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INTRODUCTION

For the last many years, numerical techniques have been effectively applied to solve non-linear
equations (see for details (Biazar and Amirteimoori, 2006 ; Babolian and Biazar, 2002) and references there
in ). One of the basic algorithms for solving nonlinear equations is the fact that it is a fixed point iteration
method. Fixed point theory becomes one of the most interesting branches in mathematics. Naturally, many
mathematical and real world problems are known to be formulated as fixed point problems, that is, in the
fixed point theory, for the solution of non-linear equation f(s) = 0, the equation is re-arranged as follows

Y(s) =s (1.2)
where Y(s) € C[a, b] forall s € [a,b] and |Y'(s)| < L < 1 forall s € (a,b).

A fixed point of the mapping Y satisfying the condition (1.1) is a points. Moreover, fixed point theory
has been effectively applied in various topics, including differential equation, integral equation, matrix
equation, convex minimization and split feasibility, as well as for finding zeros of contractive mappings.
Then, it is necessary to develop an iterative process which approximate the solution of these equations that
has a good rate of convergence. Many studies in the field of fixed point theory concerning the existence and
uniqueness of fixed points of single-valued contractions have been developed using basic iterative
algorithms, such as : Picard iteration, Krasnoselksii, Mann and Ishikawa iterative processes. Over the years
the interest regarding the speed of convergence of such iterations grew very fast. For example, many authors
considered numerous iteration processes and studied their rate of convergence, see for details (Abbas and
Nazir, 2014; Berinde, 2014; Fukhar-ud-din and Berinde, 2016; Chugh et al., 2015; Karakaya et al., 2013;
Karakaya and Dogan, 2014; Dogan and Karakaya, 2018; Karakaya et al., 2017; Phuengrattana and
Suantai, 2013). It is clear that the fixed point iteration methods have convergence from the first order.

MATERIALS AND METHODS

The aim of this study is to introduce a new third-order iteration method, derived from the Picard-Mann
fixed point iterative method, by adopting a technique given in details (Biazar and Amirteimoori, 2006) and
suggesting this iteration method to solve non-linear equations. This study is supported by some numerical
examples.

The Picard iteration process (Picard, 1890) is defined by

Gn+1 = Yqn n €N, (1.2)

where g, is an initial point.
In 2013, Khan (Khan, 2013) introduced Picard-Mann Hybrid iterative process as follows:
So € [a,b] is a initial point,
Sne1 = Y(wy) (1.3)
wy = (1 — ay)s, + a,Y(sy), (n €N),
where {an}n-1, {Bnln=1 € [0,1].
We establish a sequence {s,},ey for the solution of the nonlinear equation s* The iterative method
will converge to the root s*. It provides the following conditions
1) Y € CY[a,b], 2) |Y'(s)] < 1 forall s € [a,b], 3) Y(s) € [a,b] forall s €[a,b] (Isaacsonand
Keller, 1966).
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Sn+1—S"
(sn—s*)P
p and C are called order and the constant of convergence, respectively. By the Taylor expansion of the
Y(sy), the order of convergence of the sequence {s,}nen IS determined as follows:

= C. Then

Definition 1 Let {s,} ey converge to s*. If p € Z, and C € R* such that lim

n—,oo

Y’ Y v &)
Y6) = V() 4 12 (5= ) 4 o (5 = 5 4 5 — )
Taking into account (1. 1)and (1.2) we obtaln
II (9}
Sp+1 — SZY(S)(n_ )+ ()(Sn_ )2 Y](—I(S)( _S)k

Theorem 1 (Isaacson and Keller, 1966) Let Y(s) € CP[a, b]. We suppose that Y& (s) = 0 for k =
1,2,3,...,p—1 and Y®(s) # 0 , then the sequence {s,},en has a order of convergenge p.

2.1 Modified Third-Order Iterative Method
Consider the non-linear equation
f(s) =0. (1.4)
We suppose that s* is a simple zero of (1.4) and s, initial point sufficiently near to s*. In the fixed
point theory, for the solution of non-linear equation f(s) = 0, the equation is re-arranged as Y(s) = s.
Then
s*=Y(s" — sy + 50).
Expansion of s, by Taylor series, we have
s* — 50)2
5= Y(s0) + (57 — s (s) + 5
First order approximation is
s* =Y (so) + (s* —50)Y'(s0) (1.5)
which gives us Newton iteration method, that is,
« _ Y(s0)=s0Y'(s0)
S e ——————e
1—Y’(So)

Y (59) 4.

Algorithm 1. (Kang et al., 2013)
Sp is a initial point,
Y(sn) - SnY,(Sn)

T TG
Algorithm 2. (Ashiq et al., 2015)
Second order approximation is
s*=Y(sp) + (s* —50)Y'(sp) 4+ &)k Y”( 0)
by simplification
* __ Y(s0)=50Y’ (50) (s*=s0)? "
s = 1—Y,(So) 2(1—Y’(So)) (SO). (16)

By using the value of (s* —s,) in (1.5), we get
£ _ Y(s9) — 5oY'(s0) (Y(so) — 50)2
1- Y’(SO) 2(1 _ Y’(So))3

Y"(s0)-

Consequently, we obtain
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Sp is a initial point,

Y(sp)—=5nY' (5n) (Y(sn)=5n)? ~r11 r (17)
= Y Y
Sn+1 1—Y’(Sn) 2(1—Y,(Sn))3 (Sn); (sn) * 0

which has the convergence order at least 3. Inspired by the above iteration method, we have defined the
following third-order hybrid iteration method and proved that the order is 3.

Algorithm3.

(Sp initial point, Y'(s,) # 0

Y(Wn)_WnY,(Wn) (Y(Wn)_wn)z "
= Y
)7 1-Y' (wp) 2(1-Y' (wp))’ (Wn) (1.8)
. _ Y(sp)—snY' (sp) (Y(sp)—sn)? 11
W = (1-a)s, + a< veo T 20Y ) Y (Sn)>-

RESULTS AND DISCUSSION

Now, let us prove the following theorem which constitutes the main results.
Theorem 2 Let f:E € R - R and consider the equation (1.4) having simple root s* € E, where T:E c
R — R sufficiently smooth in the neighborhood of s*, then Algorithm 3 (1.8) is of the order of convergence
which is at least 3.
Proof. The iterative method (1.8) is taken into consideration rewritten as follows:

Y(Sn)_snyl(sn)i (Y(Sn)_xn)z 17
Y (1‘“)5”“‘( V6D 2= ) (S”)>

_ _ Y‘(Sn)_snyl(sn)i (Y(Sn)_sn)z "
¢ a)sn+a< 1-Y'(5q) TZ(l—Y'(Sn))gT (Sn)>>

Sn+1=

! Y‘n_nY,n Y-n_nz &4
xY (1_3)Sn+a< (51)—Ys’(sn)(s )+2((1(jy),(:n)))3Y (S)>>

/ Y(sn)—=snY'(sn Y(sn)=sn)? s
1-Y (1_a)S“+a< (51)—\(5’(511)(S )+2((1(:()r(ssn)))3Y Cn)

Hence K(s) defined as follows:
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_ Y(Sn)_snY,(sn). (Y(sn)_sn)z 17
<(1 a)sn+a< ) I2(1—Y’(sn))3y (sp)

>Y
Y(Sn)_snY,(sn). (Y(sn)_sn)z 17
<(1—a)sn+a< ) I2(1—Y’(sn))3y (Sn)>>)

|/Y
+ l\_

3

' 2(1—Y’(sn))3

" _ Y(Sn)_snyl(sn)l (Y(sn)_sn)z "
Y <(1 “”"”( VG 20 Gn) (S")>>'

Y()=sY'(s), (Y()=5)* s Y(©)=sY'(s), (Y()=5)* 1
Y((l—a)s+a( G '2(1—Y’(s))3Y (s)))—((l—a)sﬂz( G '2(1—Y’(s))3Y (s)))
' Y(s)-sY'(s), (Y(s)-5)% .

XY ((1—a)s+a< Y () I2(1—Y’(s))3Y (s)))

' Y(s)=sY'(s), (Y(s)—=s)? ..,
1-Y <(1—a)s+a< 1Y () .2(1_Y,(S))3Y (s)))

2| 1_yl<(1_a)sn+a<Y(521)__Y5;7€SY’)(sn) , (Y(sp)—sn)? Y (s) ))

K(s)=

2
—sy' )=5)2 1
Y((l—a)s+a YOSV ), M9 yrregy || [, Y(©)=sY'(s) | (X(©)=9)2 s
( 1-Y'(s) 2(1_Y,(S))3 / (1-a)s+a G T2(1—Y’(s))3y (s)

3
—_ovy/! —_q)2
Z(I_YI (1_a)s+a<Y(f)_;’\(fs)(S)+ =) 3Y”(S)> w

2(1—Y’(s)) /

" _ Y(s)—sY'(s) (Y(s)—s)? "
XY <(1 a)s + a( e + 2(1_Y,(S))3Y (x))).
By using K(s*) = s*, we have K(s) =s.

If the first derivative of the K(s) nonlinear equation is taken and K(s*) = s* put in K'(s) we

obtain
e N N 201, %
K (") = _S*IZ\([S,?S%_(I) (ves )—s(j_ilzz*Y))z(s )(1-a) +3 (_s*+y2(2;)_)yjr(sf)s)22(1—a)
4 (=s" YY" (5)(-1+a+Y (s)1-@)  (=s"+Y (")’ A-)Y""(s)
(1-Y'(s9)? 2(1-Y'(s9)°
Y (s)(-a) | S(IYEOND0-0) ey (s (a-a) | sV (s)(A-a) 0
- 1-Y'(s*) (1—\(’(5*))2 - 1-Y'(s*) 1-Y'(s)
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If the second derivative of the K(s) equation is taken and K(s*) = s* put in the operator K" (s), we
have
K7 (s7) = L1600 ) xY )20y (Y(s*)—s*Y’(s*))Y”gs*)Z(l—a)
1-Y'(s*) (1-Y'(s%) (1-Y'(s)
SHYED) Y ()3 —a) | (=YY (592 (1-a)(-1+a+Y' (s) (1-a))
(1-Y'(s9)° +6 (1-Y'(s9)"
Y”(s*)(—1+a+Y’(s*)(1—a))2 Ym0 (Y=Y (s))Y"" (s)(1-a)?
(1-Y'(s")° 1-Y'(s%) (1-Y'(s")
9( ST +Y(s)) Y (M) (1-a)2Y"" (s%) (—s*+Y(s*))(1—a)Y”’(s*)(—1+a+Y’(s*)(1—a))
2(1-Y'(s9)" (1-v'(s")’
sy sx0 | (Y(E)=sY (s))Y" (s)x0 (=s"+Y()) Y (592x0 | (=s"+Y(s))’Y"" (s)x0
1-Y'(s") (1-Y'(s%)) 2(1-Y'(s%)" 2(1-Y'(s%)°
(=s" YO (I () (A-a)? | (=5 +Y))Y P s a-a)?
(1-Y'(s"))° 2(1-Y'(s")’
= 0.
If the third derivative of the K(s) equation is taken and K(s*) = s* putin K'"'(s), we obtain
Y”(S*)Z(l a)3 s Y (s*)3(1-a)3 (Y(s*)—s*Y’(s*))Y”(s*)3(1—a)3
(1-Y'(s%)) (1-Y'(s")° (1-Y'(s9)*
(—s*+Y(s*))2Y”(s*)4(1—a)3 36 (—S*+Y(s*))Y"(S*)3(l—a)z(—1+a+Y’(s*)(1—a))
(1-Y'(s%))° (1-Y'(s)°
y"(s*)z(1—a)(—1+a+Y’(s*)(l—a))2 Y (s*)(1-a)3 s Y (s)(1-a)3Y"""(s")
(1-Y'(s9)° ATV (1-Y'(s")’
(Y=Y (sD)Y" (s)(1-a)>Y""" (s*) +36 (=s"+Y(s)*Y" (s)2(1-a)®Y""' (s7)
(1-Y'(s9)’° (1-Y'(s9)°
(—s +Y ()Y (s (A-a)2Y" (s* )( 1+a+Y'(s")(1-a)) 43 Y"'(s*)(l—a)(—1+a+Y'(s*)(1—a))2
(1-Y'(s")" (1-Y(s7)’
S HY(s)) Y (sM)2(1-a)?
2(1—\(’(5*))4

+d"

KIII(S )

+30

9(_

o YsHa-a)xo sy (s7)2(1-a)x0 (Y(s)=s"Y'(s))Y"" (s)2(1-a)x0
3a 1-Y'(s*) a (1—\(’(5*))2 +6a (1—Y’(s*))3
+184 (=s*+Y(s))*Y" (s* )3(1 a)x0 +9g (—S*+Y(S*))Y”(S*)3(—1+a:Y’(S*)(1—a))><O
(1 Y’(s*)) (1—Y’(s*))
sY"(s*)(1—a) X0 3 (Y(s™) =s*Y'(sD)Y"(sD(1 —a) X0
a
1-— Y'(S*) (1 _ Y,(S*))Z
o (—s + Y(s* ) Y (s)Y"(s*)(1—a)x0 s*(l —a)3Y® (s
2(1-Y'(s")" 1-Y'(s")
134 (=YY" (s)(- 1+a+Y'(s*)(1—a))(1—a)><0 i (5" +Y())Y" (53 (1-a)?
(1-Y'(s")° (1-Y'(s9)"
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YI’(S*)Z(—1+a+Y’(S*)(1—a))(1—a)2 (—s*+Y(s*))Y”(s*)Y”'(s*)(l—a)3
(1—Y,(S*))3 (1-Y’(S*))3
(Y(s")=5"Y'(s1))(1-a)3 Y@ (s") p (=s"+Y(s9)* (1-a)®Y" (sHY D (s")
T )
(=5"+Y(s)) (1-a)*(~1+a+Y'(s)(1-a) )Y (s") + 34 (=s"+Y(s) - YD (s")x0
(1-Y'(s9)’ 2(1-Y'(s")’

fye I T (o 9Y'(s?%  Y'"'(sH oY''(s")2 | Y5

as*Y'"'(s*) (

1-y/(sm)t YD (1-v'n)" YD

+3

a(Y(s*)—s*Y'(S*))Y”(S*)<

1-Y'(s*) + (1-Y'(s)°

QYII(S*)Z . Y’I’(S*)
(1-v')” 276D

9Y’,(S*)2 . YI’I(S*)
(1_Y:(S*))2 1-Y'(s%)

a(Y(S*)—S*)ZY”(S*)2< a(Y(s*)—s*)zY”’(s*)<

+

3
+ 2(1-Y'(s")*

gYII(x*)Z . Ylll(x*) )

(1—Y’(s*))2 1Y)

(Y(S*)—S*)Y”(S*) _a< 9Y”(S*)2 ) Y”’(S*) >+aY,(S*)< 9Y”(S*)2 | Y,”(S*)>

S )l Y6

2(1-Y'(sM)"

(1—a)3Y”’(x*)+3aY”(x*)(l—a)(

+ (1-Y'(s%))°

(Y(s)-s)2(1-a)* Y& (s _ ( a-a® )( oY (s)? Y”’<s*>) +
2(1-Y'(s9)° —\(a-v'9)° (1-Y'(s))*  1-Y'(s")
Thus, we obtain K(s*) =s*, K'(s*) =0, K"(s*) = 0 and

(1 _ a)3 9Y-H(S*)2 'Y'III(S*)
K" (s*) = _ 0.
) <(1 ~Y'(sM)"* a) ((1 ~Y'(sM)"* - Y’(s*)) g

Hence, it is concluded that Algorithm 3 has third-order convergence for the non-linear equations.

Now, let’s give some examples showing the advantages of Algorithm 3.

In the following examples, KNHM (Khan-Modified New Hybrid Method ), MNIM (Modified New
Iterative Method), NIM (New Iterative Method) and FPM (Fixed Point Method ) iteration methods are

compared.

Example 1 For initial guess s, = 1, we consider the equation f(s) = s> —3s—2 = 0. Then we have
Y(s) = (3s+2)3 =5, Y'(s) = (3s+ 2)"?/3 and Y"'(s) = 2(3s + 2)(%/3). The numerical solution of
this equation is 2.000000 for six decimal. The following tables and graphs show the accuracy of the result.

Table 1: Comparison the rate of convergence

Iteration KNHM MNIM NIM FPM
So 1.000000 1.000000 1.000000 1.000000
S1 1.999168 1.957965 2.078983 1.709976
Sy 2.000000 1.999999 2.000075 1.989436
Sg 2.000000 2.000000 2.000000 2.000000
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The following figures are graphical presentations of the above results:

Cormparison the rate of convergence  of teration methads by using the funetion fg=x-3x.2=0 ( gx)=(E213)=x).
2mF T T T T T

—— KNHM
—— MNIM
NiM

——FPM

Figure 1: The convergence rate comparison among KNHM, MNIM, NIM and FPM for the equation f(s) = s> —3s—2=10

The graphical represeniation that compares the diference between consecutive steps of the teration method for the equation KI]ZH]—SH—H(Q(I]ZB’H?){IG:
I T T I

—— KNHM
e il
N
. e

Jse(r 13- 5 (rl

om ......................... B S

0 : : : e

0 2 ] 5 g L 12
Itesatian n

Figure 2: Differences among successive steps of KNHM, MNIM, NIM and FPM for the equation f(s) =s3—3s—2=0

Example 2 For initial guess s = 0.1, we consider the equation f(x) = Ins +s. Then we have Y(s) =
e=) =5, Y'(s) = —e(™®) and Y"(s) = e(=%). The numerical solution of this equation is 0.567102 for 12
decimal. The following table and graphs show the accuracy of the result.

Table 2: Comparison the rate of convergence

Iteration KNHM MNIM NIM FPM
So 0.100000000000 0.100000000000 0.100000000000 0.100000000000
51 0.567102582345 0.564924580551 0.522522893773 0.904837418036
Sy 0.567143290410 0.567143290353 0.566778157786 0.404607661664
S3 0.567143290410 0.567143290410 0.567143266283 0.667238542771
S4 0.567143290410 0.567143290410 0.567143290410 0.513123591989
S49 0.567143290410 0.567143290410 0.567143290410 0.567143290410
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The following figures are graphical presentations of the above results:

Cornpanson the rate of comvergence of teration methads by using the funcion fixj=hue+:=0 |;t':)=e[-}]=<|

—— KNHM

Iteraion n

Figure 3: The convergence rate comparison among KNHM, MNIM, NIM and FPM for the equation f(s) =Ins+s =0

The graphical representation that compares the difierence between consecutive steps of the feration method for the equation fxFeh=l, (g(x):e(-x):x)

lin+13-z(n)|

Heration n

Figure 4: Differences among successive steps of KNHM, MNIM, NIM and FPM for the equation f(s) =Ins+s =10
Example 3 For initial guess s, = 2, we consider the equation f(s) = s? — 2s(1 + sin(s)) = 0. Then we
have Y(s) = 3 + 2sin(s) =s, Y'(s) = 2cos(s) and Y"'(s) = —2sin(s). The numerical solution of this

equation is 3.094383 for six decimal. The following table and graphs show the accuracy of the result.

Table 3: Comparison the rate of convergence

Iteration KNHM MNIM NIM FPM
So 2.000000 2.000000 2.000000 2.000000
S 2.904072 2.363969 3.538288 4.818595
Sy 3.094371 3.000281 3.077417 1.011269
S3 3.094383 3.094288 3.094389 4.695012
Sy 3.094383 3.094383 3.094383 1.000302
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The following figures are graphical presentations of the above results:

Cormpaison the rate of comsergence. of Reration methods by using the function f(x)=x2-2*x(sm(x))=ﬂ ORI+ sin(iFx)

! | | I I T I
35| r : 5 : B a1
5 5 : ; = i
GV S SO e e 30 [RSIURTH RN RPN RS R OO PN SR 8 N S0 SR oY R N &
1 : ; : —— R

33_ ...... ] . Jo A

32_ . . -
2iF P18 A PR VRV Y IV YRR RV S v -
. :

3 | | R [ A | | g (S R S S SR SR R T e -
294 . | _
phiJS R | R ST TR IR SR TN A S e e e R R R e S o -
TH g i 5 R P R RPN R0 e ) ) e
26 | | . | ‘ ...... -

0 5 0 1 ] B

eration n

Figure 5: The convergence rate comparison among KNHM, MNIM, NIM and FPM for the equation f(s) = s? —
2s(1 +sin(s)) =0

The graphical representation that compares the diférence between cansecutive steps o the teration method for the equation f(x)=x2-2*>:(sm(>:))=ﬂ (g3 snsr)
T -

e o

—— I
i

|-

I3 +12-x=m)]

Beration n

Figure 6: Differences among successive steps of KNHM, MNIM, NIM and FPM for the equation f(s)=s?—
2s(1+ssin(s)) =0

Example 4 For initial guess s, = 3, we consider the equation f(s) = s + 4s? — 10 = 0. Then we have
Y(s) = (10/(4 +s)M?D =5, Y'(s) = —(10/(4(4 + x)*)V? and Y"(s) = (10/(8(4 + 5)°))/2)
The numerical solution of this equation is 1.365230 for six decimal. The following table and graphs show
the accuracy of the result.
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Table 4: Comparison the rate of convergence

Iteration KNHM MNIM NIM FPM
So 3.000000 3.000000 3.000000 3.000000
51 1.363059 1.348173 1.337189 1.195229
Sy 1.365230 1.365228 1.365218 1.387387
S3 1.365230 1.365230 1.365230 1.362420
Sy 1.365230 1.365230 1.365230 1.365588
Sg 1.365230 1.365230 1.365230 1.365230

The following figures are graphical presentations of the above results:

Figure 7: The convergence rate comparison among KNHM, MNIM, NIM and FPM for the equation f(s) = s3 + 452 —10 =0

Figure 8: Differences among successive steps of KNHM, MNIM, NIM and FPM for the equation f(s)

Cormpaison the rate of convergence of feration methods by using the function f(x)=x3+4>:2-10=0 (g(x)=(10/(4+x))(1f2)=x)

! ‘ ! ‘ ! —— O
150 coood et .
—— it
i
—— P
145_ ]
o R -
=8
=
1BE 4
13k e
i ! | \
0 ; : 10 B
Iteration n

[ELGE BRI (]

The graphical epresertafion that compares the dfference between cansecutie steps ofthe teration method for the equafion f(x)=x3+tix2-10=ﬂ [yt U/(M))WZ) =)

—— M
Uil
r ——FP
- + + 4 t t t + ¢ +
\ \ \ \ \
I 2 [} B B 0 12
heration n

=s344s2-10=0
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Example 5 For initial guess s, = 0.1, we consider the equation f(s) = s> + 5s — 5 = 0. Then we have
Y(s) = ((5—5s)/5)=s, Y'(s) = (—3s?)/5 and Y"(s) = (—6s)/5. The numerical solution of this
equation is 0.86883002 for six decimal. The following table and graphs show the accuracy of the result.

Table 5: Comparison rate of convergence

Iteration KNHM MNIM NIM FPM
So 0.100000 0.100000 0.100000 0.100000
51 0.868244 0.946719 0.994433 0.999800
Sy 0.868830 0.868892 0.874489 0.800119
S3 0.868830 0.868830 0.868842 0.897554
Sy 0.868830 0.868830 0.868830 0.855386
S17 0.868830 0.868830 0.868830 0.868830

The following figures are graphical presentations of the above results:

Cornparison the rate of comerence of teration methods by using the function "[:'J=(3+€x:-54]‘ fgt‘<j={(5x5].“3]=x ]

—— KNHM
—— M
NI

——FPM

Iteration n

Figure 9: The convergence rate comparison among KNHM, MNIM, NIM and FPM for the equation f(s) =s® +5s—5=10

The graphical representation that compares the difference between consecutive steps of the iteration method for the equation f(x):xj-éxziiﬂ‘ (gbo= ((54{3)/5) =x)

I+ -3¢ (m)|

—— KNHM

—H— MM
Nkt

——FPM

Iteratian n

Figure 10: Differences among successive steps of KNHM, MNIM, NIM and FPM for the equation f(s) =s3>+5s—5=0

574



Kadri DOGAN 10(1): 563-575, 2020
A Hybrid Third-Order Iterative Process To Solve Nonlinear Equations

CONCLUSION

In this study, a new hybrid iterative method derived from the Picard-Mann fixed point iteration method
and the modified Newton method with the 3rd order convergence ratio were obtained. It was later shown
that this iteration method was faster than other iteration methods and had a convergence ratio of at least 3rd
order. Our results were supported by 5 examples. The results of these examples are given by the tables, the
rate convergence graphs and the derivative graphs showing the difference between consecutive terms.
Therefore, our results have improved the results for Algorithm1 (Kang et al., 2013) and Algorithm 2 (Ashiq
etal., 2015).
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