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Abstract

In this work, we present the existence, uniqueness, and stability result of solution to the nonlinear fractional
differential equations involving Hilfer-Katugampola derivative subject to nonlocal fractional integral bound-
ary conditions. The reasoning is mainly based upon properties of Mittag-Leffler functions, and fixed-point
methods such as Banach contraction principle and Krasnoselskii’s fixed point theorem. Moreover, the gener-
alized Gornwall inequality lemma is used to analyze different types of stability. Finally, one example is given
to illustrate our theoretical results.
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1. Introduction

Fractional differential equations is very important since their nonlocal property is appropriate to describe
memory phenomena such as nonlocal elasticity, propagation in complex medium, biological tissues, polymers,
earth sediments, etc, and they have been emerging as an important area of investigation in recent decades.
For details, we refer the reader to monographs of Hilfer [10], Kilbas [15], Samko [19], Podlubny [I7], and
references therein.
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There are various definitions of fractional derivatives, among these definitions, Riemann-Liouville (1832),
Riemann (1849), GrunwaldLetnikov (1867), Caputo (1997), Hilfer (2000), as well as Hadamard (1891). At the
same context, Kilbas et al. in [I5] introduced the properties of fractional integrals and fractional derivatives
with respect to another function. O. P. Agrawal et al. in [I, 8], presented the generalized variational
calculus in terms of multi-parameters fractional derivatives. Some of generalized fractional integral and
differential operators and their properties were introduced by Agrawal in [2]. A Caputo fractional derivative
of a function with respect to another function was proposed by R. Almeida in [7]. Recently, Katugampola
in [I2] introduced a new fractional differential operator. Moreover, this operator has been compounded with
Hilfer fractional differential operator introduced by Hilfer [I0] which called Hilfer-Katugampola fractional
differential operator [16].

Over the last years, the stability results of fractional differential equations have been strongly developed.
Very significant contributions about this topic were introduced by Ulam [20], Hyers [11] and this type of
stability called Ulam-Hyers stability. The concept of Ulam-Hyers Stability was extended via inserting new
function variables provided by Rassias [I8] in 1978. Ulam-stability, Ulam-Hyers stability, and Ulam-Hyers-
Rassias stability, these labels have become famous today in literature. There are many researchers studied
generalized Hilfer fractional differential equations [3] 4} [, [14].

Recently, Gao et al., in [9] established the existence and uniqueness of solutions to the Hilfer nonlocal
boundary value problem

D2Py() —ey(s) = fls,y(c), ¢<0,0<p<1,0<B<1,c€(0,7T],
m
I7y(0) = > Ngiy(n), p<r=p+B—pBme (0T,
I=1

where Dg’fdenotes the Hilfer fractional derivative of order p € (0, 1) and type 5 € [0,1], Ié: " is the Reimann
Liouville fractional integral of order 1 —r, r = p+ (1 —p), ¢ < 0 by using some properties of Hilfer fractional
calculus, Mittag-Leffler functions, and fixed point methods. In [6] studied the existence, uniqueness and
different types of stabilities of solutions for the following problem:

Dgfy(g) = xy(s) = f(sy(s), Dgfy(g))v s €(0,17,
Iy7"y(0) = Ig7"y(T)

where HDgfdenotes the Hilfer fractional derivative of order p € (0,1) and type S € [0,1], Iéjr is the
Reimann Liouville fractional integral of order 1 —r, r =p+ 5(1 — p), A < 0.
Motivated by [6], 9], in this paper, we will study Hilfer-Katugampola integral boundary value problems
for the following relaxation fractional differential equations:
ng‘fy(g) =y(s) + f(s,y(s), A<0, 0<a<l, 0<B<1,ceJ = (a,b] (1)
pléivy(cﬁ) =Y 0Ll y(n), a<y=a+B-af <1 7 € (a,b],

where pDZ"f () denotes the Hilfer-Katugampola fractional derivative of order o € (0, 1) and type g € [0, 1]
and /’ISIW is a generalized fractional derivative of order 1 —y(y=a+ 8 —af), p> 0. Here f: J xR — R
is a given function satisfying some assumptions that will be specified later, 7;(i = 0, 1,2, ....,m) are prefixed
points satisfying a < 7 < 19 < ..... <Tm <b,and A <0, §; € R.

The paper is organized as follows. In Section 2, we present notations and definitions which are used
throughout this paper. In Sect 3, we discuss the existence and uniqueness results for differential equations
with Hilfer—-Katugampola fractional derivative involving nonlocal initial condition. In Section 4, we discuss
different kinds of fractional Ulam stability.
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2. Preliminaries

In this section, we present some definitions and lemmas that we will use throughout this paper. Let
0 <a<b J=(ab and C[J,R] be the Banach space all continuous functions from J into R with
supremum norm ||y||., = sup {|y(s)| : ¢ € J}. For 0 < v < 1, we defined the weighted spaces of continuous

functions:

C%p[J,R]:{y:(a,b]ﬁR: < >7y(§)€C’[J,R]},

and
cn LR = {yecn R y™ e Cr [ R]}

() o

Conseder the space X%(a,b), (c € R,1 < p < c0) of the complex-valued Lebesgue measurable functions y on

[a, ] for which [|y|[ x» < oo, where
1
b 1
ds\»
e = ([ leuor )"
a S
)

In particular, when ¢ = %, the space XV (a,b) = Ly(a,b).
g

Definition 2.1. [12,[13] Let o« € Ry, c € R and y(s) € XEF(a,b). The generalized left-sided fractional integral
PI% of order a > 0 1is defined by

with the norms

lylle., , = sup
e seJ

n—1
k
and [lyllgy, = > [s®]_+ v
k=0

Cy.p

S P _ P a—1
PIgvy(s) = ! / (g > > s""ly(s)ds, s >a, p>0. (2)
I'(a) Ja p

Definition 2.2. [i2, [13] The Katugampola fractional derivative of order o € Ry \N and p > 0 is defined by

D0 = (i) e [ () s ®)

Definition 2.3. [16] Let n — 1 < a < n and 0 < 8 < 1. The Hilfer-Katugampola fractional derivative with
respect to ¢ with p > 0 of a function f is defined by

where n = o] + 1.

« n—o 1 d " —B)(n—a
Dy(s) =PI )<<p 1d§> 1Ty ),

the operator pDa’f can be writlen as
a

PO = PITey PIT = eI PD v =atnf — af,

d n
o= (¢t .
P << d<)

In this paper we consider n =1 because a € (0,1).

where
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Lemma 2.1. [16] Let PI%, and PDS, are generalized left-sided fractional integral and derivative which are
defined in (@ and (@ respectively. Then for ¢ > a, we have

[p ot (Sa_a/J)B_l] () = Lp) <ga_ap>a+ﬁ_1,a20,ﬁ>0

p INCE ) p
a _ p\ B-1
[pD2‘+<S a> ](c) = 0,0<a<l

p
Lemma 2.2. [16] Let 0 < a < 1,0 <y < 1. Ify € C, , [J,R] and pléjay(-) € C;p [J,R], then for ¢ € J, we
have . .

P17 %y(a) (¢ —aP\*"
I PD2y(s) = y(s) — —% :
2 D) =0 - i 5 (S
Lemma 2.3. Let0<a<1,0<f8<landy=a+B—aB. Ify € C’I[%p [J,R], then
IV, "D y(s) = PI% PDYy(s),

and

DY, PICy(c) = PDI TV y(q),

Now, we give definitions of fundamental spaces which we are using to solve our problem. For v = a+—af
and 0 < «, 8,7 < 1, we define

12, LR = {y € 1oy LLR], PD3y € i [ R]},

C’Y

1—v,p [J,R] = {y € Ciy,p [/ R], pDZer € Cryp Y, R]} :

[J,R] c ¢ [J,R] C C1_~,[J,R].

. y
It is clear that C' 1=v,p

1=v,p

Lemma 2.4. ([22], Lemma 2) Let o € (0,2] and B > 0 be arbitrary. The function Eo(-), Eqa(-) and Eq 5(+)
are nonnegative and for all z < 0, we have

1 1
E = <1, E < —— F < .
a(?) ,1(2) , Baalz) < (Oz)’ aﬁ(z) = T(B)
Moreover, for any ¢ < 0 and <1, € [0,1],
Eoatp(csy) = Eaarplest) as s — <. (4)

Lemma 2.5. Let >0, 3>0,v>0 and A€ R. Then
o — P\ o —aP\7
P g+ < ) Ey5 A
P p
P — g\ AL o —aP\7
- p E,y,a_;’_/@’ )\ p .
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Proof. By definition we have
p_ op\ B p_ aP\ "
w(57) B (5]
p p

“waf (5) (5] w5 ]
A

o
s [ () e () °°J L

> A" 1 P — P\t s — a1
-3 [ () e
= T(ny +B)T(e) Ja p p

— L'(ny +a+5)
_ Eeors | A .
( P v,a+p P)

Lemma 2.6. Let « >0,8>0, k>0, e R, z€R andy € C[0,1]. Then

z /p _ cp\ ol P _ P\
i [ (255 (25 o
0 P P
z fp _ cp\ TRl P _ P\
) b5
0 p P

Proof. According to definition 2.1l and Lemma we obtain

Ik, /a (Zp ; gp)al By, [A (Zp ; g,,)a} y(s)ds
_ 1“(1k) / (Zp_p“py—luﬂl {/au (“p ; §p>a_1<f’1Ea,a [)\ (“p ; gﬂ)j y(c)dg} du
u — P\ B A uf —¢* 2 —ur\* lup Yy()dud
L M Lot
L o )
_ 1 @ “1g,, 2P =P
i [ (5 e B
:/a ( p ) & Haatk [A( p ) ]y(g)dg'

Lemma 2.7. [16] Let v = o+ 3 — af where a € (0,1), € [0,1] and g : J — R is a continuous function
such that f € Ci_y,[J,R] for ally € Ci_,[J,R]. A function y € C] J,R] is a solution of fractional
initial value problem

\b

S

/\

O
1— 'yp[

pD “Py(c) = My(s) + 9(s), < € (a,b]
I ( ) = Yo,
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if and only if y satisfies the following integral
) e (5]
yls) = Yo Eoy | A
) < p ! p
N p_ op\ 1 P P\
—i—/ 5Pl <g i ) Euo o [/\ <§ i > ]g(s)ds.

a p p

Proof. see(Hilfer-Katugampola fractional derivatives|16]) O

Theorem 2.1. Let v = a+  — af where a € (0,1), 8 € [0,1]. If f:J xR — R is a function such that
fGy(t) € Crieyp [ R] for ally € Ci—y, [J,R]. A function y € Ci—,, [J,R] is the solution of problem

if and only if y satisfies the following integral equation

V(552) " B [ (55)]

y(s) = s ser [T () B [/\ ) | £(s.u(s))ds
et (95) [(“’f”ﬂf
where
1
N = P _ap\ 71 P_gp\ 7’
v o (52) e (5]
and

P_gP\7L P aP\®
$ona (452) e (552

p
Proof. Let y € C1_,, [J,R] be a solution of the problem (). Then by lemma we have

o = et (C0) T (2]

[ (5] e (5 v

Next, we substitute ¢ = 7; and multiply both side of @ by §; we derive that

P_ gP\71 P_gP\®
Siy(r) = 6 I y(a) (T’ p“) Ea, [A <Tl p“) ]

Ti P _ op a—1 P gP\ @
+51/ 3'0_1 <7_1p5> Ea,a |:)\ <7—l P ° ) :| f(s7y(3))d8'
Thus, we have

pliivy((fr) = 2(5 PIN D oy(mi) Z pI" 8iy(Ti)

p

1— P P\ 7 —aP\*
= s e (T3 ()]
i=1 p P
m Ti P _ op a-—1 P_ P\ @
+Z p-[2+57j/ Spil <T’L P i > Ea,oc |:>\ <T’L i > :| f(S,y(S))dS.
i=1 a

Which implies

I NZ& I] /s ( 5 Eqo |A P f(s,y(s))ds,
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Substituting into @ we can derive
P qP\ 7! p_ P\
o =3[ ()
p P
m T p_ oo\ 1 P P\
S, [ (222) [ (222) ] ot
i1 a p p
N p_ op\ o1 P P\
[t () b () ] st wtenas )
a p p
Conversely, by the same way of Lemma [2.7] O

3. Exestence of solution

Before starting to prove our results, we make the following hypotheses which are needed to prove the

existence and unique solutions for our problem.

(Hy) Let f:J xR — R be a continuous function and there exist positive constants Ly > 0 such that

|f(s,u(s)) — fs,v()) < Lylz —yl,
for all <€ (0,b], u,v € R.

(H2) The constant

Q=L; Z&
a+n+7

=1

SR SIS

(9)

Theorem 3.1. Assume that (Hy)-(Hs) hold. Then the problem has a unique solution in Ci_, ,a,b].

Proof. Define the operator Ty : Ci_, ,la,b] = Ci_y y[a,b] by

V(552) " g 2 (55)']

Tools) = 8 it a i 7t (50) " B [ (57 ] 65,9t

+ [ s <%)a—1 Faa [A (%)a} s, y(s))ds.

Note that for any continuous function f, 7; is also continuous. Indeed, for all <,y € (a, b], we have

[ Try(s) — Try(so)]

p_ g\ 71 p_ P\ Y p_ p\V1 P _ P
- W(5T) () - (B5) e
p p p p

m T P op a—1 P P\
X 251‘ ”IZ+/ s#! (sz‘9> Ea,a [A <7—Z P i > ] f(s,y(s))ds

— 0 as¢— g

(10)
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Next, we show that the operator T; : Cl_yp[a b] — Ci—,pla,b] which defined by (10) is a contraction
mapping on C1_, pla,b]. By Using Lemmas 2.4 and 2.6} for y,v € C1_,[J,R], < € (a, b] we have

LN @) - T (o)
(=57) | |

IN
-
B
2
| — |
>
N
Va)
3 )
> ||
s}
he)
N——
| IS
X

; (g” - ) [ <§;>E () 1t uten - sisatoas

,
< g e R Y e N L e
()T s [ (P2 ) T o) — st o as
< rormmr 3o [ () et — st
=
n (g’) ) s [ (FS) " st - stssvtspias
< wre ot [ o (7 S TR
+<<”;“p>” r%zs [ (2] oo
e ”rfz; [o0) < = e
= L. +Nn+v)géi< f;a”)waﬂ | <§p ) ]Hy—v\!clw[a,b]a

which implies that
ITr=Trolle, <2y —vlle, -

Due to @D, the operator 7 is a contraction mapping on Ci_ pla,b]. According to Banach contraction
principle, we deduce that the problem has a unique solution fixed point y € C1_, ,[a, b]. O

Theorem 3.2. Assume that (Hy) and (Hsz) are satisfied. Then the problem has at least one solution in
Cl_%p[a, b}

Proof. Consider the set x, in Ci_, ,a,b] defined by

Xr = {y € Cl—’y,p[a7 b} : HyHC&,%p[a,b] < T} )
with r > 175 , < 1and

b —aP\ 1 N - Tf—sp arnl
”‘:K p >F(04+1)+F(a+77+1);5i< p > ]f’
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where f := SUPseqa,4] |f(8,0)| . Now we subdivide the operator Ty into two operators A and B on X as follows

Ay(s) :== /: sP~1 <M>al Eq.q [)\ <§p ; Sp)T f(s,y(s))ds, <€ (a,b],

P

p_ gP\ 7L p_ P\ @
V() m p(5) ]
P P

m i P _ gp\ ¥ L P gP\ @
ootz [T () b [ () o
i=1 @

p

and

By(s)

The proof was divided into several steps as following.
Step (1): We prove that Ay + Bz € x, for every y,z € x,.
i) For operator A. According to Lemma [2.4] and for ¢ € (a,b], we have

IN

ds

11—y ,¢ P o\ a—1
_ ¢F=5
/ ¢ 1 < )
a p

= S (P =\
r(a)/asp ( ’ ) (1f(s,y(s)) = f(s,0)] + | f(5,0)]) ds

)
>1 a—1
)y [ (5 v
)
)

Baa 3 (2 H Fs,4(5))

IN

IN

P —aP\® J?

p > I(a+1)
b — aP\ f

p > [(a+1)

P

“ B(e,v)

= iy L llen, ooy +

IN
7~ N 7 N -7 N -7 N -7 N
)

I‘(a) Lf Hy”cl,%p[wb] + <

This gives

b —a”\“* B(a,) b —af\“ 7
e, < (5) e+ (55F) wam -
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ii) For operator B. In view of Lemmas and we have
P — P\
(55) "

p

AN
- o B
i=1

7 p_gp\t P 5P\
[ (5 e ) o

p

Fo . [)\ <TZ’ ;Spﬂ f(s,z(s))‘ds

I
=
SE
(]
ES
@\q
he)
L
Y
!
hs)
)
V)
S
N———
Q
+
3
L

N = T L (T0 =8P atn=1
<o X0 [ () 1) - 601+ 10 s
i=1 a
N m Tip—sp a+n+y—1
S et () B

N = TP — P\
+— 0; ¢ .
Fla+n+1) ; < p ) /

Thus we obtain

Nr - 7P — e\ttt
Bz < 0; | = L 12
B, < mapersy 0 () s (12)

7

1
N m P—Sp 04+17~
- 0; | = .
Fagnen 2 < P > f

=1
Linking and ([12)), for every y, z € x,, we get

|Ay+Bzllg, ., < Ayl ., +IBzllg, ,, <Qr+o<r

Step (2): We prove that B is a contraction mapping. By Theorem , we have Ty is a contraction
mapping on C1_, pla,b] and hence B is a contraction mapping too.
Step (3): We prove that the operator A is compact and continuous. According to Step 1, we know that

b —aP\“ Bla,7) v —aP\* f
A < L .
bnles,, < (5) i+ (557) m

So the operator A is uniformly bounded. Now we prove the equicontinuous of operator A. For any ¢1,¢0 €
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(a,b], 51 <2,y € xr and using Lemma [2.4] we get

(¢ ‘) aute) - (2 ) Ay(sr)

P P

1— a—1 o
_ <<5 - ap) V/Q 501 <§5 - 3p> Eo [A <§5 — aﬂ) ] F,(s)ds
P a P ’ p
1— —1 «
— <§1P_ap> V/Q sP~1 <§f_5p)a Eua [/\ <gf—ap> } Fy(s)ds
p a p ’ p

15 Olley /
r@) |/

(§§—5P>a_1 <§§ —ap)l_7 B (gf — sp>a_1 (€io—a”>1_7 <§” —ap>71ds
p p p p p

P p\ 1= 1 S2 p_ o\ 1
So a > / p—1 <§2 S >
+ ] = Fu(s)ds
< p L(a) | /g P (s)

—0 as ¢ —q.
Thus A is equicontinuous. By the Arzeld-Ascoli theorem, we deduce that the operator A is compact on
xr. It follows from Krasnoselskii fixed point theorem that the problem has at least one solution in
C’l_%p[a, b} ]

IN

4. Ulam-Hyers and Ulam-Hyers-Rassias stabilities

In this section, we will discuss the different types of Ulam stability results for Hilfer-Katugampola frac-
tional nonlocal differential equation . Let € > 0. Consider the problem and below inequality

‘ngfy(g) = Ay(s) = f(S,y(s))| <€ s €(ab]. (13)
The following observations are taken from|[21), 23] 24]

Lemma 4.1. [Z]|] Let a« > 0 and =,y be two nonnegative function locally integrable on [a,b]. Assume that g
is nonnegative and nondecreasing. If

P — 5P

na—1
; ) z(s)ds, < € [a,b].

o) <9 +966) [ (

Then

S OD@)]" (N
x(c)Sy(c)Jr/anz:l T'(nar) P < p ) y(s)ds, <€ [a,b].

If y be a nondecreasing function on [a, b]. Then

o) = 0B {ator@ (L) L el

Definition 4.1. The problem is Ulam-Hyers stable if there exists a real number ny > 0 such that for each
€ > 0 there exists a solution y € C1_, , [a,b] of the inequality corresponding to a solution x € Ci_, ,[a, b]
of the problem such that

ly(¢) = z(S)] < nye, s € (a,0].
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Definition 4.2. The problem is generalized Ulam-Hyers stable if there exists ¥y € C([0,00),0,00)),
1 7(0) = 0 such that for each 1y > 0 there exists a solutiony € Ci1— , [a, b] of the inequality corresponding
to a solution x € Ci_ , [a,b] of the problem with

ly(s) — z(s)| < y(e), s € (a,b].

Definition 4.3. The problem is Ulam-Hyers-Rassias stable with respect to ¢, € Ci—~,[0,b] if there
exists a real number 0y, > 0 such that for each € > 0 and for each solution y € Ci1_, ,[a,b] of the inequality

D3P y(<) = () = F&y(©)| < evale) < € (a.b], (14)
there exists a solution x € C1_, , [a,b] of the problem with

[y(s) = 2(s)| < Mfpacpals), <€ (a,b].

Definition 4.4. The problem is generalized Ulam-Hyers-Rassias stable with respect to oo € Ci1— [, b]
if there exists a real number 1y, > 0 such that for each € > 0 and for each solution y € C’Y_%p [a,b] of the
inequality

DY) = My(e) = (6] < pal0) < € (1],

there ezists a solution x € C1_, , [a,b] of the problem with

[y(s) = 2(S)| < Nfpatpals), <€ (a,b].

Remark 4.1. A function y € C1_,,[a,b] is a solution of the inequality if and only if there exist a
function z € Ci_ p [a,b] such that

(i) |z(9)[ <€, <€ (a,b];

(i) "D y(s) = Ay(<) + f(5,9(<)) + 2(s), < € (a,b].

Lemma 4.2. Lety € C1_,,, [a,b] satisfies the inequality . Then y satisfies the following integral inequal-

1ty
N p_ op\ o1 P P\
)=, = [Tt (S () e
a p p
71 «
N (5) = <Tf - sﬂ>a+’7 . (57)
| - | &
F(y)l(a+n+1) & p I'a+1)
where

p_ o\ 71 p_ P\
Ay = N (E2E)Es ()
p P

m 7 B a—1 - [}
st [T (o) B (B ] o

P a p p
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Proof. Indeed by Theorem [2.1] and remark [4.1, we have

o = () e D (5

m i . a—1 . e}
o [T () b 3 () stonas

im1 a p p

5
7N
Va)
A
|
)
RS
~_
2
L
=
B
)
| — |
>
7N
N
A
|
Q
>
~
Q
—_
X

N p_ op\ o1 P P\
—i—/ sP1 <§ i ) Eoo [/\ <§ i ) ] z(s)ds.
o p p

It follows from Lemmas [2.4 and that

0o [ (5 p ()
(57 b (5 T

m T P _ op a+n—1 P P\
Z(Si/ sP1 (TZS) Eoa4n [)\ <T’8> ] z(s)ds

= Ja p p

N o —aP\TTI i TP =8P atn—1
< . P ?
<t () X[ () R

=\ T+ 7+ 1) P

e -1 m o bP—sP ¢
N(gﬂ ) Z‘S'(Tip_sp) +7’+< p )
i=1

O

Theorem 4.1. Assume that (Hi) and (Hs) are satisfied. Then the problem is Ulam-Hyers stable and
generalized Ulam-Hyers stable.

Proof. Let € > 0 and y € C1_,,, [a, b] be satisfies the inequality and z € Ci_,, [a,b] be a unique solution
of the nonlocal fractional differential equation

PD*P2(s) = A2(s) + f(s,2(5)), A <0, s € (a,b]

a
L w(at) = I 2(at),

In view of Theorem we have

9= At [ (C;) B (2 ) ] 652000,
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where

p_ ap\ VL p_ P\
A= v () E ()
p p

m 7 N PP\
Zdi pIZ+/ sP~1 (TZS> Euso [)\ <T’ i > ] f(s,2(s))ds.
— a p p

By Lemmas and 2.6 we can easily show that A, = A, . Indeed
P _ gP\ V1 P _ gP\ %
V(=) () ]
p p
m T P up -1
Z(gi p];?+/ gP—1 <T‘9) %
i=1 P
Tip—s’) @
Ea,oz A D ’f(S,Z(S)) - f(S,y(S))‘ ds
N P — ap>7_1 -
0;
] 2
N

y—1 m
= (S ) D6 12 a(s) — (o) ()
=1
0.

|AZ _Ay|

IN

IN

_I_
— sP a+n—1
( ) F(s,2(5)) — F(s,y(s))] ds

IN

p

Thus
A, = A,y

For any ¢ € (0,b], we have

0= [ (55) e (57 Tt

[ (2 >E () 1rtswte = sts. o) as

ly(s) —2(9)] <

p
0= [ (555) e p (5 Tt

IN
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By utilizing Lemma [L.1], we get

o) ~u(e)] < Uet /(ilﬁfgi)(g‘>U>d

n=1 P
o0 no
= 1
U6< +2Fna+1 P >
n=1
P _ qPf
= UeE,(Ly <g a> = Ny, (15)

bpapwl

where U := <N< 8 S (

(=) ar)®

Moreover, if we set ¥(e) = ny €, with ¢(0) = 0 in (15]), then problem is generalized Ulam-Hyers
stable. .

P _gp 0¢+77
P(y)I(a+n+1) )

Now, we need to introduce the following hypothesis:

(H) There exists an increasing function ¢o € Ci—y,[a,b] and there exists d,, > 0 such that for any
€ (a,b]
P15 @a(S) < 0o pals)-

Theorem 4.2. Assume that (H1), (Hs) and (Hs) are satisfied. Then, by Definition [{.3 and Definition [4.4),
the problem is Ulam—Hyers—Rassias stable with respect to o as well as generalized Ulam—Hyers—Rassias
stable.

Proof. Let € >0 and y € C1_,,, [a, ] satisfies the inequality
PDIPy(s) = Mul6) = Fls,u(6)| < evals); < € (a,b. (16)
Applying P12 on both sides of the above inequality and using (Hy), we get

w0y [ (Y 3 (L) st

S 65@& ()Oa (g) .

Let € C1—+, [a,b] be a unique solution of the nonlocal fractional differential equation

D a(s) — M (s) = f(s,2(<)), <€ (a,b],

with
1— 1—
pI()+ ’Yx<a+) = pIOJrWy(a—i_)-

In view of Theorem we can derive that

o) =+ [ o 1(“/)“) o () ] st (a7
where

p_ g \V1 P _ gP\ Y
wo= v (55) ma P50
p
Ti p
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On the other hand, by utilizing and Lemma we can get

- [ (S5 B s

o [ <<—> B () 1650t - sGs.ato)as

L S P _ P a—1
< D@ty [ (F5F) ) - ateas

IN

ly(s) — z(s)]

Apply Lemma, [4.1], we derive

ly(<) = z(<)]
€0paPals) + /Og < L) w1 (0 Sp)"aleémwa(s)> ds

n=1

€00 Pa(S) + €y, /Og <Z él(’f)n) gP—1 (Cp — Sp)na_lspa(s)> ds

65soa90a(§) + 65%004 (Lf6¢a)n va(S)

n=1

<1 + Z (Lf(S%)”> 6(5<pa90a<§) (18)
n=1

IN

IN

IN

IN

= ¢ (1 + Z (Lf‘scpa)n) paPa(S) = Nfpacpals),

n=1
where nf,, = (1+>07 (Lfdy,)") dp,- SO
(<) = y()| < 1p.paPal<)- (19)

Thus, the problem is Ulam-Hyers Rassias stable. Moreover, an argument similar to above in the previous
steps with putting e = 1, we get

12() = ()] < Nfp0PalS)-
This proves that the problem is generalized Ulam-Hyers Rassias stable. O

5. An example
In this section, one example is given to illustrate our theory results

Example 5.1. Consider the following problem

2

3
Hereod:%,ﬂ:%77:a+ﬁ—aﬁ:%’m:1,7‘1:%, 61 :%71”:%, (a,b]:(O,l],p:l,)\:—% and
f(,y(s)) = 15 siny(c). Then

[f(s,2(9)) = f(s, (o)) < ‘1f6g (sin 2() — siny(c))
< 19—yl

- 2
We note that Ly = §. Furthermore, by simple calculation, we get Q ~ 0.67 < 1. Then all the assumptions
i Theorem are satisfied, the problem @) has a unique solution in C1 ,[0,1].
67
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6. Conclusion

Here the existence, uniqueness and stability of nonlocal boundary value problem for differential equation
with Hilfer-Katugampola fractional derivative is discussed. Krasnoselskii fixed point theorem, Banach con-
traction principle, and Ulam type stability are utilized to obtain results. In conclusion, Hilfer-Katugampola
fractional derivative can be used as a powerful tool for studying the dynamical behavior of many real-world
problems.

Acknowledgments

The authors thank the referees for their careful reading of the manuscript and insightful comments, which
helped to improve the quality of the paper. We would also like to acknowledge the valuable comments and
suggestions from the editors, which vastly contributed to improving the presentation of the paper.

References

[1] O.P. Agrawal, S.I. Muslih, D. Baleanu, Generalized variational calculus in terms of multi-parameters fractional derivatives,
Communications in Nonlinear Science and Numerical Simulation. 16(12) (2011) 4756-4767.

[2] O.P. Agrawal, Some generalized fractional calculus operators and their applications in integral equations, Fract. Calc. Appl.
Anal. 15 (2012) 700-711.

[3] M.A. Almalahi, M.S. Abdo, S.K. Panchal, ¢-Hilfer Fractional functional differential equation by Picard operator method.
Journal of Nonlinear Dynamics (2020)

[4] M.A. Almalahi, S.K. Panchal, E,-Ulam-Hyers stability result for ¢)-Hilfer Nonlocal Fractional Differential Equation. Dis-
continuity, Nonlinearity, and Complexity (2020)

[5] M.A. Almalahi, M.S. Abdo, S.K. Panchal, Existence and Ulam-Hyers—Mittag-Leffler stability results of ¢-Hilfer nonlocal
Cauchy problem. Rend. Circ. Mat. Palermo, II. Ser (2020). https://doi.org/10.1007/s12215-020-00484-8

[6] M.A. Almalahi, M.S. Abdo, S.K. Panchal, Periodic boundary value problems for fractional implicit differential equations
involving Hilfer fractional derivative. 9(2) (2020).

[7] R. Almeida, A Caputo fractional derivative of a function with respect to another function, Commun. Nonlinear Sci. Numer.
Simul., 44 (2017) 460-481.

[8] D. Baleanu, O.P. Agrawal, S. I. Muslih, Lagrangians with linear velocities within Hilfer fractional derivative. In ASME
2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference,
American Society of Mechanical Engineers Digital Collection, (2011) 335-338).

[9] Z. Gao, Yu, X, Existence results for BVP of a class of Hilfer fractional differential equations. Journal of Applied Mathematics
and Computing, 56(1-2) (2018) 217-233.

[10] R. Hilfer, Applications of Fractional Calculus in Physics, World scienti ¢, Singapore, 1999.

[11] D.H. Hyers, G. Isac, Th.M. Rassias, Stability of Functional Equations in Several Variables, Progr. Nonlinear Differential
Equations Appl., Birkh 646user, Boston, 34 (1998).

[12] U.N. Katugampola, New approach to a genaralized fractional integral, Appl. Math.Comput., 218(2011), no. 3, 860-865.

[13] U.N. Katugampola, Existence and uniqueness results for a class of generalized fractional differential equations, Bull. Math.
Anal. Appl., 1(2014).

[14] U.N. Katugampola, New fractional integral unifying six existing fractional integrals, epint arxiv: 1612.08596, 6 pages.
(2016).

[15] A.A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations. North-Holland
Mathematics Studies, Elsevier, Amsterdam, 207 (2006).

[16] D.S. Oliveira , de oliveira E. Capelas, Hilfer-Katugampola fractional derivative. Comp Appl Math, (2017), 37: 3672-3690

[17] I. Podlubny, Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations,
to Methods of Their Solution and Some of Their Applications, Math. Sci. Eng. 198, Elsevier, Amsterdam, 1999.

[18] T.M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., 72(2) (1978), 297-300.

[19] S.G. Samko, A.A. Kilbas, O.I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and
Breach, Yverdon (1987).

[20] S.M. Ulam, A Collection of Mathematical Problems, Interscience Tracts in Pure and Applied Mathematics, 8, Inter-science,
New York-London(1960).

[21] da C Sousa J. Vanterler, de Oliveira E. Capelas, Ulam-Hyers stability of a nonlinear fractional Volterra integro-differential
equation. Appl Math Lett, (2018), 81: 50-56.

[22] J.R. Wang, M. Feckan, Y. Zhou, Presentation of solutions of impulsive fractional Langevin equations and existence results.
Eur. Phys. J. Spec. Top. 222 (2013) 1857-1874.

[23] J.R. Wang, L Lv, Y Zhou, Ulam stability and data dependence for fractional differential equations with Caputo derivative.
Electron J Qual Theory Differ Equ, (2011), 63: 1-10.

[24] H. Ye, J. Gao, Y. Ding, A generalized Gronwall inequality and its application to a fractional differential equation. J Math
Anal Appl, (2007), 328: 1075-1081.



	1 Introduction
	2 Preliminaries
	3 Exestence of solution
	4 Ulam-Hyers and Ulam-Hyers-Rassias stabilities 
	5 An example 
	6 Conclusion

