−1, w(u,v) = (u+d) tan(av+b)−1,
8) z(u,v) = (v+d) tan(au+b)−1, w(u,v) = (v+d) tan(au+b)−1,
9) z(u,v) = f1(u)g1(v)+ f1(u)+g1(v),w(u,v) = f2(u)g2(v)+ f2(u)+g2(v)
where the functions fi and gi satisfying

u = ±
∫ d fi(u)√

2a ln( fi(u)+1)−2ac1
, (3.22)

v = ±
∫ dgi(v)√

c2(gi(v)+1)4− b
2

,

or

u = ±
∫ d fi(u)√

c1( fi(u)+1)4− a
2

, (3.23)

v = ±
∫ dgi(v)√

2b ln(gi(v)+1)−2bc2
,

or

u = ±
∫ d fi(u)√

c1( fi(u)+1)2(1+k)− c2

, (3.24)

v = ±
∫ dgi(v)√

c3(gi(v)+1)2(1−k)+ c4

.

Proof. Let M be TF-type surface given with the parametrization (3.3) in E4. If M is minimal then H = 0, so using Eq. (3.21) and (3.5) we
obtain

0 = g′′1( f1 +1)(1+( f ′1)
2(g1 +1)2 +( f ′2)

2(g2 +1)2)

+ f ′′1 (g1 +1)(1+(g′1)
2( f1 +1)2 +(g′2)

2( f2 +1)2) (3.25)

−2 f ′1g′1( f ′1g′1(g1 +1)( f1 +1)+ f ′2g′2(g2 +1)( f2 +1)),
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and

0 = g′′2( f2 +1)(1+( f ′1)
2(g1 +1)2 +( f ′2)

2(g2 +1)2)

+ f ′′2 (g2 +1)(1+(g′1)
2( f1 +1)2 +(g′2)

2( f2 +1)2) (3.26)

−2 f ′2g′2( f ′1g′1(g1 +1)( f1 +1)+ f ′2g′2(g2 +1)( f2 +1)).

i) We obtain the surface parametrization of TF-type (1), (2), (3) and (4) in Theorem 3.7, if we take f ′1(u) = 0 and f ′2(u) = 0 or g′1(v) = 0 and
g′2(v) = 0 or f ′2(u) = 0 and g′1(v) = 0 or f ′1(u) = 0 and g′2(v) = 0 in Eq. (3.25) and Eq. (3.26), respectively.
ii) If f ′1(u) = 0 and g′1(v) = 0 then Eq. (3.25) holds, so from the Eq. (3.26) we obtain

g′′2
g2 +1

+
f ′′2

f2 +1
+( f ′2)

2(g′′2(g2 +1)− (g′2)
2)+(g′2)

2( f ′′2 ( f2 +1)− ( f ′2)
2) = 0. (3.27)

If we take f ′′2 (u) = 0 and g′′2(v) = 0 in the Eq. (3.27), respectively, then we get the functions f2(u) =
tan(au+b)

c2
−1 and g2(v) =

tan(cv+d)
c1

−1.
So we obtain the surface parametrization (5) and (6) of TF-type.
If f ′′2 (u)g

′′
2(v) 6= 0, then differentiating (3.27) with respect to u and v, respectively, we have

(
f ′′2 ( f2 +1)− ( f ′2)

2)′(
( f ′2)

2
)′ =−

(
g′′2(g2 +1)− (g′2)

2)′(
(g′2)

2
)′ = k (3.28)

where k is constant. Thus, we integrate the both sides of the Eq. (3.28) with respect to u and v we obtain,

f ′′2 ( f2 +1)− (1+ k)( f ′2)
2 = a, (3.29)

g′′2(g2 +1)− (1− k)(g′2)
2 = b,

where a and b nonzero real integrand constants.
If we take k =−1 in Eq. (3.29) we obtain

f ′′2 ( f2 +1) = a, (3.30)

g′′2(g2 +1)−2(g′2)
2 = b.

Solving the differential equations (3.30) we get (3.22).
Therefore, if k = 1 we get

f ′′2 ( f2 +1)−2( f ′2)
2 = a, (3.31)

g′′2(g2 +1) = b.

So, solution of the (3.31) we obtain (3.23).
If k 6=±1, then solving the differential equations (3.29) with respect to the constant k we have (3.24). So we obtain the surface parametrization
(9).
If we take f ′2(u) = 0 and g′2(v) = 0, then the similar classification is obtained for the functions f1(u) and g1(v).
iii) If f1(u) = f2(u) and g1(v) = g2(v), then the equations (3.25) and (3.26) is equivalent. So we obtain the similar solutions with respect to
the previous cases for all fi and gi functions. We can obtain the surface parametrizations (7)-(9). This completes the proof of the theorem.

4. Visualization

In this part, we give a geometric model of the TF-type surfaces in Euclidean 4-space. We plot the graph of the projection of these surfaces in
E3 by the use of following plotting command;

plot3d([x1(u,v),x2(u,v),x3(u,v)+ x4(u,v)],u = a..b,v = c..d]).

Example 4.1. Let M be TF-type surface given with the parametrization (3.3) in E4. For the given functions we plot the projection of the TF
surfaces in E3 as follows,

a) f1(u) = f2(u) = cos(u); g1(v) = cos(v),g2(v) = sin(v),

b) f1(u) = f2(u) = exp(u); g1(v) = cos(v),g2(v) = sin(v).
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(a) (b)

Example 4.2. Let M be TF-type surface given with the parametrization (3.3) in E4. For the given functions we plot the projection of the flat
(a-b) and minimal (c) TF surfaces in E3,

a) f1(u) = f2(u) = 1; g1(v) = cos(v),g2(v) = sin(v),

b) f1(u) = g2(v) = 1; g1(v) = cos(v), f2(u) = sin(u),

c) z(u,v) = w(u,v) = (2u+1) tan(3v−1)−1.

(a) (b)

(c)
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