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ABSTRACT: In this paper, parallels of latitude and meridians of longitude in 𝑺ℂ
3 are identified via the 

special complex unitary matrices 𝑺𝑼ℂ(2). It is also obtained that the third homology group of complex 

2-sphere 𝑺ℂ
2 is equal to zero. 
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INTRODUCTION  

Unit real quaternions groups of 𝑺3 and unitary matrices 𝑺𝑼(2) are isomorphic (Chevalley, 1946). 

Therefore, parallels of latitude and meridians of longitude in  𝑺3 can be given by the elements of 𝑺𝑼(2). 

Moreover, special orthogonal matrices 𝑺𝑶(𝐼𝑅𝟑) correspond to 𝑺3. Also, 𝑺𝑶(𝐼𝑅𝟑) is isomorphic to 3-

dimensional Euclidean projective space 𝐼𝑅 𝑃𝟑. Third homology group of 𝑺2 equals to zero based on 

Hopf fibriation (Toth, 1998).  

In this paper, unit complexified quaternions 𝑺ℂ
3 are constructed by bicomplex numbers ℂ2. 

Additionally, parallels of latitude and meridians of longitude in 𝑺ℂ
3 are determined based on special 

complex unitary matrices 𝑺𝑼ℂ(2). Also, it is shown that special complex orthogonal matrices 𝑺𝑶(ℂ3) 

are isomorphic to 3-dimensional complex projective space ℂ 𝑃𝟑  using Hopf fibriation, it is revealed that 

third homology group of complex 2-sphere 𝑺ℂ
2 is zero.  

In particular, some known relations about the concepts, which are mentioned above, for the real 

quaternions are found by assuming quaternion imaginary components of complexified quaternions’ 

equal to zero. 

MATERIALS AND METHODS 

Real Quaternion Algebra 

Real quaternion algebra 𝓗 is an associative, non-commutative division ring with basis elements 

1, 𝒊, 𝒋, 𝒌 obeying the following multiplication rules (Hamilton, 1844): 

𝒊𝟐 = 𝒋𝟐 = 𝒌𝟐 = 𝒊𝒋𝒌 = −𝟏 and 𝒊𝒋 = −𝒋𝒊 = 𝒌,  𝒋𝒌 = −𝒌𝒋 = 𝒊, 𝒌𝒊 = −𝒊𝒌 = 𝒋. 

Real quaternions are classically shown in the hypercomplex number forms with three imaginary 

components. This is 𝑞 = 𝑞0 + 𝑞1𝒊 + 𝑞2𝒋 + 𝑞3𝒌 for a real quaternion 𝑞 in Cartesian form, where 

𝑞0, 𝑞1, 𝑞2, 𝑞3 are real numbers. If  𝑞0 = 0 then 𝑞 is regarded as pure real quaternion. Pure real quaternions 

form the 3-dimensional linear subspace Im𝓗 = {𝑞1𝒊 + 𝑞2𝒋 + 𝑞3𝒌, 𝑞1, 𝑞2, 𝑞3 ∈ 𝐼𝑅} of 𝓗. The 

conjugate of 𝑞 is 𝑞̅ = 𝑞0 − 𝑞1𝒊 − 𝑞2𝒋 − 𝑞3𝒌. For 𝑞 ∈ Im𝓗, 𝑞̅ is equal to 𝑞. 

A real quaternion 𝑞 = 𝑞0 + 𝑞1𝒊 + 𝑞2𝒋 + 𝑞3𝒌 can be given in different forms. Three of them are 

shown below: 

1) 𝑞 =  𝑆 (𝑞)  +  𝑽 (𝑞) where 𝑆 (𝑞) = 𝑞0 is the scalar part and 𝑽 (𝑞) = 𝑞1𝒊 + 𝑞2𝒋 + 𝑞3𝒌 is the 

vector part of 𝑞. In this form  𝑞̅ = 𝑆 (𝑞)  −  𝑽 (𝑞).  

2) 𝑞 = 𝑎 +  𝝁𝑏 where 𝑎 = 𝑞0, 𝝁 =
𝑞1𝒊+𝑞2𝒋 +𝑞3𝒌

√𝑞1
2+𝑞2

2+𝑞3
2
 , 𝑏 = √𝑞1

2 + 𝑞2
2 + 𝑞3

2 . Thus form is called the 

complex form of 𝑞, and 𝑞̅ = 𝑎 −  𝝁𝑏.  

3) 𝑞 = √𝑁𝑞 (𝑐𝑜𝑠𝜑 + 𝒒̂𝑠𝑖𝑛𝜑), where 𝑁𝑞 = ‖𝑞‖ = 𝑞0
2 + 𝑞1

2 + 𝑞2
2 + 𝑞3

2, 𝑐𝑜𝑠𝜑 = 𝑞0/√𝑁𝑞 , 

𝑠𝑖𝑛𝜑 = √𝑞1
2 + 𝑞2

2 + 𝑞3
2/√𝑁𝑞 , 𝒒̂ = (𝑞1𝒊 + 𝑞2𝒋 + 𝑞3𝒌)/√𝑞1

2 + 𝑞2
2 + 𝑞3

2. The from is 

called the polar form, and 𝑞̅ = √𝑁𝑞 (𝑐𝑜𝑠𝜑 − 𝒒̂𝑠𝑖𝑛𝜑).    

Summation of the real quaternions 𝑞 and 𝑝 is 𝑞 + 𝑝 =  (𝑆(𝑞)  +  𝑆(𝑝))  + (𝑽(𝑞)  +  𝑽 (𝑝)). 

Multiplication a real quaternion 𝑞 with a scalar 𝜆 is λ𝑞 =  λ𝑆 (𝑞)  +  λ𝑽(𝑞). Multiplication of real 

quaternions 𝑞 and 𝑝 is    

𝑞𝑝 =  𝑆(𝑞)𝑆(𝑝)  −   〈𝑽(𝑞), 𝑽(𝑝)〉  +  𝑆(𝑞)𝑽(𝑝)  +  𝑆(𝑝)𝑽(𝑞)  +  𝑽(𝑞) ⋀𝑽(𝑝), 

where 

〈𝑽(𝑞), 𝑽(𝑝)〉 = 𝑞1𝑝1 + 𝑞2𝑝2 + 𝑞3𝑝3, 

and 

𝑽(𝑞) ⋀𝑽(𝑝) = (𝑞2𝑝3 − 𝑞3𝑝2)𝒊 + (𝑞1𝑝3 − 𝑞3𝑝1)𝒋 + (𝑞1𝑝2 − 𝑞2𝑝1)𝒌. 
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Norm of 𝑞 is 𝑁𝑞 = ‖𝑞‖ = 𝑞𝑞̅  =  𝑞̅𝑞 = 𝑞0
2 + 𝑞1

2 + 𝑞2
2 + 𝑞3

2. If ‖𝑞‖ = 1, 𝑞 is called unit. 

Modulus of 𝑞 is |𝑞| = √∥ q ∥ . Multiplicative inverse of non-zero real quaternion is 𝑞−1 = 𝑞̅ /‖𝑞‖. 

Unit real 3-dimensional sphere 𝑺3 = {𝑞 ∈  𝓗: ∣ 𝑞 ∣ =  1} ⊂  𝓗  constitutes a group under 

quaternion multiplication. 

Complexified Quaternion Algebra  

A complexified quaternion is in the form 𝑄 = 𝑄0 + 𝑄1𝒊 + 𝑄2𝒋 + 𝑄3𝒌, where 𝒊, 𝒋, 𝒌  are exactly 

the same as in real quaternions’ obeying multiplication rules (𝒊, 𝒋, 𝒌 are mutually vertical unit vectors 

obeying the rules of multiplication 𝒊𝟐 = 𝒋𝟐 = 𝒌𝟐 = −𝟏 and 𝒊𝒋 = −𝒋𝒊 = 𝒌,  𝒋𝒌 = −𝒌𝒋 = 𝒊, 𝒌𝒊 = −𝒊𝒌 =

𝒋) and 𝑄0, 𝑄1, 𝑄2, 𝑄3 are complex numbers (Hamilton, 1853). 𝑄0, 𝑄1, 𝑄2 and 𝑄3  are in the form 𝑄0 =

Ɍ(𝑄0) + 𝑰 ɨ(𝑄0), 𝑄1 = Ɍ(𝑄1) + 𝑰 ɨ(𝑄1), 𝑄2 = Ɍ(𝑄2) + 𝑰 ɨ(𝑄2), 𝑄3 = Ɍ(𝑄3) + 𝑰 ɨ(𝑄3), where 𝑰 is the 

complex imaginary operator distinct from 𝒊, Ɍ( ) is the real part and ɨ( ) is the imaginary part of complex 

number. Pure complexified quaternions form the 3-dimensional linear subspace Im𝓗ℂ  = {𝑄1𝒊 + 𝑄2𝒋 +

𝑄3𝒌, 𝑄1, 𝑄2, 𝑄3 ∈  ℂ} of 𝓗ℂ spanned by {𝒊, 𝒋, 𝒌}. Conjugate of 𝑄 = 𝑄0 + 𝑄1𝒊 + 𝑄2𝒋 + 𝑄3𝒌 is  𝑄̅ = 𝑄0 −

𝑄1𝒊 − 𝑄2𝒋 − 𝑄3𝒌. If 𝑄 ∈ Im𝓗ℂ , 𝑄̅ is equal to –𝑄. 

Different forms can be used in order to represent a complexified quaternion (Tait, 1890; 

Bekar&Yaylı, 2013). Four forms are given below: 

 

1) 𝑄 = Ɍ(𝑄) + 𝑰 ɨ(𝑄) = (𝑎 + 𝝁𝑏) + (𝑐 + 𝒗𝑑)𝑰, where Ɍ(𝑄) = 𝑎 + 𝝁𝑏 and   ɨ(𝑄) = 𝑐 + 𝒗𝑑 are 

real quaternions; 𝜇, 𝘷 are unit pure real quaternions, 𝝁2 = 𝒗2 = 𝑰2 = −1 and 𝑎, 𝑏, 𝑐, 𝑑 ∈ 𝐼𝑅. 

Conjugate of 𝑄 is  𝑄̅ = Ɍ(𝑄)̅̅ ̅̅ ̅̅ ̅ + 𝑰ɨ(𝑄)̅̅ ̅̅ ̅̅ .  

2) 𝑄 = 𝐴 + 𝛅𝐵, where 𝐴 = 𝑄0,  𝜹 =
𝑄1𝒊+𝑄2𝒋 +𝑄3𝒌

√𝑄1
2+𝑄2

2+𝑄3
2 

 , 𝐵 = √𝑄1
2 + 𝑄2

2 + 𝑄3
2
. This form is called 

the complex form, and  𝑄̅ = 𝐴 − 𝛅𝐵. 

3) 𝑄 = 𝑆(𝑄) + 𝑽(𝑄), where 𝑆(𝑄) = 𝑄0 is the scalar part and 𝑽(𝑄) = 𝑄1𝒊 + 𝑄2𝒋 + 𝑄3𝒌 is vector 

part, and  𝑄̅ = 𝑆(𝑄) − 𝑽(𝑄). 

4) 𝑄 = √𝑁𝑄 (𝑐𝑜𝑠𝜑 + 𝑸̂𝑠𝑖𝑛𝜑), where 𝑁𝑄 = ‖𝑄‖ = 𝑄0
2 + 𝑄1

2 + 𝑄2
2 + 𝑄3

2
, 𝜑 ∈ ℂ ,  𝑐𝑜𝑠𝜑 =

𝑄0/√𝑁𝑄 , 𝑠𝑖𝑛𝜑 = √𝑄1
2 + 𝑄2

2 + 𝑄3
2/√𝑁𝑄  and 𝑸̂ =(𝑄1𝒊 + 𝑄2𝒋 + 𝑄3𝒌)/√𝑄1

2 + 𝑄2
2 + 𝑄3

2 . 

This form is called the polar form, and 𝑄̅ = √𝑁𝑄 (𝑐𝑜𝑠𝜑 − 𝑸̂𝑠𝑖𝑛𝜑) 

𝑆(𝑄) = 𝑎 + 𝑐𝑰 = 𝐴 =  𝑄0 = √𝑁𝑄 𝑐𝑜𝑠𝜑, 

𝑽(𝑄) = 𝝁𝑏 +  𝙫𝑑𝑰 = 𝜹𝐵 = 𝑸̂𝐵 = √𝑁𝑄 𝑸̂𝑠𝑖𝑛𝜑, 

where 𝐵 = √𝑄1
2 + 𝑄2

2 + 𝑄3
2 = √𝑁𝑄 𝑠𝑖𝑛𝜑, 𝜹 =  𝑸̂ =

𝑄1𝒊+𝑄2𝒋 +𝑄3𝒌

𝐵
  for 𝐵 ≠ 0. 

Summation of the complexified quaternions 𝑄 and 𝑃 is 𝑄 +  𝑃 =  (𝑆(𝑄)  +  𝑆(𝑃))  + (𝑽(𝑄)  +

 𝑽(𝑃)). Multiplication a complexified quaternion 𝑄 with a scalar 𝜆 is λ𝑄 =  λ𝑆(𝑄)  +  λ𝑽(𝑄). 

Multiplication of complexified quaternion 𝑄 and 𝑃  is    

𝑄𝑃 = 𝑆(𝑄)𝑆(𝑃) − 〈𝑽(𝑄), 𝑽(𝑃)〉 + 𝑆(𝑄)𝑽(𝑃) + 𝑆(𝑃)𝑽(𝑄) + 𝑽(𝑄)⋀𝑽(𝑃), 

Where 〈𝑽(𝑄), 𝑽(𝑃)〉 = 𝑄1𝑃1 + 𝑄2𝑃2 +  𝑄3𝑃3, 𝑽(𝑄)⋀𝑽(𝑃) = (𝑄2𝑃3 − 𝑄3𝑃2)𝒊 − (𝑄1𝑃3 −

𝑄3𝑃1)𝒋 + (𝑄1𝑃2 − 𝑄2𝑃1)𝒌. 
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 The norm of a complexified quaternion 𝑄 = 𝑄0 + 𝑄1𝒊 + 𝑄2𝒋 + 𝑄3𝒌  is 𝑁𝑄 = ‖𝑄‖ = 𝑄𝑄̅ =

𝑄̅𝑄 = 𝑄0
2 + 𝑄1

2 + 𝑄2
2 + 𝑄3

2 ∈ ℂ. If ‖𝑄‖ = 1, 𝑄 is a unit. |𝑄| = √∥ Q ∥ = √𝑁𝑄 . Multiplicative 

inverse of 𝑄 is 𝑄−1 = 𝑄̅ /‖𝑄‖. 

The inverse of a non-zero complexified quaternion  𝑄 = Ɍ(𝑄) + 𝑰 ɨ(𝑄) is defined only when 

‖Ɍ(𝑄)‖ ≠ ‖ɨ(𝑄)‖ (i.e. Ɍ(𝑄)Ɍ(𝑄)̅̅ ̅̅ ̅̅ ̅ ≠ ɨ(𝑄)ɨ(𝑄)̅̅ ̅̅ ̅̅  and Ɍ(𝑄)ɨ(𝑄)̅̅ ̅̅ ̅̅ ≠ ɨ(𝑄)Ɍ(𝑄)̅̅ ̅̅ ̅̅ ̅). Since each non-zero 

complexified quaternion has an inverse, it significantly differs from real quaternions, Unit complex 3-

dimensional sphere 𝑺ℂ
3 = {𝑄 ∈ Im𝓗ℂ ∶  |𝑄| = 1} ⊂ Im𝓗ℂ constitutes a group under quaternion 

multiplication. 

Any complexified quaternion 𝑄 = 𝑄0 + 𝑄1𝒊 + 𝑄2𝒋 + 𝑄3𝒌 can be written as 𝑄 = (𝑄0 + 𝑄1𝒊) +

(𝑄2 + 𝑄3𝒊)𝒋 = 𝑇 + 𝑆𝒋. Thus, the vector space 𝓗ℂ onto ℂ2 is 2- dimensional, where 𝑇 = 𝑄0 + 𝑄1𝒊, 𝑆 =

𝑄2 + 𝑄3𝒊 satisfying 𝐼𝑖 = 𝑖𝐼.  

Right multiplication by 𝑄 = 𝑇 + 𝑆𝒋 is equal to left multiplication by the matrix 

𝐀 = [𝑇 − 𝑆 

𝑆     𝑇
] 

If we take 𝑄 as unit (i.e. restricting complexified quaternion to unit complex 3-sphere 𝑺ℂ
3) we get 

‖𝑄‖ = ‖𝑆‖ + ‖𝑇‖ = 1, that means 𝐀 is a unique complex unitary matrix. These matrices are composed 

of the group of unique complex unitary 2×2 matrices 𝑺𝑼ℂ(2).  

𝜓: 𝑺ℂ
3 → 𝑺𝑼ℂ(2)   is one-to-one and onto not quite an isomorphism. However, it satisfies  

𝜓(𝑄𝑃) =  𝜓(𝑃)𝜓(𝑄) for 𝑃 ∈  𝑺ℂ
3   

RESULTS AND DISCUSSION 

Parallels of Latitude and Meridians of Longitude on 𝑺𝑼ℂ(𝟐)          

Corresponding 𝑺𝑼ℂ(2) to 𝑺ℂ
3 helps us to utilize spherical concepts on 𝑺𝑼ℂ(2). Let 𝑄 = 𝑄0 +

𝑄1𝒊 + 𝑄2𝒋 + 𝑄3𝒌 = (𝑄0 + 𝑄1𝒊) + (𝑄2 + 𝑄3𝒊)𝒋 = 𝑇 + 𝑆𝒋 be a complexified quaternion, then 

𝐀(𝑇, 𝑆) = [𝑇 − 𝑆 

𝑆     𝑇
] ,  |𝑇|2 + |𝑆|2 = 1, 

The characteristic polynomial for 𝐀(𝑇, 𝑆) is 

|𝐀(𝑇, 𝑆) − 𝑡𝐼| = (𝑇 − 𝑡)(𝑇̅ − 𝑡) + 𝑆𝑆̅ 

= 𝑡2 − (𝑇 + 𝑇)𝑡 + 1 

= 𝑡2 − 2Ɍ(𝑇)𝑡 + 1. 

As for fixed 𝑄0 ∈ [−1, +1], the Ɍ(𝑇) = 𝑄0 ∈ ℂ ranges from −1 to +1, we accept 

{𝐀(𝑇, 𝑆) ∶  Ɍ(𝑇) = 𝑄0,  𝑄0 ∈ ℂ} the parallel of latitude at 𝑄0. It is seen that when their characteristic 

polynomials are the same, two unique complex unitary matrices take place on the identical parallel of 

latitude. The latitude parallels that correspond to  𝑄0 = 1 and  𝑄0 = −1  are the sole-point sets {𝐼} and 

{− 𝐼}, corresponding, respectively, to north and south poles. For −1 < 𝑄0 < 1, the parallel of latitude 

at  𝑄0 is topologically a 2-complex sphere that sits in 𝑺ℂ
3. This is obvious by calculating       

|𝑇|2 + |𝑆|2 = 1, and   Ɍ(𝑇) = 𝑄0 

in complex coordinates and  geometrically as well, because the parallel of latitude at 𝑄0 is equivalent to 

the slice cut out from 𝑺ℂ
3 by the 3-dimensional complex space defined by Ɍ(𝑇) = 𝑄0 in ℂ2

2. Because 

Ɍ(𝑇) = 1
2⁄  trace 𝐀(𝑇, 𝑆), the equator 𝑄0 = 0 represent to traceless matrices. The longitude meridians 

are gigantic circles which go throughout the poles. One significant longitude meridian is given by the 

diagonal matrices in 𝑺𝑼ℂ(2). For a diagonal 𝐀(𝑇, 𝑆) we have 𝑄0 = 0, thus |𝑇|2 = 1. Letting 𝑇 = 𝑒𝒊𝜑, 
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where 𝒊 is the complex imaginary operator of bicomplex number T, a diagonal matrix can be shown as 

follows:           

[  𝑒𝒊𝜑      0
  0      𝑒−𝒊𝜑] ∈ 𝑺𝑼ℂ(2), 𝜑 ∈ ℂ 

These longitude meridians cut the equator at  

[
  𝒊       0
  0      −𝒊 

] 

and its negative. 

 

Remark. The conjugacy element of 𝐀 ∈ 𝑺𝑼ℂ(2) is the set {𝑪𝐀𝐂−1 ∶  𝐂 ∈ 𝑺𝑼ℂ(2)}.  

Because 𝑇𝑟(𝑪𝐀𝐂−1) = 𝑇𝑟𝐀, a parallel of latitude contains conjugacy component. It is easy to show that 

the opposite is saund as well, hence the parallels of latitude are absolutely the conjugacy elements of 

matrices in 𝑺𝑼ℂ(2).  

The depiction of 𝑺𝑼ℂ(2) = 𝑺ℂ
3 according to the parallels of latitude does not offer new things 

concerning the geometry of 𝑺ℂ
3. Therefore, the identical geometric picture is also sound in the which has 

lower number of dimension of 𝑺ℂ
2. 

Complex-Clifford Tori 

The unit complex 3-sphere 𝑺ℂ
3 can be parameterize by two bicomplex variables (𝑇, 𝑆) which satisfy 

|𝑇|2 + |𝑆|2 = 1. It should be noted that 𝑇 runs on the first factor and 𝑆 on the second one of ℂ2
2 = ℂ2 ×

ℂ2.  Let us take the function 

ℎ: 𝑺ℂ
3 →  ℂ,    ℎ(𝑇, 𝑆) = |𝑇|2 − |𝑆|2, (𝑇, 𝑆)  ∈ 𝑺ℂ

3. 

Since |𝑇|2 + |𝑆|2 = 1, we have  −1 ≤ ℎ ≤ 1. We aim to envision the level sets 

 𝐶𝑄0
= {(𝑇, 𝑆) ∈ 𝑺ℂ

3 ∶ ℎ(𝑇, 𝑆) = 𝑄0 }, −1 < 𝑄0 < 1. 

We have (𝑇, 𝑆) ∈ 𝐶𝑄0  if   |𝑇|2 − |𝑆|2 = 𝑄0, and since |𝑇|2 + |𝑆|2 = 1, we get and, since |𝑇|2 +

|𝑆|2 = 1, adding and substracting yields 

∣ 𝑇 ∣2 =  
1 + 𝑄0 

2
,   ∣ 𝑆 ∣2 =  

1 −  𝑄0

2
 . 

For 𝑄0 = 1. It is obtained |𝑇| = 1, 𝑆 = 0. 𝐶1 is the unit circle taking place in the first factor of  

ℂ2
2 = ℂ2 × ℂ2. Similar to this, 𝐶−1 is the unit circle taking place in the second factor of ℂ2

2 = ℂ2 × ℂ2. 

Especially, 𝐶1 and 𝐶−1 are vertical. When we assume  −1 < 𝑄0 < 1, we understand that the right-hand 

parts of the equations above are positive. Those parts are uncoupled, which means that the first refers to 

a circle about the origin with radius √(1 +  𝑄0) 2⁄  in the first factor of ℂ2
2 and the second refers to a 

resembling circle with √(1 − 𝑄0) 2⁄  radius in the second factor of ℂ2
2.  Consequently, 

𝐶𝑄0
 =  {(𝑇, 𝑆)   ∈  𝑺ℂ

2 ∶ ∣ 𝑇 ∣2 =  
1 + 𝑄0 

2
,   ∣ 𝑆 ∣2 =  

1 − 𝑄0 

2
}  

is the the complexified quaternion obtained the Cartesian product of two complex circles - a complex 

torus. Apart from 𝐶∓1, the 𝐶𝑄0
, −1 < 𝑄0 < 1 decompose 𝑺ℂ

3. Visually it can be interpretted as: Imagine 

ourselves in 𝑺ℂ
3 motion along the gigantic circle 𝐶−1 = {(0, 𝑒𝒊𝜑): 𝜑 ∈ ℂ}. The direction that we are 

moving is seen at each point. We realize that we are surrounded by a 3-dimensional complex space as 

we are in 𝑺ℂ
3. When we go around 𝐶−1 and drag the complex circle along, in addition to keeping it vertical 

to our path, it will sweep a complex-Clifford torus. If we increase the radius of the circle which we 

transport, we take fatter tori. At the other marginal value, which is 𝑄0 = 1, the tori decrease to 𝐶1.    

If the quaternion imaginary parts (i.e. ɨ(𝑄) for 𝑄 = Ɍ(𝑄) + 𝑰 ɨ(𝑄) ∈ 𝓗ℂ ) of unit complexified 

quaternions and unit complex numbers are assumed to be zero, we get 𝑺𝑼ℂ(2) = 𝑺3. So, 𝐶𝑄0
 is a torus 
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obtained by the the cartesian product of two circles. In this declaration, tori 𝐶𝑄0
 are called Clifford tori, 

where 𝑄0 ∈ [−1, 1] (Ata&Yaylı, 2009).  In the example given below, Flat torus in 𝑺3, will be given 

which is one of the most amazing surfaces in 4-dimensional space (Fig. 1).     

Example. The flat torus is formed by  

(𝑎, 𝑏) → (cos(𝑎 + 𝑏), sin(𝑎 + 𝑏), cos(𝑎 − 𝑏), sin(𝑎 − 𝑏), 

where 0 ≤ 𝑎 ≤ 2𝜋, 0 ≤ 𝑏 ≤ 2𝜋. Summing these four coordinates’ squares equals to 1, thus that the flat 

torus is entirely comprised in 𝑺3. This torus is coverlaid by circles, and projecting stereographically from 

the pole (0, 0, 0, 1) on the 3-sphere 𝑺3 shows that the image in 𝑺3 is a flat torus of revolution overlaid 

by circles and every circle goes around the torus once in each direction. Any two circles among  them 

are linked in that a disc limited by any of them is cut precisely once by another one (Hamilton, 1853). 

 If we remove the middle complex flat torus 𝐶0 from 𝑺ℂ
3, it is seen that 𝑺ℂ

3 is divided into the 

discrete union of two solid tori. Therefore, it is possible to note that the 𝑺ℂ
3 is got from two solid tori by 

pasting them together with their boundaries. 

 Imagine 𝑺ℂ
1 = {𝑒𝒊𝜑  ∶  𝜑 ∈ ℂ} ⊂  ℂ2 acting on 𝑺ℂ

3 by the 4-complex dimensiomal complex 

rotation 𝑒𝒊𝜑(𝑇, 𝑆) → (𝑒𝒊𝜑𝑇, 𝑒𝒊𝜑𝑆) (this refers to left complex quaternionic multiplication of unit 

complexified quaternion by 𝑒𝒊𝜑 ∈ 𝑺ℂ
1).  Each orbit represents a gigantic complex circle and each one is 

comprised in a Complex-Clifford tori. Actually, the orbit 

𝑺ℂ
1(𝑇0, 𝑆0) = {(𝑒𝒊𝜑𝑇0, 𝑒𝒊𝜑𝑆0):  φ ∈  ℂ } 

is the intersection of 𝑺ℂ
3 with the 2-complex dimensional linear subspaces in ℂ2

2  satisfying 𝑇𝑆0 − 𝑆𝑇0 =

0. As 

ℎ(𝑒𝒊𝜑𝑇, 𝑒𝒊𝜑𝑆) = |𝑒𝒊𝜑𝑇|
2

− |𝑒𝒊𝜑𝑆|
2
 

               = |𝑇|2 − |𝑆|2 

         = ℎ(𝑇, 𝑆), 

the second statement also follows. 

 

 
Figure.1. Flat torus 
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Theorem. The groups 𝑺ℂ
3 𝑺ℂ

1⁄  and 𝑺ℂ
3 are homeomorphic. 

Proof. The way to associate an orbit  𝑺ℂ
1(𝑇0, 𝑆0) = {(𝑒𝒊𝜑𝑇0, 𝑒𝒊𝜑𝑆0):  φ ∈  ℂ }, a unique point on 

𝑺ℂ
2 is to identify the projection mapping  𝑺ℂ

3 → 𝑺ℂ
3 𝑺ℂ

1⁄ , where |𝑇0|2 + |𝑆0|2 = 1. Hopf fibriation is a 

mapping 

𝐹: 𝑺ℂ
3 → 𝑺ℂ

2 

defined by   

𝐹(𝑇, 𝑆) = (|𝑇|2 − |𝑆|2), 2𝑇𝑆̅) ∈ ℂxℂ2 = ℂ3. 

 

Since 

 |𝐹(𝑇, 𝑆)|2 = (∣ 𝑇 ∣2 −  |𝑆|)2 + 4 ∣ 𝑇 ∣2∣ 𝑆 ∣2= (∣ 𝑇 ∣2  + ∣ 𝑆 ∣2)2 = 1 

if (𝑇, 𝑆) ∈ 𝑺ℂ
3. Secondly, 𝐹 is constant under the action of 𝑺ℂ

1 , because      

𝐹(𝑒𝒊𝜑𝑇, 𝑒𝒊𝜑𝑆) = (∣ 𝑒𝒊𝜑𝑇 ∣2  − ∣ 𝑒𝒊𝜑𝑆 ∣2, 2𝑒𝒊𝜑𝑆 ) 

= (∣ 𝑇 ∣2  − ∣ 𝑆 ∣2, 2𝑇𝑆̅ ) 

                                                          =𝐹(𝑇, 𝑆). 

 

Therefore, 𝐹 maps every orbit of 𝑺ℂ
1  in 𝑺ℂ

3 into a sole complex point. In order to reveal that 𝑺ℂ
3 𝑺ℂ

1⁄ = 𝑺ℂ
3 

, it is necessary to demonstrate the fact that the orbits represent the inverse images of complex points of 

𝑺ℂ
2. That means, we need to whenever 𝐹(𝑇1, 𝑆1) = 𝐹(𝑇2, 𝑆2), the points (𝑇1, 𝑆1) and (𝑇2, 𝑆2), are in the 

same orbit under 𝑺ℂ
1 . Since Hopf fibriation images which is translated into 

∣ 𝑇1 ∣2  − ∣ 𝑆 ∣2=∣ 𝑇2 ∣2  − ∣ 𝑆2 ∣2   and   𝑇1𝑆1 = 𝑇2𝑆2, 

the first equality shows that (𝑇1, 𝑆1) and (𝑇2, 𝑆2) are on the identical Complex-Clifford torus 𝐶𝑄0
. 

Therefore we get  

∣ 𝑇1 ∣2 = ∣ 𝑇 ∣2 =  
1 +  𝑄0 

2
,   ∣ 𝑆1 ∣2 =  ∣ 𝑆2 ∣2 =  

1 −  𝑄0 

2
 . 

Taking 𝑇2 = 𝑒𝒊𝜑𝑇1 and  𝑆2 = 𝑒𝒊𝛽𝑆1, we get 

𝑇1𝑆1 = 𝑒𝒊(𝜑−𝛽)𝑇1𝑆1 , 

Thus (excluding the trivial cases when 𝑇1 = 0 or 𝑆1 = 0,which might be handled separately) 

𝑒𝒊(𝜑−𝛽) = 1 

follows. Based on the periodicity feature of the complex exponential function, 𝜑, 𝛽 are the same. Thus, 

𝑆2 =  𝑒𝒊𝛽𝑆1. 

Looking at two orbits of the action of 𝑺ℂ
1  on 𝑺ℂ

3 (on the identical complex-Clifford torus),  reveals 

that they are “joined” in 𝑺ℂ
3. This shows that the Hopf fibriation 𝐹: 𝑺ℂ

3  → 𝑺ℂ
2  can not be distorted 

constantly throughout maps into a ceaseless map 𝑺ℂ
3  → 𝑺ℂ

2   which transmit 𝑺ℂ
3 to a sole complex point. 

That means that 𝐹 is homotopically nontrivial. 

CONCLUSION 

Spherical concepts like parallels of latitude and meridians of longitude on 𝑺𝑼ℂ(2) are pointed out 

by utilizing the one-to-one comparable segment of 𝑺ℂ
3 and 𝑺𝑼ℂ(2). Homology group of complex 2-

sphere 𝑺ℂ
2 is zero with respect to Hopf fibriation,  it is revealed that the third homology group 𝑺ℂ

2 also 

becomes zero when we use Hopf fibriation. Flat torus in 𝑺3 is given as an example for Complex-Clifford 

tori. To do this, quaternion imaginary parts taken of unit complexified quaternion and unit complex 

numbers are accepted as zero. 
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