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ABSTRACT 
In this research, we attempt to design a model in which multiple robots communicate with an artificial proto-

language whose symbols are vocally encoded letters of the Morse alphabet. We have shown that, as the robots 

have limited sensing and acting abilities, the communicated symbols of the proto-language differentiates from 

their original versions due to copying errors. We check the effects of two distinct environmental factors, namely 

the positional distance between the robots and the amount of noise in the environment. It is shown that both of 

these factors affect, in different ways, how accurately the presented proto-language can be accurately transmitted 

by the robots. 

 

Keywords: Vocal communication, robot learning, multi-robot systems. 

 

 

Bir Robot Kolektifinde Ses ile Haberleşmenin Değerlendirilmesi  
 

ÖZET 
Bu araştırmada, birden fazla robotun, sembolleri Mors alfabesinin sesli olarak kodlanmış harfleri olan yapay bir 

öncül-dil vasıtasıyla iletişim kurduğu bir model tasarlanmıştır. Robotların sınırlı algılama ve eyleyici yeteneklerine 

sahip olduklarından, kullanılan öncül-dilin iletilen sembollerinin kopyalama hataları nedeniyle orijinal 

sürümlerinden farklılaştıkları gösterilmiştir. İki ayrı çevresel faktörün, robotlar arasındaki konumsal mesafe ve 

ortamdaki gürültü miktarının, kopyalama üzerine etkileri incelenmiştir. Bu faktörlerin her ikisinin sunulan öncül-

dilin robotlar tarafından ne kadar doğru bir şekilde iletilebileceğini etkilediği gösterilmiştir. 

 

Anahtar Kelimeler: Ses ile haberleşme, robot öğrenmesi, çok-robotlu sistemler. 
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I. INTRODUCTION 
 

Language, that allows humans to communicate by means of a collection of symbols that can be vocally 

transmitted, is one of the key cognitive abilities that make humans unique. For long years, many 

researchers have attempted to examine, model and finally understand how and why languages can 

emerge and shape the cognitive activities of human beings. These efforts mostly stemmed from the need 

to distinguish human languages from other types of communication systems. For this purpose, in his 

seminal work, Hockett [1] declared 13 design features that are shared by all natural languages. Based 

on these features, he was able to comparatively discuss the differences between human languages and 

the methods that are used by animals to communicate. The first five of these features, namely vocal 

auditory channel, broadcast transmission and directional reception, rapid fading, interchangeability 

and total feedback model the physical properties of the vocal channel that is used as a medium for 

transferring the symbols of the language. The next three features, specialization, semanticity, and 

arbitrariness enhance the expressiveness of the communication system. The next two features, 

discreteness and traditional transmission explain the mechanisms in which linguistic units are 

transferred between individuals. Hockett claimed that the last three features, namely displacement, 

productivity and duality of patterning make the human language unique among all communication 

systems. According to the displacement feature, humans are unique in the sense that they are able to talk 

about things that are remote in space or time. The last two features are particularly significant as they 

make the human languages open systems in which new linguistic utterances can emerge and be included 

in the repertoire of the language in time. Based on the productivity feature, Hockett stated that new 

linguistic units that had never been used before can be understood by other users of the language and 

these units can gradually become a part of the language. Duality of patterning explains how distinct 

building blocks, namely morphemes of the language, can be arranged and combined in different ways 

to form new linguistic utterances. 

 

Among the features that were presented by Hockett, the last two, in effect, make the human languages 

dynamic systems that can progress in time. As they have a significant effect in making the human 

languages dynamic systems, the productivity and duality of patterning principles have been widely 

examined by some researchers. These researchers claimed that the languages are complex dynamic 

systems that can adapt to changing conditions under the influence of individual learning, cultural 

adaptation and biological characteristics [2], [3]. In order to examine the adaptive functionality of 

languages, a number of different methods have been utilized, including computer simulations [4], [5] 

and experiments with human participants [6], [7]. In these researches, to model the dynamics of 

linguistic items of a language, the participants of the experiments interacted with each other through a 

process of social coordination [2], [3], [4] or iterated learning [8], [9]. The iterated learning [10] method 

particularly have received much attention in recent years. This method simulates a process of repeated 

learning and usage during which an agent learns a specific linguistic item through observing the 

demonstration of the item by another agent that shares the same environment and who learned it in the 

same way. Experiments on iterated learning have modeled adaptive communication systems through 

which agents can communicate effectively in laboratory conditions. 

 

In this research, we attempt to design an experiment setting in which multiple robots communicate 

through an artificial proto-language whose symbols are vocally encoded letters of the Morse alphabet. 

We have shown that, as the robots have limited sensing and acting abilities, the communicated symbols 

of the proto-language differentiates from their original versions due to copying errors. We check the 

effects of two distinct environmental factors, namely the positional distance between the robots and the 

amount of noise in the environment. It is shown that both of these factors influence how accurately the 

presented proto-language can be transmitted by the robots. Finally, we discuss the utility of our model 

and mention some possible future work. 

 

The article proceeds as follows: Section II mentions some related works. Section III presents the vocal 

communication algorithm and quality of vocal communication function that are used in the experiments. 
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In section IV, we present the real robot experiments on vocal communication and discuss their results. 

Finally, section V concludes the paper and mentions some further future work. 

 

 

II. RELATED WORK 
 

An issue that is worth mentioning about most of the researches on the evolution of language is that in 

the models that were developed, the participants learned artificial symbolic proto-languages through 

which they can communicate over the visual channel. The symbols that were transferred between 

participants consisted of written strings or graphical images that undergo variations during multiple 

cycles of acquisition and reproduction. As the learning process was not modeled over the vocal channel, 

the dynamics and physical properties of sound emission/reception did not have any effect on the 

adaptation of linguistic units. As stated above, some of Hockett’s designed features applies to the 

dynamics of the vocal channel so it is definitely worth examining the adaptation of language over a 

vocal communication task. 

 

There have been a few attempts to model the adaptation of artificial proto-languages over a vocal 

channel. For instance, Verhoef [11] examined the development of a simple artificial whistled language 

through which a number of human participants tried to learn specific sound combinations that could be 

reproduced with slide whistle. Starting with an initial set of whistles, each participant listened and then 

reproduced the heard set of sound combinations which were then used as the training items for the next 

participant. In this way, Verhoef was able to model the adaptation of a proto-language over a vocal 

channel. In the experiments, the participants were forced to reproduce a specific number of unique sound 

combinations so that the number of distinct combinations was constant during all learning cycles. With 

these settings, as multiple learning cycles proceeded, Verhoef was able to observe the development of a 

more structured and easy to learn whistled proto-language. As the learned set of whistles were passed 

from participant to participant through a process of repeated learning and usage, the symbols of the 

language became better suited to the perceptual abilities of the participants so that they could be more 

accurately reproduced and acquired. In this research, as the participants were forced to remember the 

heard sound combinations, under such memory constraints, they were able to progressively agree on the 

structure of the learned symbols so that the adapted symbols could be transferred with high accuracy. 

 

In another research, Zuidema and de Boer [4] utilized computer simulations to model the emergence of 

novel linguistic units in a group of simulated agents that communicated through an artificial proto-

language. The symbols of the proto-language consisted of signals which were represented as trajectories 

that were derived from specific recorded acoustic data. By introducing random noise to the transfer of 

symbols between agents, they were able to observe the emergence of combinatorial structure in the 

adapted symbols as novel signals could be formed by recombination of basic building blocks. 

 

One of the key mechanisms in the research on the adaptation of language is that there should be a source 

of variance in the learning process so that the learned linguistic units can adapt to uncertainties in the 

environment. In experiments with human participants, the existing biases of the participants or memory 

constraints provide the necessary variances. In experiments with computer simulations, the needed 

variances are artificially introduced to the system. In this respect, real robot experiments offer an 

interesting alternative platform. Similar to the natural systems, robots have limited perceptual abilities 

and they can partly sense their environment through a noisy medium. In addition, they can be 

programmed to learn visually or vocally from other robots or humans. Based on these observations, 

there have been some research on language adaptation in recent years in which real robots were used as 

participants in the experiments [12]. In these researches, robots visually learned from each other and the 

adaptation of the learned linguistic units were examined. However, there has been no research that 

attempts to model the adaptation of a language that can be learned through the vocal channel on real 

robots. In this research, we attempt to design an experiment setting in which multiple robots vocally 

communicate through an artificial proto-language. In contrast to the related work presented in this 

section, our model uses real robots whose less-than-perfect perceptual and motor system, introduce the 
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necessary variations to the vocal learning process. In this way, we are able to examine the dynamics of 

vocal communication in a controlled environment. 

 

 

III. METHOD 
 

A. EXPERIMENT SETUP 

 
We use e-puck miniature robots [13] in our embedded vocal communication experiments. The e-puck 

robots are mobile, compact and they are equipped with several sensors and actuators, including three 

microphones and a speaker as shown in figure 1, so the robot has the necessary apparatus for on-board 

vocal communication. The maximal acquisition speed of its microphones is 33 kHz.  

 

 
 

Figure 1. An e-puck robot. The speaker of the robot is shown in the white square marked with (s); the 

microphones of the robot are shown in smaller red squares marked with (m). The third microphone is located 

under the speaker’s base plate. 

 

The e-puck robot can play embedded audio files through their speakers. It comes with an embedded 

audio file comprised of baby sounds and noises. For this study, the robot’s embedded audio files are 

overwritten with an 880Hz sine wave which has an 8kHz sampling frequency. In order to eliminate 

audio distortion in the speakers, we reduce the level of the audio files by a factor of 0.5. Any louder 

audio signal causes distortion when it is played through robot’s speakers. 

 

During the experiments, two robots vocally communicate through their on-board sensors. At the start of 

each experiment run, one of the robots is declared as the “speaker” while the other robot is declared as 

the “listener”. Then, they attempt to communicate by generating different combinations of short and 

long beeps that mimic the letters of the Morse code. Each letter of the Morse code is encoded into 5 

intervals, separated with silent durations, during which the speaker robot emits short/long beeps or it 

stays silent. For instance, figure 2(a) shows the encoded version of the letter “C” of the Morse code. As 

can be seen, in order to communicate the letter “C”, the speaker robot emits a long beep in the first 

interval, a short beep in the second interval, a long beep in the third interval, a short beep in the fourth 

interval and finally it stays silent in the fifth interval. 

 

The speaker robot, when it starts communicating, selects a letter of the Morse code, converts it into a 

sequence of short/long beeps or silent intervals, and emits the corresponding audio signals. As the 

speaker speaks, the listener robot captures the audio signals that it received from its microphone and 

converts the received signals into a sequence of short/long beeps and silent intervals. After speaker robot 

completes speaking, robots switch their roles, i.e., listener robot becomes speaker and speaker robot 

becomes listener. In this way, we are able to model the vocal communication of the letters of Morse 

code in a group of robots. 
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However, as the robot’s sensors and actuators are not perfect, we observe copying errors in the 

reproduced audio signals. For instance, in figure 2(a) an example audio signal, which corresponds to the 

letter “C” of the Morse code, is shown. Figure 2(b) shows the audio signal that is reproduced by the 

listener robot when it listens to the execution of the letter “C” by the speaker robot. As can be seen, there 

are some copying errors in the reproduced audio signal. The actual letter “C” of the Morse code consists  

 

 
 
Figure 2. (a) The encoding of the letter “C” of the Morse code. (b) Its reproduced copy. The erroneous part of 

the induced copy is shown in dashed rectangle. 

 

of a long beep, followed by a short beep, a long beep, a short beep and a silent interval. However, in this 

example, the listener robot perceives the emitted signal as a long beep followed by three short beeps and 

a silent interval. Thus, introducing an error where the third beep should have been a long beep instead 

of a short beep. The erroneous segment is shown in Figure 2 within dashed rectangles. In order to 

qualitatively compare an executed audio signal with its reproduced copy, we need a quality of vocal 

communication metric. For this purpose, we take each audio signal as a string of short/long beeps or 

silent intervals and compare the normalized Levenshtein distance, in terms of number of insertions, 

deletions or substitutions, between the original emitted signal and its reproduced copy. Therefore, the 

quality of vocal communication for a specific audio signal S and its reproduced copy C is calculated as 

follows: 

 

Quality(𝑆, 𝐶) = 1 −  
Levenshtein(𝑆,𝐶))

Max(len(𝑆),len(𝐶))
             (1) 

Based on this metric, the quality of communication for the audio signal shown in figure 2 is calculated 

as 0.8. 
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IV. EXPERIMENTS 

 
The main objective of this research is to examine the dynamics of vocal communication on a group of 

robots that can communicate with each other the vocal channel. As stated above, there are a number of 

features of the vocal-auditory channel that make vocal communication particularly more complex than 

visual communication. For instance, through the vocal channel we observe broadcast transmission and 

directional reception in which the audio signals that are generated by the speaker rapidly fade away. 

Therefore, the spatial distance between the speaker and the listener is a significant metric that effects 

the fidelity of communication over the vocal channel. In a collective group, whose members are mobile, 

the agents may need to communicate through different spatial distances. 

 

In order to examine the effects of spatial distances on the communication of two mobile robots, we 

design experiments in which two robots, the speaker and the listener, vocally communicate by 

transferring audio signals that mimic the letters of the Morse code at different distances. We test the 

quality of communication for three different distance settings, as shown in figure 2. In the first set of 

experiments, the robots are placed right next to each other so that the distance between the speaker of 

the speaker robot and the microphone of the listener robot is minimal. In the second set of experiments, 

the robots are placed 5 cm away from each other. Finally, in the third set of experiments, they are placed 

10 cm away from each other. During the experiments, at each of the specific distance between robots, 

the speaker robot selects one of the letters of the Morse code, as shown in table 1, converts it to a 

sequence of short and long beeps and emits the corresponding signal. The listener robot captures the 

signal, converts it to a sequence of short and long beeps and saves the reproduced sequence in its 

memory. When the experiments are completed, we compare the original letters that are emitted by the 

speaker with their reproduced copies, by using the quality of vocal communication function that is 

presented in the previous section. 

 

 
(a) 

 

 
(b) 
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(c) 

 

Figure 3. (a) In the first set of experiments, the spatial distance between the robots is minimal (b) In the second 

set of experiments, the distance between robots is set to 5 cm. (c) In the second set of experiments, the distance 

between robots is set to 10 cm. 

 
Table 1. The letters of the Morse code that are used in experiments. The specific letters are chosen to have 

distinct combinations of short/long beeps and silent intervals. 

 

Character Morse Code Representation 

(Beeps) 

C Long, Short, Long, Short, Silent 

F Short, Short, Long, Short, Silent 

M Long, Long, Silent, Silent, Silent 

S Short, Short, Short, Silent, Silent 

T Long, Silent, Silent, Silent, Silent 

 
Figure 4 shows results of the first experiment set when the distance between robots is minimal. As can 

be seen, the listener robot is highly successful in capturing the emitted letters. There are a few occasional 

errors, due to noisy reception of the sensors, however, in most runs, the listener robot was able to 

determine the exact sequence of signals. In these settings, the listener robot achieves 99.6% quality of 

communication value (std: 2.81) and over 100 communication runs, in 98 of them, it is able to detect 

the correct sequence of short/long beeps and silent intervals. 

 

 
 

Figure 4. The quality of vocal communication when the robots are placed next to each other. 
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Figure 5 shows the results of the experiments when the robots are placed 5 cm away. As can be seen, 

they have a slightly lower rate of quality of vocal communication. In these settings, the listener robot 

achieves 97.5% quality of communication value (std: 7.59) and over 100 communication runs, in 89 of 

them, it is able to detect the correct sequence of short/long beeps and silent intervals.  

 

 
 

Figure 5. The quality of vocal communication when the robots are placed 50 mm apart. 

 

Finally, figure 6 shows the results of the experiments when the robots are placed 10 cm away. As can 

be seen, the listener robot has a lower performance in capturing the emitted signals. In these settings, 

the listener robot can achieve 84.83% quality of communication value (std: 17.65) and over 100 

communication runs, in only 44 of them, it is able to detect the correct sequence of short/long beeps and 

silent intervals. 

 

 
 

Figure 6. The quality of vocal communication when the robots are placed 100 mm apart. 

 

The audio signals that are emitted by the speaker robot can be categorized based on the number of 

distinct sound emissions. For instance, the letter T, which consists of a single long beep is relatively a 
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simple letter, while the letter C, which consists of a combination of 4 distinct sound emissions (long, 

short, long, short beeps) can be seen as a relatively complex letter. Based on this categorization, when 

we compare the quality of communication of distinct letters, it can be observed that the listener robot 

achieves a higher quality of communication value when it imitates simple letters in comparison with 

complex letters. The highest quality of communication value is achieved when the listener robot imitates 

letter T (mean: 89.17, std: 12.42) while the lowest quality of communication value is achieved when the 

listener robot imitates the letter C (mean: 73.33, std: 28.30). A pair-wise ttest between the copies of 

letter T and the copies of letter C reveals that the difference between the two is statistically significant. 

Therefore, we can deduce that, if the sound signals that are transmitted vocally are relatively complex 

in terms of number of distinct sound emissions, an increase in the spatial distance between the robots 

has a relatively higher negative effect on the quality of communication. 
 

One of the key mechanisms of vocal communication is that, due to the broadcast transmission feature 

of the auditory channel, if there are multiple audio signals in the same environment that are emitted from 

different sources, they may mix up so that the listener receives a combination of the signals. Human 

brain is able to concentrate its attention on a particular audio stimuli by filtering out other audio signals 

that it receives. This ability is called the cocktail-party effect, and the process in which humans can 

achieve the filtering has been widely studied by many researchers [14], [15]. 
 

In a collective group, whose members are mobile, agents may need to communicate in noisy 

environments in which multiple agent-to-agent dialogues may take place simultaneously. In order to test 

the effects of noise in the environment, we design experiments in which two robots communicate with 

each other, as explained above, in an environment that includes artificially generated white noise. For 

this purpose, the robots are placed next to each other, as shown in figure 3 (a) and we introduce an 

additional sound source that emits 40 dB of ambient noise. Once again, the speaker robot selects 

different letters of the Morse code, converts the selected letters into a sequence of short/long beeps and 

silent intervals while the listener attempts to capture the audio signals. 
 

Figure 7 shows results of the experiment set with 40 dB ambient noise. As can be seen, the ambient 

noise effects the reception of the listener as it achieves a slightly lower performance compared to the 

results shown in figure 4. In these settings, the listener robot achieves 96% quality of communication 

value (std: 7.49) and over 100 communication runs, in 77 of them, it is able to detect the correct sequence 

of short/long beeps and silent intervals. 
 

 
 

Figure 7. The quality of vocal communication with 40 dB ambient noise. 
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Finally, to further observe the effects of noise in the environment, we increase the level of ambient noise 

to 50 dB and repeat the same experiments. Figure 8 shows the results of these experiments. As can be 

seen, the listener robot has a much lower rate of quality of vocal communication. In these settings, the 

listener robot achieves 80.83% quality of communication value (std: 18.76) and over 100 

communication runs, in only 34 of them, it is able to detect the correct sequence of short/long beeps and 

silent intervals. 

 

 
 

Figure 8. The quality of vocal communication with 50 dB ambient noise. 

 

When we examine the quality of communication for each letter individually, it can be observed 

that the listener robot achieves highly similar quality values for each of the 5 letters (mean 

quality value for the letters C, F, M, S, T are 81.67 (std: 23.51), 79.17 (std: 15.17), 82.5 (std: 

14.78), 79.17 (std: 18.63), 81.67 (std: 22.23), respectively). In contrast to the results shown in 

figure 6, there is no statistically significant difference in the quality of communication values 

between the copies of complex and simple letters. Based on this observation, we can deduce 

that the errors due to noisy environmental conditions manifest themselves as random errors that 

affect each transmitted signal in a similar rate. On the other hand, the errors induced by the 

spatial distance between the communicating robots affect the transmission of complex signals 

in a high rate which make them harder to be learned. In other words, we observe that the errors 

due to rapid fading feature of the vocal channel introduce different levels of variations on the 

transmitted signals.  

 

  

V. CONCLUSION 
 
In this research, we attempted to model the process of vocal communication in a group of robots who 

could transmit and receive a sequence of audio signals that mimic the letters of the Morse code. Vocal 

imitation on the robots was embodied in the sense that all the signal emission/reception activities were 

executed on-board of the robots. As the sensors and actuators of the robots are not perfect, we observed 

copying errors while signals were transmitted between the robots. Furthermore, we devised a quality of 

vocal communication metric that calculates the fidelity of learning through vocal imitation. It was shown 

that, due to copying errors between robots, the transmitted audio signals differentiated from their 

originals.  
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We tested the effects of two distinct factors, namely the spatial distance between the robots and the level 

of ambient noise in the environment. It was shown that both factors affected how accurately the letters 

of the Morse code could be transmitted between the robots. The errors due to noisy environmental 

conditions caused random variations on the transmitted signal while the errors due to spatial distance 

between the robots favored accurate transfer of simple signals compared to complex signals. By using 

the embodied vocal imitation framework that is introduced in this paper, it should be possible to examine 

the adaptation of transferred audio signals during multiple cycles of iterated learning. In this way, we 

may be able to model the adaptive process during which a proto-language that can be vocally transmitted 

between robots gets better suited to the environmental factors, so that as time passes, it can be transmitted 

with higher accuracy. 
 

We tested our model on two robots in which one of them was declared as the speaker and the other was 

declared as the listener. With a larger group of robots in which multiple robots change roles and 

communicate at different locations of the environment, we can observe further adaptation of the proto-

language that is used by the robots. For this purpose, we plan to design more complex communication 

protocols that would allow us to examine the adaptation of a vocally transmitted proto-languages in a 

robot swarm. 
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