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Abstract
The main objective of the present paper is to define a subclass Qq(λ, µ, A, B) of analytic
functions by using subordination along with the newly defined q-analogue of Choi-Saigo-
Srivastava operator. Such results as coefficient estimates, integral representation, linear
combination, weighted and arithmetic means, and radius of starlikeness for this class are
derived.
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1. Introduction
Let E = {z ∈ C : |z| < 1} be the open unit disk and A be the class of all functions f

which are analytic in E and normalized by f(0) = 0 and f
′(0) = 1. Thus, each f ∈ A has

the Maclaurin’s series expansion of the form:

f(z) = z +
∞∑

n=2
anzn. (1.1)

For two functions f and g analytic in E, we say that f is subordinate to g, written by
f (z) ≺ g (z), if there exists an analytic function ω(z) with ω (0) = 0 and |ω(z)| < 1
such that f(z) = g (ω(z)). In particular, if g is univalent in E, then f (0) = g (0) and
f (E) ⊂ g (E) . For two functions f of the form (1.1) and g of the form

g(z) = z +
∞∑

n=2
bnzn
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that are analytic in E, we define the convolution of these functions by

(f ∗ g)(z) = z +
∞∑

k=2
anbnzn.

Many differential and integral operators can be written in terms of convolution; we refer to
[2–4, 6, 10, 19]. It is worth mentioning that the technique of convolution helps researchers
in further investigation of geometric properties of analytic functions.

Let S ⊂ A be the class of functions which are univalent in E. A function f ∈ A is in
the class S∗ (γ) of starlike function of order γ, if

ℜ
(

zf ′ (z)
f (z)

)
> γ (0 ≤ γ < 1).

We note that S∗ (0) = S∗, the familiar class of starlike functions. An analytic function h
with h (0) = 1 is said to be in the Janowski class P [A, B] , if and only if

h (z) ≺ 1 + Az

1 + Bz
(−1 ≤ B < A ≤ 1).

The class P [A, B] of Janowski functions was introduced by Janowski [15,24].
Recently, the study of q-analysis (q-calculus) has inspired the researchers due to its

applications in mathematics and other related areas. Jackson [13, 14] had defined the q-
analogue of derivative and integral operator as well as provided some of their applications.
Later, Aral and Gupta [8, 9] introduced the q-Baskakov-Durrmeyer operator by using q-
beta function, while the authors of [5, 7] studied the q-generalization of complex ope-
rators known as q-Picard and q-Gauss-Weierstrass singular integral operators. Recently,
Kanas and Raducanu [16] introduced the q-analogue of Ruscheweyh differential operator
by using the concept of convolution and studied some of its properties. Aldweby and
Darus [1], Mahmood and Sokol [18] studied some classes of analytic functions defined
by means of q-analogue of Ruscheweyh differential operator. Many q-differential and q-
integral operators can be written in terms of convolution, for details see [11,12,22,23,25].
The current paper aims to express a q-analogue of Choi-Saigo-Srivastava operator involving
convolution concepts. Besides, it also aims to give some interesting applications of this
operator. Here we will present the basic concept of q-calculus which was initiated by
Jackson [14] will help us in further study. Furthermore, such approach can be generalized
to domains in higher dimensions.

For 0 < q < 1, the q-derivative of a function f is defined by

∂qf(z) = f (qz) − f(z)
z (q − 1)

.

It can easily be seen that for n ∈ N := {1, 2, · · · } and z ∈ E,

∂q

{ ∞∑
n=1

anzn

}
=

∞∑
n=1

[n, q] anzn−1, (1.2)

where

[n, q] = 1 − qn

1 − q
= 1 +

n−1∑
l=1

ql, [0, q] = 0.

For any non-negative integer n, the q-number shift factorial is defined by

[n, q]! =
{

1 (n = 0),
[1, q] [2, q] [3, q] · · · [n, q] (n ∈ N).

Also the q-generalized Pochhammer symbol for x > 0 is given by

[x, q]n =
{

1 (n = 0),
[x, q][x + 1, q] · · · [x + n − 1, q] (n ∈ N), (1.3)
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and for x > 0, let q-gamma function be defined by

Γq (x + 1) = [x, q] Γq (t) and Γq (1) = 1.

Using the definition of q-derivative along with the idea of convolution, we now define the
q-Choi-Saigo-Srivastava operator as:

Iq
λ,µf(z) = f(z) ∗ Fq,λ+1,µ(z) (z ∈ E; λ > −1; µ > 0; f ∈ A),

where

Fq,λ+1,µ(z) = z +
∞∑

n=2

Γq(µ + n − 1)Γq(1 + λ)
Γq(µ)Γq(n + λ)

zn = z +
∞∑

n=2

[µ, q]n−1
[1 + λ, q]n−1

zn. (1.4)

Thus, we see that

Iq
λ,µf(z) = z +

∞∑
n=2

[µ, q]n−1
[1 + λ, q]n−1

anzn. (1.5)

Clearly,
Iq

0,2f(z) = z∂qf(z) and Iq
1,2f(z) = f(z).

From (1.5), we can easily get the identities

[λ + 1, q]Iq
λ,µf(z) = qλz∂q

(
Iq

λ+1,µf(z)
)

+ [λ, q]Iq
λ+1,µf(z), (1.6)

and
qλz∂q

(
Iq

λ,µf(z)
)

= [µ, q]Iq
λ,µ+1f(z) − ([µ − 1, q]) Iq

λ,µf(z). (1.7)

If q → 1, the relationships (1.6) and (1.7) imply that

z (Iλ+1f(z))
′

= (1 + λ) Iλ,µf(z) − λIλ+1,µf(z),

and
z (Iλ,µf(z))

′
= µIλ,µ+1f(z) − (µ − 1) Iλ+1,µf(z),

which are the well-known identities associated with Choi-Saigo-Srivastava operator. By
taking specific values of parameters, we obtain various known operators studied earlier in
the literature.

(1) For µ = 2, we obtain q-analogue of Noor integral operator studied in [27], which is
defined as:

Iq
λ,2f(z) = z +

∞∑
n=2

[n, q]!
[1 + λ, q]n−1

anzn.

(2) For µ = 2 and q → 1, we get the differential operator studied in [20, 21], which is
defined as:

Inf(z) = z +
∞∑

n=2

n!
(1 + λ)n−1

anzn.

(3) For µ = 2, λ = 1 − α, and q → 1, we obtain Owa-Srivastava operator studied in
[26], which is defined as:

I1−α,2f(z) = z +
∞∑

n=2

Γ(n + 1)Γ(2 − α)
Γ(n + 1 − α)

anzn.

In this paper, we aim to investigate the following subclass of analytic functions associ-
ated with the operator Iq

λ,µ.
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Definition 1.1. Let −1 ≤ B < A ≤ 1 and 0 < q < 1. The function f ∈ A is in the class
Qq (λ, µ, A, B) if it satisfies

z∂q

(
Iq

λ,µf(z)
)

Iq
λ,µf(z)

≺ 1 + Az

1 + Bz
.

Equivalently, a function f ∈ Qq (λ, µ, A, B) if and only if∣∣∣∣∣∣∣∣
z∂q

(
Iq

λ,µ
f(z)

)
Iq

λ,µ
f(z) − 1

A − B

(
z∂q

(
Iq

λ,µ
f(z)

)
Iq

λ,µ
f(z)

)
∣∣∣∣∣∣∣∣ < 1. (1.8)

We need the following lemma to prove one of our result.
Lemma 1.2. [17] Let −1 ≤ B2 ≤ B1 < A1 ≤ A2 ≤ 1. Then

1 + A1z

1 + B1z
≺ 1 + A2z

1 + B2z
.

Throughout this paper, we assume that λ > −1, µ > 0, 0 < q < 1 and −1 ≤ B < A ≤ 1,
unless otherwise stated. We also suppose that all coefficients an of f are real positive
numbers.

2. Main results
Theorem 2.1. Let f ∈ A and be of the form (1.1). Then f ∈ Qq (λ, µ, A, B) if and only
if

∞∑
n=2

{[n, q] (1 − B) − 1 + A} [µ, q]n−1
[1 + λ, q]n−1

an < A − B. (2.1)

Proof. Assume that (2.1) holds. To show that f ∈ Qq (λ, µ, A, B), we only need to prove
the inequality (1.8). For this, we consider∣∣∣∣∣∣∣∣

z∂q

(
Iq

λ,µ
f(z)

)
Iq

λ,µ
f(z) − 1

A − B

(
z∂q

(
Iq

λ,µ
f(z)

)
Iq

λ,µ
f(z)

)
∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣
∑∞

n=2([n, q] − 1) [µ,q]n−1
[1+λ,q]n−1

anzn

(A − B) z +
∑∞

n=2 {A − B [n, q]} [µ,q]n−1
[1+λ,q]n−1

anzn

∣∣∣∣∣∣
≤

∑∞
n=2([n, q] − 1) [µ,q]n−1

[1+λ,q]n−1
an

(A − B) −
∑∞

n=2 {A − B [n, q]} [µ,q]n−1
[1+λ,q]n−1

an

< 1,

where we have used (1.2), (1.5), and (2.1) and this completes the direct part.
Conversely, let f ∈ Qq (λ, µ, A, B) be of the form (1.1), then from (1.8) along with (1.5),

we have∣∣∣∣∣∣∣∣
z∂q

(
Iq

λ,µ
f(z)

)
Iq

λ,µ
f(z) − 1

A − B

(
z∂q

(
Iq

λ,µ
f(z)

)
Iq

λ,µ
f(z)

)
∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣
∑∞

n=2([n, q] − 1) [µ,q]n−1
[1+λ,q]n−1

anzn

(A − B) z +
∑∞

n=2 {A − B [n, q]} [µ,q]n−1
[1+λ,q]n−1

anzn

∣∣∣∣∣∣ < 1.

Since |ℜ(z)| ≤ |z|, we get

ℜ

 ∑∞
n=2([n, q] − 1) [µ,q]n−1

[1+λ,q]n−1
anzn

(A − B) +
∑∞

n=2 {A − B [n, q]} [µ,q]n−1
[1+λ,q]n−1

anzn

 < 1. (2.2)

Now, we choose values of z on the real axis such that
z∂q

(
Iq

λ,µf(z)
)

Iq
λ,µf(z)

is real. Upon clearing

the denominator in (2.2) and letting z → 1− through real values, we obtain the required
inequality (2.1). �
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Theorem 2.2. Let f ∈ Qq (λ, µ, A, B) . Then

Iq
λ,µf(z) = exp

(∫ z

0

1
t

(1 − Aϕ(t)
1 − Bϕ(t)

)
dq(t)

)
,

where |ϕ(z)| < 1.

Proof. Let f ∈ Qq (λ, µ, A, B) and setting

z∂qIq
λ,µf(z)

Iq
λ,µf(z)

= h(z)

with
h(z) ≺ 1 + Az

1 + Bz
,

equivalently, we can write ∣∣∣∣ h(z) − 1
A − Bh(z)

∣∣∣∣ < 1,

then we have
h(z) − 1

A − Bh(z)
= ϕ(z),

where |ϕ(z)| < 1. Thus, we can rewrite

∂q

(
Iq

λ,µf(z)
)

Iq
λ,µf(z)

= 1
z

(1 − Aϕ(t)
1 − Bϕ(t)

)
.

By simple computation along with integration, we obtain the required result. �

Theorem 2.3. Let fj ∈ Qq (λ, µ, A, B) and have the form

fj(z) = z +
∞∑

k=1
ak,jzk (j = 1, 2, 3, . . . , l).

Then F ∈ Qq (λ, µ, A, B), where

F (z) =
l∑

j=1
cjfj(z) with

l∑
j=1

cj = 1.

Proof. By the virtue of Theorem 2.1, one can write

∞∑
n=2

{[n, q] (1 − B) − 1 + A} [µ,q]n−1
[1+λ,q]n−1

A − B

 an,j < 1.

Therefore, we obtain

F (z) =
l∑

j=2
cj

(
z +

∞∑
n=2

an,jzn

)
= z +

l∑
j=2

∞∑
n=2

cjan,jzn = z +
∞∑

n=2

 l∑
j=2

cjan,j

 zn.

However,
∞∑

n=2

{[n, q] (1 − B) − 1 + A} [µ,q]n−1
[1+λ,q]n−1

A − B

 l∑
j=2

an.jcj


=

l∑
j=2


∞∑

n=2

{[n, q] (1 − B) − 1 + A} [µ,q]n−1
[1+λ,q]n−1

A − B
an.j

 cj ≤ 1,

then F ∈ Qq (λ, µ, A, B) . Hence the proof is completed. �
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Theorem 2.4. If f and g belong to Qq (λ, µ, A, B) , then their weighted mean hj (j ∈ N)
is also in Qq (λ, µ, A, B) , where hj is defined by

hj(z) = (1 − j) f(z) + (1 + j) g(z)
2

. (2.3)

Proof. From (2.3), we can write

hj(z) = z +
∞∑

n=2

{(1 − j) an + (1 + j) bn

2

}
zn.

To prove hj(z) ∈ Qq (λ, µ, A, B), we need to show that
∞∑

n=2

{[n, q] (1 − B) − 1 + A}
A − B

{(1 − j) an + (1 + j) bn

2

} [µ, q]n−1
[1 + λ, q]n−1

< 1.

For this, consider
∞∑

n=2

{[n, q] (1 − B) − 1 + A}
A − B

{(1 − j) an + (1 + j) bn

2

} [µ, q]n−1
[1 + λ, q]n−1

= (1 − j)
2

∞∑
n=2

{[n, q] (1 − B) − 1 + A}
A − B

[µ, q]n−1
[1 + λ, q]n−1

an

+(1 + j)
2

∞∑
n=2

{[n, q] (1 − B) − 1 + A}
A − B

[µ, q]n−1
[1 + λ, q]n−1

bn

<
(1 − j)

2
+ (1 + j)

2
= 1,

where we have used the inequality (2.1). Hence the result follows. �

Theorem 2.5. Let fj with j = 1, 2, ..., α (α ∈ N) belong to the class Qq (λ, µ, A, B). Then
the arithmetic mean h of fj given by

h(z) = 1
α

α∑
j=1

fj(z) (2.4)

also belongs to the class Qq (λ, µ, A, B).

Proof. From (2.4), we can write

h(z) = 1
α

α∑
j=1

(
z +

∞∑
n=2

an,jzn

)
= z +

∞∑
n=2

 1
α

α∑
j=1

an,j

 zn. (2.5)

Since fj ∈ Qq (λ, µ, A, B) , for every j = 1, 2, ..., α, by means of (2.5) and (2.1), we have

∞∑
n=2

{[n, q] (1 − B) − 1 + A} [µ, q]n−1
[1 + λ, q]n−1

 1
α

α∑
j=1

an,j


= 1

α

α∑
j=1

( ∞∑
n=2

{[n, q] (1 − B) − 1 + A} [µ, q]n−1
[1 + λ, q]n−1

an,j

)

≤ 1
α

α∑
j=1

(A − B) = A − B,

and this completes the proof. �
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Theorem 2.6. Let f ∈ Qq (λ, µ, A, B). Then f ∈ S∗ (γ) , for |z| < r1, where

r1 =

(1 − γ) {[n, q] (1 − B) − 1 + A} [µ,q]n−1
[1+λ,q]n−1

(n − γ) (A − B)


1

n−1

.

Proof. Let f ∈ Qq (λ, µ, A, B) . To prove f ∈ S∗ (γ) , we only need to show that∣∣∣∣∣∣∣
zf

′ (z)
f(z) − 1

zf ′ (z)
f(z) + 1 − 2γ

∣∣∣∣∣∣∣ < 1.

By using (1.1) along with some simple computations we have
∞∑

n=2

(
n − γ

1 − γ

)
|an| |z|n−1 < 1. (2.6)

Since f ∈ Qq (λ, µ, A, B) , from (2.1), we can easily obtain
∞∑

n=2

{[n, q] (1 − B) − 1 + A} [µ,q]n−1
[1+λ,q]n−1

A − B
|an| < 1. (2.7)

Now, the inequality (2.6) is true, if the following inequality
∞∑

n=2

(
n − γ

1 − γ

)
|an| |z|n−1 <

∞∑
n=2

{[n, q] (1 − B) − 1 + A} [µ,q]n−1
[1+λ,q]n−1

A − B
|an|

holds, which implies that

|z|n−1 <
(1 − γ) {[n, q] (1 − B) − 1 + A} [µ,q]n−1

[1+λ,q]n−1

(A − B) (n − γ)
,

and thus we get the required result. �
Theorem 2.7. Let −1 ≤ B2 ≤ B1 < A1 ≤ A2 ≤ 1 and Iq

λ+1,µf(z) ̸= 0 in E. If

([λ + 1, q]) Iq
λ,µf(z)

qλIq
λ+1,µf(z)

− [λ, q]
qλ

≺ 1 + A1z

1 + B1z
.

Then f ∈ Qq (λ + 1, µ, A2, B2) .

Proof. Since Iq
λ+1,µf(z) ̸= 0 in E, we define the function p(z) by

z∂q

(
Iq

λ+1,µf(z)
)

Iq
λ+1,µf(z)

= p(z). (2.8)

By virtue of (1.6), we obtain
([λ + 1, q]) Iq

λ,µf(z)
qλIq

λ+1,µf(z)
− [λ, q]

qλ
= p(z).

Therefore, from (2.8), we have

z∂q

(
Iq

λ+1,µf(z)
)

Iq
λ+1,µf(z)

= p(z) ≺ 1 + A1z

1 + B1z
,

by Lemma 1.2, we deduce that f ∈ Qq (λ + 1, µ, A2, B2) . �
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