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Abstract. Autonomous drones must be able to identify the existence
of one or more objects of interest in a complex environment with high
accuracy and speed to fly around safely. Most existing object detec-
tion techniques, based on traditional machine learning algorithms, can’t
offer acceptable performance in complicated environments. Deep Con-
volutional Neural Networks (CNNs) provide us such ability with high
performance. Today, deep CNN-based object detection algorithms are
more and more used in Artificial Intelligence (AI) applications. How-
ever, it still very difficult to deploy large CNNs architectures on small
devices with limited hardware resources, because they consist of mil-
lions of parameters, which make them computationally very exhausting.
Lightweight CNN architectures are proposed as a solution to make the
deployment of deep neural networks on small devices feasible. This paper
focuses on reviewing recent used lightweight CNN architectures that can
be implemented on embedded targets to improve the object detection
performance for small devices-based systems, like drones. We need to
select fast and lightweight CNN models to use them on drone platforms.
The purpose of this reviewing is to choose the most accurate and fastest
algorithm to implement it on our drones.

Keywords: Computer Vision · Deep Learning · Object Detection · Con-
volutional Neural Network · Lightweight CNN.
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1 Introduction

Today, with the emergence of Internet of Things and embedded systems, artifi-
cial intelligence and computer vision has entered our lives. Our smartphones use
it to improve the quality of our photos, autonomous drones to understand their
environment. In general, our embedded systems analyze more and more images.
Most of the applied deep learning operations are made on very powerful work-
stations or servers. This is because deep neural networks perform convolutions,
which are very expensive operations in the processing and memory. The classifi-
cation of images in on-board embedded systems is, therefore, a major challenge
due to material constraints.

In the last few years, deep learning has shown accuracy in many applications.
Thanks to Moore’s law [1], we are able to implement high-performance proces-
sors in a single small chip, which gives us the ability to implement very efficient
deep learning algorithms in these little chips in order to build a fully autonomous
drone that could navigate without the intervention of humans or making smart-
phones with high capabilities. Also, we have many efficient software tools at our
disposal, like Keras, Tensorflow, and Theano. These hardware and software give
us the ability to rapidly construct deep learning architectures in a fraction of
the time. While they took a very long time to build such architectures before
the advent of the recent hardwares and softwares tools.

Computer vision is one of the topics that is advancing rapidly thanks to deep
learning. Today, deep learning-based computer vision is helping self-driving cars
and autonomous drones by figuring out where are other objects (pedestrians,
cars, traffic signs) to avoid them. It is making face recognition much better than
ever before. Rapid advances in computer vision are enabling us to build new
applications that were impossible a few years ago. Thanks to CNN [2], we can
use large images instead of stacking with small images.

The purpose of computer vision is allowing computers or robotic systems
to analyze, process and understand the content of digital images acquired with
cameras so that they can decide how to act. For a while, we needed to apply a
hand-engineered algorithm, where a hand-defined set of rules and algorithms are
applied to extract features from an image. However, the Convolutional neural
network is an end to end model that gives us the possibility to skip the feature
extraction step. This step is automatically learned from the training process.
Researchers needed to develop a deep neural network to detect objects. Several
studies have been made to tackle the object detection problem using CNN.

A large number of CNN architectures have been developed to achieve high ac-
curacy on many datasets, like ImageNet. In such competitions computing power
is not limited, where they use very powerful GPUs. However, we may want to
run our model on an old laptop without GPU, on our smartphone, or even on au-
topilot for drones. In this paper, we will present an overview of the most common
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and recent lightweight CNN-based approaches, which were used for embedded
systems implementation.

The rest of the paper is organized as follows. Section 2 reviews the prior works
of deep CNN-based object detection algorithms. In section 3, we introduce an
overview of deep learning and different deep CNN architectures. In section 4, we
present the most used and accurate lightweight CNN architectures. Finally, we
conclude this paper.

2 Object Detection Related Works

There were many different techniques for detecting objects applied on datasets
like PASCAL VOC, MS COCO, ImageNet. Paul Viola and Michael Jones came
up, in 2001, with a very effective object detection method [3], and in 2002, it was
improved by Rainer Lienhart and Jochen Maydt [4]. Viola-Jones still one of the
most powerful algorithms for computer vision and real-time object detection.
Other methods, like HOG+SVM [5] and DPM [6], present good accuracy in the
mentioned datasets. It is slowly being surpassed by deep learning-based CNN
algorithms in terms of accuracy.

Girshick et al. [7], proposed Region-based Convolutional Neural Networks
(R-CNN), which achieve impressive object detection accuracy, over traditional
methods. However, the R-CNN is very slow, where detection time takes 47s per
image. Besides, the extracted features need a huge storage memory, hundreds of
Gigabytes [7]. Faster R-CNN [8] and Faster R-CNN [9] have come to enhance the
accuracy and speed of R-CNN architecture. However, they still slow achieving
only 7 fps (frame per second), which is not suitable for real-time object detection.

Single-stage detectors are significantly faster than two stages of detectors
(region-based methods), and give us a real-time performance. YOLO [10, 11, 12]
and SSD [13] are the most used algorithms for real-time object detection, where
many works are based on these two architectures. They are prerequisites for any
self-driving cars and autonomous drones. If they are going to be driving or fly
around safely, they need to be able to recognize all the objects around them and
need to do it fast. It is not just an interesting computer science problem, but
it is now a safety requirement. Table 1 presents a comparison between different
object detection methods based on CNN architectures.

All the previously mentioned object detection techniques, in table 1, are
based on deep CNN architectures, like AlexNet [14], VGGnet [15], GoogLeNet
[16], and ResNet [17]. All of these architectures are computationally exhausting,
which makes them not suitable for embedded systems implementation.
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Table 1. Comparison of accuracy and speed on PASCAL VOC 2007.

mAP (%) FPS Real-time

Fast R-CNN 70.0 0.5 No

Faster R-CNN(VGG16) 73.2 7 No

Faster R-CNN(ZF) 62.1 18 No

Faster R-CNN(ResNet-101) 76.4 5 No

Fast YOLO 52.7 155 Yes

YOLO 63.4 45 Yes

YOLO (VGG16) 66.4 21 No

YOLOv2 78.6 40 Yes

SSD300 74.3 59 Yes

SSD512 76.8 19 No

3 Deep Learning and CNN Overview

Deep learning is an exciting branch of machine learning, which is, in turn, a
subfield of artificial intelligence. It uses a huge amount of data to train machines
how to do things only humans were capable of before. Solving the problem of
perception, recognizing what’s in an image, helping self-driving cars explore its
environment and interact with it, are some of the most exciting and challenging
topics [18, 14].

Deep Learning has emerged as a central tool to solve perception problems in
the last decade. It’s the state of the art on everything having to do with computer
vision and speech recognition. Increasingly, people are finding that deep learn-
ing is a much better tool to solve problems, like understanding natural language
[19], detecting objects in a scene [20], understanding documents. In this paper,
we are interested in studying a special type of deep learning algorithms, which
is Convolutional Neural Networks (CNN) [2]. It is very useful for computer vi-
sion and image classification. Deep CNN architectures are computationally very
exhausting. So, we need to build lightweight CNN architectures for edge com-
puting. Drones are one of the fields where we can implement lightweight CNN
algorithms on small devices with limited hardware resources to make them more
intelligent.

Convolutional Neural Network does one basic thing; image classification. We
can turn CNN into an object detection system that not only classifies images
but can locate each object in it and predict its label. In traditional feedforward
neural networks, each neuron in a layer ”i” is connected to every neuron in layers
”i-1” and ”i+1”. We call it a Fully Connected Neural Network (FCNN). How-
ever, in CNN, we dont use fully connected layers until the last layer(s) in the
network [21]. CNN presents many advantages over FCNN in high-dimensional
data analysis, like images and videos.
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A nonlinear activation function is applied to the output of each convolution
layer. This process continues along with a mixture of convolution and pooling
layers to extract features, until we reach the end of the network and apply one or
two fully connected layers, where we can obtain our final output classifications.

3.1 CNN Building Blocks

CNN is composed of four fundamental layers (building blocks). In this section,
we focus on the different layer types associated with CNNs. Typically, CNNs are
composed of many convolutional layers, where each layer followed by a nonlin-
ear activation function and pooling layers that are followed by one or more fully
connected layers at the end.

The Convolutional Layer The convolutional layer is considered as the most
important component of CNN architectures. It consists of set of filters (kernels),
which are convolved with the input image to generate an output feature map
(Fig. 1). The weights of each filter are learned during the training of CNN.

Fig. 1. The convolution operation.

Figure 2 presents a convolutional layer, which looks for six different features
(edges, lines, corners). In this case, our convolutional layer will have six (3*3*3)
filters, as shown in figure 2. Each filter looking for a particular pattern on the
image (edges, corners, lines).

The Activation Layer The convolution by itself is a linear operation. However,
a non-linear layer at the end of each convolutional layer is added in order to
avoid the encounter with the same problem of the linear classifiers. The Rectified
Linear Unit (ReLU) (Fig. 3) is one of the most used activation functions. AlexNet
was the first architecture to implement ReLU as an activation function.
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Fig. 2. Convolutional layer with six (3*3*3) filters.

Fig. 3. Rectified Linear Unit activation function.

Pooling Layer The pooling layer, or subsampling layer, is for downsampling
the feature map of the previous layer. Generally, it is applied in two forms:
max-pooling and average pooling. It is used to reduce the size of an image by
discarding some information to speed up the computation, but it preserves the
information about the location of the good matches with the filters. As shown in
figure 4, max-pooling preserves maximum value in a patch and stores it in the
new image. A pooling layer operates on the heights and the widths of the data
tensor, but not on the depth. In the case of average pooling, the same thing
as maximum pooling, only instead of taking the maximum value we take the
average of all the values and put it in the corresponding position of the output
matrix. These days, max pooling is used much more than average pooling.

Fully Connection Layer Fully connected layers are feedforward neural net-
works, which are the same as classical artificial neural networks and perform the
same mathematical operations. The output of the final pooling layer is flattened
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Fig. 4. Max pooling operation.

and then fed to the input of the fully connected layer, which does the classifica-
tion and produces the final output probabilities for each class using a softmax
activation function.

The dimensions of its output is [ 1* 1* N], where N is the number of classes
we are evaluating (for example N = 10 for CIFAR-10 dataset). Each neuron in
this layer is connected to every neuron in the previous and next layer.

3.2 Different Deep CNN Architectures

In this section, we will present four of the most powerful CNNs, which laid the
foundation for todays computer vision achievements.

AlexNet In 2012, Krizhevsky et al. [14] propose AlexNet, which is one of the
most powerful models for object detection. It won easily the ImageNet Large-
Scale Visual Recognition Challenge (ILSVRC) competition [22]. It consists of
five convolutional layers and three fully connected layers (Fig. 5). It was the first
architecture that uses the ReLU activation function instead of tanh function.

VGGnet VGGnet [15] was the winner of the ILSVRC 2014 competition for
localization and classification. This network has two famous architectures: VGG-
16 and VGG-19. The VGG-16 is the most used architecture due to its simplicity.
It contains 13 convolutional layers and 3 fully connected layers, which make them
16 layers in total (Fig. 6).

GoogLeNet GoogLeNet [16] is another CNN-based architecture, which consists
of 22 layers (Fig. 7). In fact, it has more than 50 convolutional layers distributed
inside the inception modules [21]. However, it reduces the number of parameters
of the network from 60 million (in AlexNet) to only 4 million, which makes it
less sensitive to overfitting and allows it to be deeper.
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Fig. 5. AlexNet architecture.

Fig. 6. VGG-16 architecture.

Fig. 7. GoogLeNet architecture.

ResNet Residual Neural Network (ResNet) [17] CNN architecture (Fig. 8) won
the first places on the tasks of ImageNet detection, ImageNet localization, COCO
detection, and COCO segmentation at the 2015 ILSVRC and COCO competi-
tions. It introduced a new architecture with skip connections and features heavy
batch normalization, which makes it able to train a 152 layers neural network
while still having lower complexity than VGGNet.
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Fig. 8. ResNet architecture.

All the discussed CNN architectures, in this section, need large memory and
powerful computational resources. For this reason, deep CNN architectures are
unable to run on small devices with low hardware resources, like drone autopilots.
Many accurate lightweight CNN models are proposed to work with high speed
on embedded systems as we will present in the next section.

4 On-board Lightweight CNNs Architectures

In the case of object detection based on high-performance computers, the sys-
tem (drone, car) collects data via its cameras and different sensors and trans-
mits them to a desktop computer for analysis. This gives machines the ability
to save power by off-loading compute intensive operations. However, the wire-
less transmission takes a long time in sending the collected data, which means
an additional cost added to the latency of the system. The requirement of high
computational resources for video processing poses a challenge in mapping deep
learning-based algorithms on low-cost and low-power computing platforms. In
a large number of applications such as robotics, self-driving car, autonomous
drones and augmented reality, the recognition tasks need to be carried out in a
timely fashion on a computationally limited platform [23].

In order to solve these problems, developing CNNs that are suitable for on-
board real-time object detection is important to reduce model parameters and
accelerate their calculations. For that purpose, lightweight versions of the CNNs
architectures are used on limited hardware.

All the previous methods are used with high-performance computers. Lightweight
versions are used for embedded systems, for example on the drone itself. The
battery life and flight time could be increased using lightweight models. An ad-
ditional 0.5 to 1 W power is required to operate the cooling system for each
watt of power dissipated in computing equipment [24]. Moreover, a low-power
computing system can reduce thermal problems and cooling requirements, which
is very important in the field of autonomous drones.
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4.1 MobileNet

MobileNet [23] is an efficient CNN architecture for mobile and embedded vi-
sion systems. It splits the convolution into a depthwise separable convolution
followed by a pointwise convolution to build a lightweight deep neural network
(Fig. 9). Furthermore, it introduces two simple hyperparameters that give us
the possibility to build small and low latency models that can be easily matched
to the design requirements for mobile and embedded vision applications. One of
the hyperparameters is the width multiplier that allows us to thin the number
of channels, while the second hyperparameter is the resolution multiplier that
reduces the spatial dimensions of the feature maps. MobileNet is not usually
accurate as the bigger CNN architectures. However, MobileNet shines in the re-
source/accuracy trade-off. It gives high accuracy only with limited resources.

Fig. 9. MobileNet architecture.

MobileNet V2 [25] is an updated version of MobilNet V1, which makes it
more efficient and powerful in terms of accuracy and speed. Table 2 shows a
comparison between the two versions of MobileNets architectures, which present
that V2 is twice faster than V1 and slightly more accurate. MACs are multiply-
accumulate operations, which measure the number of needed calculations in
order to perform inference on a single (224*224) RGB image.

MobileNet is a very fast architecture, which is suitable for real-time applica-
tions. In [26], the authors present that MobileNet (width multiplier = 0.25 and
resolution multiplier = 0.714) achieves 28.1 fps on Nvidia Jetson TX2, 31.5 fps
on Intel Core i5-6200U CPU and 164 fps on K40 Desktop GPU.
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In [23], the authors proposed MobileNet-SSD, which is comprised depth-
wise separable convolutions. They used MobileNet as a backbone CNN architec-
ture instead of VGG-16. It achieves a significant detection accuracy on COCO
dataset.

The authors in [26] propose SSDLite, which is based on MobileNet V2 as
building CNN. SSDLite based on MobileNetV2 outperforms YOLOv2 on COCO
dataset with 20x more efficient and 10x smaller.

Table 2. Comparison of accuracy and speed of MobileNets V1 and V2.

MACs (million) # Parameters (million) Top 1 accuracy Top 5 accuracy

MobileNet V1 569 4.24 70.6 89.5

MobileNet V2 300 3.47 71.8 91.0

4.2 SqueezeNet

SqueezeNet [27] is a small CNN architecture that achieves the accuracy of
AlexNet CNN on ImageNet dataset with 50x fewer parameters (Tab. 3). SqueezeNet
can be 500x smaller than AlexNet using deep compression technique [28].

Table 3. Comparison of accuracy and reduction in model size between AlexNet and
SqueezeNet.

Reduction in model
size

Top 1 ImageNet
accuracy

Top 5 ImageNet
accuracy

AlexNet 1x 57.2 80.3

SqueezeNet 50x 57.5 80.3

SqueezeNet architecture is based on three strategies: - using (1*1) filters in-
stead of (3*3) filters, since a (1*1) filter has 9x fewer parameters than a (3*3)
filter; - decreases the number of input channels to 3x3 filters using squeeze layers;
and - downsample late to keep a big feature map.

Fire module is the building brick of SqueezeNet architecture, which consists
of two layers: a squeeze convolution layer, which has only (1*1) filters), and an
expand layer that has a mix of (1*1) and (3*3) convolution filters (Fig. 10).
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Fig. 10. Organization of convolution filters in the Fire module.

Fig. 11. SqueezeNet architecture.

As shown in figure 11, SqueezeNet begins with a standalone convolution layer
(conv1), followed by 8 Fire modules (fire2 to fire9), ending with a final conv layer
(conv10).

Wu et al. [29], proposed SqueezeDet, which is inspired by YOLO using
SqueezeNet as a backbone network.

4.3 ShuffleNet

ShuffleNet [30] is a computation-efficient lightweight CNN architecture for mo-
bile devices with limited computing power. It provides better performance than
MobileNet on the tasks of ImageNet classification and COCO detection. The
overall ShuffleNet architecture is shown in figure 12. It is composed of a stack of
ShuffleNet units grouped into three stages. The first building block in each stage
is applied with stride = 2. The output channels are the same in each stage, but
doubled for the next one.

ShuffleNet architecture utilizes two new operations in order to reduce com-
putation cost while maintaining accuracy. These operations are pointwise group
convolution and channel shuffle. The channel shuffle operation permits to divide
the channels in each group into many subgroups, then feed each group in the
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next layer with different subgroups. The authors of [30] generalize the concept of
group convolution, used in AlexNet, and the separable convolution, which used
in MobileNet architecture.

Fig. 12. ShuffleNet architecture.

Figure 13 presented the ShuffleNet units, which are specially designed for
small networks. Figure 12 (a) is a bottleneck unit with depthwise convolution
(3*3 DWConv). Figure 12 (b) is a ShuffleNet unit with pointwise group con-
volution (GConv) and channel shuffle, which recover the channel dimension to
match the shortcut path. Figure 12 (c) is a ShuffleNet unit with stride = 2.

Fig. 13. ShuffleNetV1 units.

ShuffleNet achieves 13x actual speedup over AlexNet architecture, on an
ARM-based mobile device, while maintaining comparable accuracy.
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4.4 PeleeNet

PelleNet [31] is an efficient architecture for embedded platforms. Figure 14 shows
the framework of PeleeNet, which is consists of a stem block and four stages of
feature extractor. Except for the last layer in each stage, which is an average
pooling layer with stride 2.

PeleeNet achieves better accuracy and 1.8x faster over the two versions of
MobileNet, on ImageNet ILSVRC 2012 using Nvidia Jetson TX2. Meanwhile,
the PeleeNet model size is smaller than MobileNet by 66%.

Fig. 14. PeleeNet architecture.

MACs cannot replace the speed test on real devices, because of many other
factors that may influence the actual time cost, like hardware optimization, I/O.
PeleeNet achieves higher accuracy and speed than MobileNet and MobileNetV2
on Nvidia Jetson TX2 (Tab. 4).

In [31], the authors combined PeleeNet with SSD for object detection. As
shown in Table 5, the object detector based on PeleeNet architecture presents
higher accuracy than the other architectures.

SSD + PeleeNet of [30] achieves 76.4% mAP on VOC07 and 22.4 mAP on
MS COCO dataset, achieving 23.6 FPS on iPhone 8 and 125 FPS on NVIDIA
Jetson TX2. It is 13.6x lower computational than YOLOv2 and 11.3 smaller.
Also, it provides higher accuracy on COCO dataset.
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Table 4. Comparison of deferent lightweight CNN architectures performance tested
on Nvidia Jetson TX2.
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1.0 MobileNet V1 569 4.24 70.6 136.2 75.7 22.4

1.0 MobileNet V2 300 3.47 72.0 123.1 68.8 21.6

ShuffleNet 2x (g = 3) 524 5.2 73.7 110 65.3 19.8

PeleeNet 508 2.8 72.6 240.3 129.1 37.2

Table 5. Comparison of deferent lightweight CNN-based object detectors performance
on PASCAL VOC 07 + 12.

Input
dimension

MACs
(million)

Data mAP (%)

Tiny-YOLO v2 416*416 3490 07 + 12 57.1

SSD + MobileNet 300*300 1150 07 + 12 68.0

SSD + PeleeNet 304*304 1210 07 + 12 70.9

SSD + MobileNet 300*300 1150 07+12+COCO 72.7

SSD + PeleeNet 304*304 1210 07+12+COCO 76.4

5 Conclusion

We saw that deep learning-based object detection algorithms achieve high ac-
curacy and speed for real-time issues. Drones, cars, and robots need accurate
and fast object detection methods that are suitable for its low-power and low-
processing. Lightweight CNN architectures give us the possibility to execute
these accurate algorithms on limited hardware resources embedded systems.

In this paper, we presented a survey of lightweight CNNs architectures for
accelerating neural-network applications. We discussed both hardware-level and
CNN-level optimizations and showed the speed and accuracy of each one of
them on limited resources hardware, like iPhone 8 and Nvidia Jetson TX2. This
reviewing will be useful for researchers and practitioners in the area of deep
learning, computer vision and embedded system.

As future work, we want to implement different lightweight CNNs-based deep
learning algorithms on small devices to control our drones.
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