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Abstract
In this paper we show that the system of difference equations
AYn—kTn—(kt1) 0% n—kYn—(k+1)
b2 (hgt) + CYn—t’ BYn—(ktt) + VTn—1
where n € Ny, k and [ are positive integers, the parameters a, b, ¢, d, «a, (3, 7y, § are real
numbers and the initial values z_;, y_;, j = 1,k + [, are real numbers, can be solved
in the closed form. We also determine the asymptotic behavior of solutions for the case

! =1 and describe the forbidden set of the initial values using the obtained formulas. Our
obtained results significantly extend and develop some recent results in the literature.

Tpn = QYn—k + Yn = QTp_ +
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1. Introduction and preliminaries

For the past two decades there has been an intense interest in nomnlinear difference
equations, see [2,5-7,18,36,37,40,42,44]. In the meantime, the two-dimensional or three-
dimensional systems of these equations have become the center of interest of researchers.
See, for example, [9,16,17,22,25,34,38,43,45,46,48]. Theoretically, it is very important
to characterize the behavior of the solutions of these equations and systems. Although
many methods are proposed by researchers, the most basic method to do this is to find a
closed formula of the solution of the equation or system and analyze it. In [21], McGrath
and Teixeira studied the equation

aTp—1 + bxy,

=, n e N, 1.1
Tt = gt 1€ No (1.1)
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where the parameters a, b, ¢, d, and the initial values are real numbers. The authors solved
Eq. (1.1) and investigated the existence and behavior of the solution of Eq. (1.1) by using
some known results. In [39], Tollu et al. considered the following difference equations

0T — kT (ktl)
BTr— (k1) + VT

Ty = QTp_k + , n € Ny, (1.2)
where k and [ are fixed natural numbers, o, 3, v, § € R, and the initial values z_;,
i = 1,k +1, are real numbers. The authors showed that Eq. (1.2) is solvable in closed
form and presented formulas for the solutions. They also studied the long-term behavior
of the solutions of Eq. (1.2). Some particular cases of the extension of Eq. (1.2) have been
studied recently in papers [11-14,33]. More precisely, Eq. (1.2) in the case « = 0, § =
1,8 = 1,7 = £1 was studied in [11,12] and in [33] the case « = 0, § = 1 was studied,
while in [13,14] the case k =1, [ =1 and k = 2, | = 2 were studied. Eq. (1.1) and Eq.
(1.2) actually are particular cases of the higher-order difference equation

Tn :f( Tn—1 )’ nGNo, (13)
Tn—k Tn—k—I

where k and [ are fixed natural numbers. If the equation y, = f (yn—i), n € Ny, is a
solvable type, then Eq. (1.3) is solvable, too.

On the other hand, in [41], Eq. (1.2) in the case a = 0, § = 1,8 = +1,v = £+1 was
extended to the following two-dimensional system of difference equation

YnTn—1 TnYn—1

y Yn+1 = NES NQ, 14
TTp_1 £ Yn n—i— Tyn—1 £y ( )

Ln+1 =
with real nonzero initial values x_;,y_;, for ¢ = 0,1, such that some of their solutions
are associated to Fibonacci numbers and some of their solution formulas were proved by
induction. However, the formulas have not been confirmed by some theoretical explana-
tions.

In this paper, we give some theoretical explanations for the formulas of solutions of the
difference equations system given in (1.4). Moreover, we show that the following more
general difference equation system

0T n—kYn—(k+1)
BYn— (k1) + V01’

AYn—kTn—(kt1)
by (k1) + CYn—t

Tp = QYn—k + Yn = Qp—_k + n € Ny, (1.5)
where k and [ are positive integers, a, b, ¢, d, a, B3, 77, 6 € R, and the initial values z_j,
Yy—j, j = 1,k + 1, are real numbers, can be solved closed form. Also, we investigate some
particular cases of system (1.5) and give a study of the long-term behavior of its solutions
for the case [ = 1. Finally, we also give natural explanation for the formulas presented in
[41].

For more works on the topic, see, for example, [3,4,8,10, 23,24, 26-32,35,47] and the
references therein. Also, see the books [1,15,20].

Now, we should recall that the Fibonacci sequence {F,} 7, is defined by

Foio=F,1 + F,, n€Np, (16)

with the initial values Fy and Fj. Considering [19], the characteristic equation of (1.6)

can be clearly obtained as of the form z? — 2 — 1 = 0 having the roots o = # and
8= % Thus, the Binet’s Formula for Fibonacci sequence, F,, = a;:gn, can be thought

as a solution of Fibonacci sequence. Also, it is obtained to extend negatively subscripted
Fibonacci sequence as

Fpo=F p9—F n=(-1)""E, neN,. (1.7)
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2. Solvability of system (1.5)

In this section we show that the system (1.5) is solvable in closed form. First, we write
the system as follows:

ac—"=— + ab+d ay—=— +af + 6

In Tn— (k+1) Yn Yn—(k+1)

= Yn—1 ) = Tn—1 » 1 S NO
Yn—k c$n—(k+l) +b Tn—k ’Yyn—(kﬁ-l) + B
Putting
x
Uy = " oy = > 2.1)
Yn—k Tn—k
in the last expressions, we get the system of equations
acv,—; +ab+d aYUp—; +aff 40
Uy = n—l = YUn—1 B . n €Ny, (22)
CUpy +b YUp—1 + B

where the parameters a, b, ¢, d, «, 3, v, ¢, in the new variables u, and v,. By using the
first equation of (2.2) in its second equation and its second equation in its first equation,
we obtain the independent equations

(acay + aby + d7y) up_o; + acaff + acd + abf + df

n — ,n >, 2.3
" (cay + by) up—g1 + caff + cd + bf " (2:3)

and
o = (acay + cafs + ¢d) vy_9 + abary + ayd + afb + 5b, 0>l (2.4)
(yac + pe) vp—or + yab + yd + bS
If we apply the decomposition of indexes n — 2lm+i, form > —land i € {l,l+1,...,3]1—

1}, to (2.3) and (2.4), they become
(acary + aby + d) ug(m—1)+i + acaB + acd + abB + dfs

m4i — R € Ny, 2.5
fatmt (cay + by)ugim—1)+i + caf +cd + b3 e (2:3)
acary + caff + ¢d)Voym_1)1i + abay + ayd + afb + 0b
V2lm+i = ( ! i ) 2U(m—1)+ il 7 b , m € Np. (2.6)
(yac + Be)vaym—1)+i +vab+yd +bp
Let ug,? = u21m+i,v§fb) = V9im+i, for some m > —1 and i € {l,l +1,...,3l — 1}. Then
equations in (2.5)-(2.6) can be written as the following:
0 _ (acay + aby + dv) u%)l + acaf + acd + abf + dﬁ7 m e No, (2.7)
(cary +by) w4 + caff +cd +bp
o) = (acay + caS + ¢d) vffl)_l + abay + ayd + affb + 5b’ m e No, (2.8)

(yac + Bc) vﬁ,?,l + yab + vd + bfs
which is essentially in the form of Riccati difference equation. If we use the change of
variables

(@) _ aca’y+ab’y+d’y+ca5+c§+bﬁr B caf 4+ cd + bs

> -1 2.9
Uy cary T b’)/ m cary + b’y ) st ’ ( )
where cay + by # 0, in Eq. (2.7) and the change of variables
7(7? _ acory + aby + dy + caf + ¢d + bp - ’yab—i—’yd—i—bﬁ’ m> 1, (2.10)
~yac + Be ~yac + Be

where yac 4+ ¢ # 0, in Eq. (2.8), then (2.7) and (2.8) are transformed into the following
equations:

, m € Ny, (2.11)

y Sm = ]- -
m—1 Sm—1

rm=1—



Solvability of a system of higher order nonlinear difference equations 1569

_ cdvd
where acay+aby+dy+caf+cd+b5 # 0and R = (acoy Taby Ty rcaB Tes To3)%

The equations in (2.11) can be transformed into the following equations:

respectively.

Zm+1 = Zm — Rzm—1,m € Np, (2.12)
Em_i,_l = %\m — R/Z\m_l, m € No, (2.13)
by means of the changes of variables r,, = z;”% with the initial values z_; = 1 and
20 =r_1 and s, = Z’;“ with the initial values Z_; = 1 and Zy = s_1, respectively. (2.12)
and (2.13) are in the same form and have the characteristic equation A> — A + R = 0.
If A1 and Ao are the roots of the characteristic equations, namely A\ = 1EVI-4R V;*4R and
Ap = vk V;_4R, the general solutions of equations in (2.12) and (2.13) are
()\17’71—R))\71"—()\27"71—R))\§n if R 1
=X it R# 7,
“m = {(27’1+(27’11—1)$77,) (l)m $R— 1 m > _]-7 (214)
2 2 4
(/\1871—R))\§"—()\2871—R))\5" if R 1
~ =\ 1 # 1
Zm = {(251+(2811—1)727’L) (l)m it R— 1 m 2 —]_7 (215)
2 2 1

dy6 N . .
where R = (aca’y+ab'y+§'ylca6+c§+b5) . By substituting (2.14) into 7, = “2* and (2.15)

into s, = Z’Z”“, we have
Arr—1 =RV —Qor_ 1 —RATT 1
T = Ar—1=R)AT —(Aer 1 —R)AZ iER# 7, m > —1, (2.16)
2r_1+(2r_1—1)(m+1) if R =
dr_14+(4r_1—2)m 1 !
(A1s_1—R)A T —(Nas_1—R)ATTL . 1
S — (>\1571—R1)>\71n_(>\2571_R)>‘§n itk 7 + m > —1 (2 17)
m 25_14+(2s_1—1)(m+1) ifR=1 - ’ ‘

4s_1+(4s—1—2)m
respectively. Consequently, we get

A QB M —RAN T = (o Brul 0001 —RAN T o) if R# ]
u(l) . B ()quu( )+)\101 RA))\"ln—()\gBlu(ji-‘r)\QCl—RA)X%" B 4 (2 18)
m 4 (2Bl >1+201+(231u(“1+201 —AHm+1)\ ¢ FRol '
B 4Blu +4Cl (4Blu +4Cl 2A)m B 47
and
A QB MO RN - e By 1000 RS oy 41
00 — B2 (A1 B2 4+ A1 Ca—RA)AT — (A2 Bav') 4 X2 Co— RA)A B2 4 (2.19)
m N 232v( >+202+(2B2v(1) +2C—A)(m4+1) ey I .
B2\ 4By0") 44Co+(4Bov") +4Co—24)m B2 4
and so
AGNTGNT o yp
_ B1 G1>\'in—G2>\£n B1 4
U2im+i = (2.20)
A (Hi+H-A)(m+D)\ Gy ifR=1
B1 2H1+(2H172A)m B1 4
and
AKATT o
o Bs Kl)\ganQ)\gn B 4
Vot = (2.21)
A (Ht(Ha—A)m+1)) G jyp— 1
Ba 2H2+(2H2—2A)m BQ - 4

where A = acay+aby+dy+caf+co+bs, By = cay+by, C1 = caff+cd+bB3, By = yac+ e,
Cy = vab+ vd + b, G, = )\lBlﬁﬁ + MC1 — RA, Gy = )\2B xl L —I— XCh — RA,
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K = )\]_BQM +MCy— RA, Ky = )\QBQM + XCy — RA, H = 2B, Tical 2C1,

Ti—2l—k Tj—2l—k Yi—201—k

Hy = 232&% +2Cy for i € {I,1+1...,3l — 1}. From (2.1) we have that

Tn = UnYn—k = UnUn—kTn—2k, Yn = UnTp—k = UplUn—kYn—2k, N >k —1, (222)
Tokmri = Udkm-+ilY2kmti—k = U2kmtiV2km-+i—kT2k(m—1)+i> M € No, (2.23)
Yokm+i = V2km+iT2%km+i—k = V2km+iU2km-+i—kY2k(m—1)+i» M € No, (2.24)

from which it follows that
m

L2km+i = Ti—2k H U2kj+iV2kj+i—k> (2.25)
J=0
and
m
Y2km+i = Yi—2k H V2kj+iU2kj+i—k> (2.26)
Jj=0

for every m € Ngpand 7 = k — [,3k — [ — 1. Since every non-negative integer can be written
in the form Imy + j, where m; € Ny and j € {0,1,...,1 — 1}, we get that
Imy
Tokim+2kj+i = T2kjti—2k H Uks42kj+iV2kst2kjtri—k, M1 € No, (2.27)
s=0
Ilmy
Y2klm +2kj+i = Y2kj+i—2k H Vokst+2kj+iU2kst2kj+i—k, M1 € No, (2.28)
s=0
where j € {0,1,...,l—1}andi=k—1,3k—1— 1.

By the following theorem, we characterize the forbidden set of the initial values for the
system (1.5).

Theorem 2.1. The forbidden set of the initial values for system (1.5) is the union of two
sets

{7::1:_]-:0 ory_jzo,jzl,k}

and
ket
- _ b Ti_ _
UU (T —gogm(-2) o 28 —(gop) " ()
meNy j=1 Tj—k—1 c Yj—k—1
— —m
or (go )" (=2 ) or (Fog) " (K2 |,

Y_ _ bB+caB+cd
where X = (T _p—t, Tok—t415 -+ s T=1, Ykl Y—h—l41, - - -, Y—1), K1 = =200,
K, — — bBtabytdy

2= cB4acy

Proof. Let (xn,yn),~_i_; be a solution of the system (1.5). If z_; = 0 or y_; = 0 for
some j = 1,k, then z,, cannot be calculated after a term vy, no € Ng. For example,
if x_p = 0, then yp = 0, and so x; cannot be calculated. For the dual of this case, the
result is same, too. That is, if y_, = 0, then x¢g = 0, and so y; cannot be calculated. For
the other initial values, the case is not same. Because, if x_; = 0 or y_; = 0 for some
j=k+1,k+1, then x, #0, y, # 0 for n > 0. So, we incorporate the set

{?:x_j:Oory_jzo,j:l,ik}

in the forbidden set. Now, we suppose that x,, # 0 and y,, # 0. The solution (zy, yn)nszfl
of the system (1.5) is not defined if and only if bz, _ (1) +cyn—1 = 0 and BY,,— (p41) +7Tn—1 =
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0 which correspond to the statements %;’_l = —g and % = —g for n > —k — 1,
respectively. Therefore, by taking into account (2.1), we have
b
Vp—y = —— and uy,_; = —é (2.29)
c ¥

for n € Ny. Now, we again consider the system (2.2) and the functions

act+ab+d f(t)iofyt—kaﬂ—i—é
ct+b - yt+B

which correspond to the equations of (2.2). Hence, we can describe the solutions of (2.7)
and (2.8) as follows:

g(t) =

U1 = (Fo9)™ (1), (2.30)
o, = ((fog)™o f) (u), (2.31)
w1 = (g0 O (u), (2.32)
us, = (g0 f)" o g) (v11), (2.33)
for m > 0. By using (2.29) and the implicit forms (2.30)-(2.33), we have
W) = (fog)™ (—i) : (2.34)
(@ _ —m [ = b . —m bB + cafs + cd
u_yp = (g © f) <f ! (_C>) = (g © f) (_b’Y‘f‘COé’Y) R (2.35)
0 _ (o py-m(_ B
uzy=(gof) < 7) ; (2.36)
O — (fogy™ (g1 (=B = (fogm (2EF b+
W= oo (o7 (<5)) = e (-THEET). e
where
gy babtd L —fitaf+s
g (t)_ ct — ac ’ f (t)— ")/t—(l’}’

respectively. This means that if one of the conditions in (2.34)-(2.37) holds, then 2m — th
iteration or (2m + 1) — th iteration in (2.2) cannot be calculated. Consequently, desired
result follows from (2.1). Also, note that system associated with the functions f~! and

g s
—bW,_; +ab+d _ —Bwp_; +af + 9
= Wy =

Wy = = ; Wn , n € No,
CWp—| — ac YWp—| — QY
and is solvable. That is, the right hand sides of the equalities in (2.34)-(2.37) can be
obtained in the closed form. t

3. Some special cases of the system (1.5)

In this section we deal with some special cases of the system (1.5). We note that the
system (1.5) is trivial, if @ = d = 0 or @« = § = 0 and can be undefined, if b = ¢ = 0 or
B =~ =0. So, we consider definable cases.
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3.1. Case d=10
If d = 0 then the system (1.5) reduces to the following system

OTp—kYn—(k+1)

Tp = QYn—k; Yn = OTp—_k + , n € Np.
BYn—(k+1) + VTn—i
By using the changes of variables in (2.1) we get
)
= a, v, = 9T+ (3.1)
ya+ B

Putting (3.1) in (2.27) and (2.28), we get solutions of the system (1.5).

3.2. Case 6 =0

If § = 0 then the system (1.5) reduces to the following system

AYn—kTn—(k+1)
DTy (jtt) + CYn—t
This case is dual of previous case. By using the changes of variables in (2.1) we get

Uy = w, R (3.2)
ca+b

Putting (3.2) in (2.27) and (2.28), we get solutions of the system (1.5).

Tn = QYp—k + Yn = QTp_, 1 € Np.

3.3. Case d=0=0
If d = § = 0 then the system (1.5) reduces to the following linear system
Ty = AQYn—k, Yn = OTn_k, 1 € Ny,
which is one of simplest cases. By using the changes of variables in (2.1) we get
Up = a, Vp =« (3.3)

Putting (3.3) in (2.27) and (2.28), we get solutions of the system (1.5).

3.4. Case c=0
If ¢ = 0 then the system (1.5) reduces to the following system

ab+d OTn—kYn—(k+i
x":< )yn_k, Yn = QTp—k + nokdn (b)) e N

b BYn— (k1) + VTn—1
By using the changes of variables in (2.1) we get
ab+d afb + avyab + ayd + bd
Up = , Up = . (3.4)
b Bb+ vyab + vd

Putting (3.4) in (2.27) and (2.28), we get solutions of the system (1.5).

3.5. Case vy=10
If v = 0 then the system (1.5) reduces to the following system
AYn—kTp—(k+1) [(aB+d
DTy (kt) + CYn—t n = (B
By using the changes of variables in (2.1) we get
abB + acaf + acd + Bd af+9
tn = b3 + caf + cd = B
Putting (3.5) in (2.27) and (2.28), we get solutions of the system (1.5).

Tn = QYn—k + > Tn—k, 1 € No.

. (3.5)
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3.6. Case c=~v=0
If ¢ = v = 0 then the system (1.5) reduces to the following system

b+d 0
In = (a;_> Yn—ky Yn = <aﬁﬁ+> Tn—k, 1 € Np.

By using the changes of variables in (2.1) we get

" _ab+d , _aB+90
n — b 9 n — /B

Putting (3.6) in (2.27) and (2.28), we get solutions of the system (1.5).

3.7. Case a=c=0
If @ = ¢ = 0 then the system (1.5) reduces to the following system

0T pn—kYn—(k+1)
BYn—(k+1) + VTn—i

d
Tn = (b) Yn—ks Yn = QTp_f +

By using the changes of variables in (2.1) we get

d ; _ayd+apb+ b
b "t ~d + Bb

Putting (3.7) in (2.27) and (2.28), we get solutions of the system (1.5).

Up =

3.8. Case a=7=0
If @« = v = 0 then the system (1.5) reduces to the following system

AYn—kTn—(k+1)

Tn = QYn_k + s Yn = =Tpn_g, N € Np.
" " by (1) + CYn’ T B
By using the changes of variables in (2.1) we get
acd + abp + dp )
Up = Up = —.
n o6 + % y Un [

Putting (3.8) in (2.27) and (2.28), we get solutions of the system (1.5).

39. Casea=c=a=v7=0

If a = ¢ = a =~ =0 then the system (1.5) reduces to the following system

d 1)
Tn = ~Yn—ks Yn = 5Tn—k, N € Np.

b g
By using the changes of variables in (2.1), we get

Putting (3.9) in (2.27) and (2.28), we get solutions of the system (1.5).

, n € Np.

1573

(3.7)

(3.9)
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3.10. Casea=b=0
If a = b =0 then the system (1.5) reduces to the following system

AYn—kTn—(k+1) OTn—kYn—(k+1)
= g = ez g+
CYn—1 BYn—(k+1) + VLn—i
d
n—I

, n € Np. (3.10)

In

By using the changes of variables in (2.1), we get u, = -~ from the first equation of
(3.10) and so

(afc+ dc) vy—g + ayd

Uy = n>1 3.11
" Beewind T 1
from its second equation. Eq. (3.11) can be solved and its solution is given by
@Pml){”“mezA?“ _ Cio . 1
v C— Bio Pro1AT" = P1o2Ay" Bio if Rio # 4’ (3 12)
2lm+i Ay (Pio+(Pro—A10)(m+1)\  Cio if Rig = L ’
Bio \ 2Pio+(2P10—2A10)m Bio 10 = 7
devyd
where Rijg = m, Ay = afic+ dc+ vd, Byg = Bc and Cig = ~d, Py =
AjBroz 22" 4 AjCio — RioAio, Pio = 2Bioz252 + 2010 for j € {1,2}, i = [,31 - 1.
From the equation u,, = ﬁ‘:, we get
d
Uiy = ————. (3.13)
CU2m+i1 -1
for 2m > —iy and so
d
Ui ar iy = —— . (3.14)
CU(2n—1)+2r+iy
for every n € Ng, r =0,/ — 1 and 4; € {0,1}. From (3.14), we get
d _ 1 if 1
€ A ProiAT-Pio2ry oy it Rio 7& 4
o n—1_5 n—1
u2ln+2r+i1 f— . Big }:'101>\1 —Plolg)\Q Big f R o (315)
c m( Pio+(Plg—Ajg)n )_@ B =g
B10 \ 2P g+(2P1g—2410)(n—1) /) B10
deyd D
where Rig = m, Ay = afic + dc + vd, B1g = pc and Cyp = ~d, Ple =

AjBio=%=2 4 X\;Cyo — RigA10, Pio = 23109&;21 +2C for r = 0,1 -1, i1 € {0,1},

Ti—21—k 2l—k
j€{1,2},1=1,3l — 1. Putting (3.12) and (3.15) in (2.27) and (2.28), we get solutions of
the system (1.5).

3.11. Case a=3=0

This case is dual of the previous case and reduces the system (1.5) to the following
system

Ayn—kTp_ 0Ty —kYn—

Yn—kTp—(k+1) g = n—kYn (k—&-l)’ n € No. (3.16)
bxn—(k’—i—l) + CYn—i YTn—1

By using the changes of variables in (2.1), the system (3.16) is transformed into the system
(aby + d7) up—9; + acd

Tn = QYn—k +

Wy = ,n>1 v, = , n € Np. 3.17
" byun_9; + co o " YUn—1 ’ ( )
The first equation of the system (3.17) can be solved and its solution is given by
Ay PudA T —PuaA oy ; 1
w L BL P11 A" —P112A5? Bli if Ry # 4 (3 18)
m+i = Ay (Put(Pn-An)m+D)) _ Ou i py, - L '
B11 2P11+(2P11—2A11)m Bi 1= 42
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dycd

where R11 = A = aby +dy 4+ ¢d, Biy = by and Ci1 = ¢, Piij =

(abv+dv+c§)2 ’

;i Blly Y + A C11 — R11A11, P = 2311 Ti—2l —|— 2C1 for j € {1 2} 1 = l 30— 1.

From second equation of the system (3.17), We get

1)
Vomti; = ——————, (3.19)
YU2m—+iq—1
for 2m > —iq1 and so

)

Volnt2r4iy = ———————————, (3.20)

YU (2n—1)+2r+i1
for every n € Ny, r =0,/ — 1 and 4; € {0,1}. From (3.20), we get the formulas

%ﬂ P111A?71P112>\§ N if Ri1 # %7
V2In+2r+iy — 5 ou Plll)‘?ilfpulzkgfl B | 1 (3'21)
¥ @( Ply+(Pr—Ap)n ) 1 if Ri1 = I
B\ 2P +2P—241)(0-1) ) P11
where R11 = %7 Ay = aby +dy + ¢, By = by and Cyq = ¢d, ﬁnj _
AjB11 + A;jC11 — Ri1Ai, Py = 2By 52 4 20, for v = =0,l—1, i € {0,1},

y2lk Yi—21—k

j €{1,2},i=1,3l — 1. Putting (3.18) and (3.21) in (2.27) and (2.28), we get solutions of
the system (1.5).

3.12. Casea=b=a=0p=0

In this case, the system (1.5) reduces to the following system

AYp— Ty Ok Yp—
v, = Yn—kTn (k+l)’ U = n—kYn (k+l)7 n € N.

CYn—1 YTn—1

By using the changes of variables in (2.1), we get the 2[—order linear difference equations
dry 1)

Un = gun—ﬂ) Up = %vn—ﬂa n > l; (322)

after some simple operations. From which it follows that

d7>m+1 Ti—9| (65)’”“ Yi-2

Um+i = < y Vaim+i = | — , 3.23
e o Vi T \~d Ti—k—2l (3.23)

where m € Ng and i € {l,l 4+ 1,...,3] — 1}. Putting (3.23) in (2.27) and (2.28), we get
solutions of the system (1.5).
3.13. Case b=0

If b = 0, then the system (1.5) reduces to the following system

AYn—kTn—(k41) OTp—kYn—(k+1)

Ty = QYn_k + s Yn = Qp_j + , n € Np. (3.24)
CYn—1 BYn— (k1) + VTn—i
By applying (2.1) to (3.24), we get the system
1 +d _ )
Up = actn—t +a , Up = Oyunt +af + , n € Np. (3.25)
CUp_1 Yp—1 +
From (3.25), we get the equations
_ (acary + dy) up—o + acaf + acd + Bd
" CaYUp_9; + caff + ¢ ’ (3.26)

v, — (ayac + afic+ 6¢) vy_9 + ayd .

(yac + Be) vp—g + vd ’
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Since both equations in (3.26) are solvable, we get the formulas

A AT Re T o pp
) Biz  PisiAT"—Pi32AY’ Bis 13 4’ 3.97
Ulm~+i = ( . )
Az (P13+(P13—A13)(m+1)> C1s if Rya = 1
Bis \ 2P13+(2P13—2A13)m Bis 13 =%
and
Ais ﬁ131’\{n+1_ﬁ132/\;ﬂ+1 513 if R 1
) Biz  PisiAT'—Pi32A] Bis
V2lm+i = <~ . (3.28)
A ((Pist(Pis_As)(m+1) ) Cig if Ri3 = 1
Biz \ 2P13+(2P13—2A13)m Bis 4’
dycd _ _ _
where Ri3 = (acory iy +caB T Az = acary + d’y + cafl + cd, Big = cay, C13 = caff + cd,

Bis = ac+ fe, Ciy = vd, Pisj = A iBisy St v +X;C1s — RizAs, Pigj = A\;Bis P

AjCi3 — RizAus, Py = 2B135 22 + 2Chs, Py = 231%% L+ 2Cy3 for j € {1,2},

20—k

ie{l,l+1,...,3l —1}. Putting (3.27) and (3.28) in (2.27) and (2.28), we get solutions
of the system (1.5).

3.14. Case =0

This case is dual of the previous case. Hence, in this case, the system (1.5) is as follows:

AYn—kTn—(k+1) 0T n—kYn—(k-+1)

Tp = QYn_k + , Yn = Qp_) + —————2 1 € Np. (3.29)
by (k1) + CYn—i YT
By using (2.1), we get the system
_ b+d )
Up = GCUn—i + a0 + , Up = M, n € Ny, (3.30)
CUp_1 + b YUn—]

from (3.29). Therefore, from the system (3.30), we get

(acary + aby + dvy) up—9; + acd
(cary 4+ by) up—o9; + ¢

n =

i

3.31
o (acary + 6¢) vy —9r + abary + ayd + 6b 0> (3:31)
" yacv,_g; + yab + yd T
Since both equations of (3.31) are solvable, we get the formulas
@P141)\71n+1*13142)\;n+1 _ Cua . 1
wops — ) Bt PPy~ my 7 (3.32)
2lm—+i Ay <P14+(P14—A14)(m+1)> Cla i Ry — 1 .
Bis \ 2P14+(2P14—2A14)m By 4 =13
Ay PPl Gyl
Bia Pra1AT'—P14225" Big 14 4
V2lm—+i — N (333)
Ang P14+(P14 A1q)(m+1) \ Cia if Ryq = 1
Bia 2P14+(2P14 2A14)m Bia 4’
_ dycs _ _ _
where R4 = (acor Tabytdr T e Ay = acary + ab’y + dy + ¢d, Biy = cary + by, 014 = 05,

Bia = ~ac, Cq = yab +~d, Py = \j Bl4y g +XjC1s — Ria Ay, P14] =\ 31490 2+

Aj Cly — RiyAw, Py = 2B1y-=2 4 90y, Py = 21914 - -+ 20y for j € {1,2},

Yi—21—k

ie{l,l+1,...,3l —1}. Putting (3.32) and (3.33) in (2. 27) and (2.28), we get solutions
of the system (1.5).
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3.15. Case b==0
If b = 8 = 0 then the system (1.5) reduces to the following system

AYn—kTn—(k+1) OTn—kYn—(k+1)

Ty = QYp_k + y Yn = QTp_k + , n € Np.
CYn—1 YLp—1
By using the changes of variables in (2.1) we get
acvy,_; +d QYUp—] + 0
Uy = — T vn:rynil, n € No. (3.34)
CUp—| YUn—1
From the system (3.34) we get
acay + yd) Up—9; + acd ayac + 0¢) vy,_9 + ayd
, = Loy +7d) un—u P ) Jon-atond oy (3.35)
carylpn g + €6 yacv, 9 + vd
From (3.35) we get
Ays Prsi AT —(Prsa g ™! C . 1
u _ Bfis P1511>\’1"—P152>\§% a Bfi if Ris # 4 (3 36)
2im+i Ays ((Pis+(Pis—Ais)(m+1)\  Cis if Ris — 1 ’
Bis \ 2P15+(2P15—2A15)m Bis MAU5 =3
+1_ P m+1 -~
Ais P151)\ _ 1/:'\152)?” _Cis if Ri5 % %’
Bis P151>\ —P1517Y Bis
V2im+i = ~ (3'37>
Ags P15+(P15 As)(m+1) \ _ Cis if Rie = 1
= = 15— 1
Bis 2P15+(2P15 2A15)m Bis
dvyd o)
where R15 = mv A15 = acary + '}/d + C(S B15 = cavy, 015 = 65 Bl5 = ~ac,

Ci5 = vd, Pis; = A\jB1s -~

lek

+\;C15 — RisAis, Pisj = A\;Bus yl

Ti_—

Pi5 = 2315 Li2l —|-2015, P15 = 2315 Yi—al —1—2015 for j € {1 2} ) E {l [+1,.

-+ :C15 — RisAss,
31—1).

Putting (3. 36) and (3.37) in (2.27) and (2 28) we get solutions of the system (1 5).

3.16. Case abcd # 0

Here we deal with the case when abed # 0. Since in this case the system (1.5) can be
written in the form of

5$n—kyn—(k+l)
BYn—(k+1) + YZn—i

Yn—kTn—(k+1)

b ) n e N07
b1%p—(kt1) + C1Yn—i

Tp = AQYn—k + n = QLp_k +

with b = g and c; = 7, we may assume that d = 1. Hence we will consider the system

Yn—kTn—(k+1)
DT (ktt) + CYn—t

Tn = QYp—k +

OTn—kYn—(k-+1) (3.38)
Yn = QTp—j + ,» n € N,
BYn—(k+1) + VZn—i
from now on. Moreover, the system (3.38) can be written in the form of
T (aby + v + acary) % + abp + B+ acaf + acd
= Tp—21 ?
Yn—k (by + cary) U eea) + b8 + caff + b (5.3
Tn—1 :
o _ Vg (af +9) n >l

Tn—1 ) —
Tn—k ’waﬁ(k“) + ﬁ
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Remark 3.1. For abcafyé # 0 in the system (1.5), it is easy to see that there is the
degenerate case

acay + aby +dy acafS 4+ acd +abf +dpB | 0
cay + by cafl 4+ co + bps o

if and only if d = 0. Hence, we avoid the degenerate case via the assumption d # 0.

3.16.1. The case aby+~y+acay+bS+caf+cd = 0. If aby+vy+acay+bB+caf+cd =0,
then we get the system

— (b8 + caB + cb) —Tn=2_ 4 =SS +calted)tacyd

In _ Yn— (k+21) Y
Yn—k (by + can) =2 + b8 + caf + cd ’ (3.40)
Tn—1 '
vn _ Vg (@) n>l
Tno e

Yn—(k+1)

from (3.39). By using the change of variables (2.1), we get the system

— (b8 + caB + cb) up—or + —B(bﬂ+ca§+c5)+am§
Up = (by + cay) Up_o1 + bB + caB + cd ) -
YU + (B +9)
Vp = >,
YUn—1 + ﬂ

which can be written as

abeyd + ac’ayd + 2o + cobf + 262
(by + cary) up—o; + bB + caf + cd

aytn— + (af +0)

Vp = , n> 1.
" ’yun—l+/6

By applying the change of variables (by + cavy)u, + b8 + caff + ¢d = t, to the system
(3.42), we obtain

(by + cay)un + b8+ caf +cd =

)

(3.42)

_abeyd + ac’ayd + 2afBé + cdbp + 262
tn—21

—t g (3.43)

=cj, n>3l, j=1,4l,

where each ¢; is a constant which dependents to the initial values x_;,y_;,i = 1,k + L.
Consequently, by using (by + cay) un + b8 + caff + ¢d = t, and considering the system
(3.42), we get
tn — (b8 + caf + ¢d) oty + 6b
= , n Z _l, Up = )
by + cary thy—cd

Putting (3.44) in (2.27) and (2.28), we get solutions of the system (1.5).

n € Np. (3.44)

n

3.17. Case affvd # 0

Here we deal with the case when a3vd # 0. Since in this case the system (1.5) can be
written in the form of

dYn—kTn—(k+1)
0Ty (kt1) + CYn—1

Tn—kYn—(k+1)
BYn—(k+1) + T

Tp = QYn—k + Yn = QTp—k + , N E NO;
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with 81 = % and 71 = ¥, we may assume that 6 = 1. Hence we will consider the system

AYn—kTn—(k+1)
0Ty (ky1) + CYn—t’

Tpn = QYn—k +

(3.45)
Yn = OTp_f + n—kYn—(k+) n € Ny
- n— 9y Y
BYn— (k1) + VTn—i
from now on. Moreover, the system (3.45) can be written in the form of
Yn—1
’:UTL _ mn—(k-!—l) + (ab + d)
Ynk oo tO (3.46)
Un (afc+ c+ ayac) % + afb+ b+ ayab+ ayd . .
= , n>1.
Tn—k (Be + yac) —22=2L— 4 Bb + yab + vyd

L —(k+21)

Remark 3.2. For afvyabed # 0 in the system (1.5), it is easy to see that there is the
degenerate case

ayac + affc+dc  ayab+ ayd + afb+ b | 0
~vac + Be ~yab + ~vd + 5b o

if and only if § = 0. Hence, we avoid the degenerate case via the assumption § # 0.

3.17.1. The case afc+c+avyac+pb+vyab+vyd = 0. If afc+c+avyac+b+vyab+~d = 0,
then we get the system

2 4 (ab + d)

In T (k)
- Yn—1 )
Yn—k Comort) +b .
n— —b(Bb b d d .
B i ¢ Mt
g 7 n> ’
Tn—k (Bc + vyac) % + Bb+ vyab+ ~d
from (3.46). By using the change of variables (2.1), we get the system
acv,—; + (ab+d)
Up = 7
e (3.48)
— (Bb + yab + yd) v, + —2EHAebErd) fored .
UTL = : n Z l,
(Be+vac) vy + Bb+ vab + vd
which can be written as
w, = acv,—; + (ab+ d)’ w1
CUpy +b
afyed + ay?acd + y2abd + ydBb 4 y2d> (3.49)
(Be + yac) vy, + Bb + yab + vd = -

(Be + vac) vy—o; + Bb + yab + ~vd

Next, by applying the change of variables (B¢ 4 vac) v, + b+ yab + vd = t, to the
system (3.49), we obtain

L apByed + ay?acd + y?abd + vdBb + v2d?

n =

th—o
- " (3.50)
=tln—q

—d;, n>3l, j=1,4,

where each d; is a constant which dependents to the initial values x_;,y_;,¢ = 1,k + 1.
Consequently, by using (B¢ + vac) v, + b+ yab 4+ yd = t,, and considering the system
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(3.49), we get

tn1 +d tn — (Bb b+~d
wy = Tt F By, = o GO abrad) (3.51)
th_; — vd Be + ~yac

Putting (3.51) in (2.27) and (2.28), we get solutions of the system (1.5).

3.18. Case abcdafyd # 0

Here we deal with the case when abedafv0 # 0. Since in this case the system (1.5) can
be written in the form of

Yn—kTn—(k+1)
by (k41) + C2Un—i

Tn—kYn—(k+1)

, n € Ny,
B2Yn—(k+1) T V2Tn—1

Tp = QYn—k + y Yn = QTp_ +
with by = g, ca=7g, = % and v2 = ¥, we may assume that d =1 and § = 1. Hence we
will consider the system

Yn—kTn—(k+1)
DTy (k1) + CYn—t

Tn = QYp—k +

Ln—kYn—(k+1) (3.52)
Yn = OTp—j + » n € No,
BYn—(k+1) + VZn—i
from now on. Moreover, the system (3.52) can be written in the form of
T (abv—kaca’y—kv)yi’zﬁ—kabﬁ—kﬁ—kacaﬁ—kac o
= Y n - "
Yn—k (by + cay) yi’zﬁ + b8+ caf + ¢ 3.53)
Yn (afc+ ayac+ c) % + afb+ b+ ayab + ay '
= i ,n >l
Tk (Be + ~yac) % + Bb+ vab+ v

Remark 3.3. For abcaffy # 0 in the system (1.5), it is easy to see that there is the
degenerate case

acay + aby +dy acaff 4+ acd +abf +dp | 0
cay + by cafl + cd + bp o

‘ ayac+ afic+dc ayab+ ayd+ afb+db | 0
~yac + Be ~vab + vd + Bb o

if and only if d = 0 and 6 = 0. Hence, we avoid the degenerate case via the assumptions
d# 0 and d # 0.

3.18.1. The case aby+acay+bB8+caf+c+v=0. If aby+acay+bB+caf+c+~v =0,
then we get the system

_ (bﬁ + COé/B + C) Tn—21 + *ﬁ(b5+caﬁ+c)+acy

TIn _ Yn—(k+21) Y n>1
Yn—k (by + cay) —2=2— 4+ bB + caf + c T
Yn—(k+21) (3 54)
_ Yn—21 —b(Bb+yab+v)+aye :
UYn _ (ﬁb+7ab+7) T (kt20) c n>1
Tk (Be + vyac) —22=2— + Bb + vab + v T

L —(k+21)

from (3.53). By using the change of variables (2.1), we get the system

- (bﬁ + COé,B —+ c) Up—o] + —B(bB+caB+c)tacy
Uy = ~ sl
(by + cay) up—91 + b8 + caff + ¢ 5.55)
—(Bb b _ —b(Bb+vyab+v)+ayc
vy = (Bb+~yab + ) vp—21 + - ——

(Be + yac) vp—o1 + Bb + yab + v
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which can be written as

abey + ac?ary + cbfB + caf + c?

(by + cay) tn o + 0B + caf + ¢’ =
aBye+ ay?ac + yBb + y2ab + 42 0>
(Be+vac)vp_or+ Pb+yab+vy " T
Next, by applyinAg the change of variables (by + cay) un+bf+caf+c = ky, and (e + yac) v+
Bb + vab + v = ky, to the system (3.56), we obtain

abey + actay + b + 2af + 2

(by + cay) up + b8 + caf + c =

(3.56)

(Bc+ yac) vp, + Bb+ yab+ v =

kfn = = kn—4l =€ n > 31’ j = 174l’

kn—a (3.57)
~ 2 b+y2ab+A2 - '
kn:aﬁ'yc+a’y ac:l—ﬁ’ﬁ + v“ab + vy = kn_a =€, n>3l, j=1,4,

kn72l
where each e; and e; are constants which dependent to the initial values x_;,y_;, i =
1,k 4+ 1. Consequently, by using (by + cay) up + b8 + caff + ¢ = ky, and (Bc + vyac) v, +
Bb+ vyab+ v = En, we get
_Fn—(B+caBte) K — (8b + yab + )
N by + cary o Be + yac
Putting (3.58) in (2.27) and (2.28), we get solutions of the system (1.5).

> -l (3.58)

n

4. Long-term behavior of the system for abcafy # 0 when [ =1

In this section, we investigate the long-term behavior of the solutions of the system
(1.5) when [ = 1, abcafvy # 0. In this case, we get the system
Yn—kTn—k—1 Tn—kYn—k—1
Yn = QAlp_f +
bTn_p—1+ CYp-1 " BYn—k—1 + YTn-1

Ty = QYn_k + , n € Np. (4.1)

The solutions of the system (4.1) are given by

n D Nl)\lfj+7'+1 7N2)\§j+7'+1 7
Lor—2k+i H Ei Nl)\l{:j+r7N2)\l2cj+r Eq

J=0
kjtrt | A=E=L kj+r+ [ h=L 1
T 2 —To)\ 2 e D
(D L 22 -5 ifR<1

£ kj+r+ A1 kjtr+ A=1 E;

i\ —TaA,
n .
) D ( Zi+(Z1—-D)(kj+r+1)\  Fy
L2 —2k+i ]1:[0 (E1 (221+(2Z172D)(l€j+7‘) Ey

D (Ze4(Ze=D)(kj+r+| =541\ _ E if R =
8 (Ez <2Z2+(222—2D)(/€j+7‘+fi_kz_1j)) - Ez) =

L2kn+2r+i = (4'2)

and

T (I sy
Yor—2k+i Ey Tl)\llcj+r7T2)\12cj+r Eo

Jj=0
kjtrt|i=E=1 g kjprd|i=k=1) 1
N1 2 — N2\ 2 S
X (D Ball 222 L) ifR<

=

Er kjtre|i=k=1 kg ==L B

NiX; 2 T—Na),
n )
. D (Zo+(Z2—D)(kj+r+1)\ _ By
Yor—2k+i jI:IO (EQ (2ZQ+(22272D)(kj+r) E

D ( Zi+(Z1=D)(kj+r+| =5 +1) F if R =
% <El (221+(2212D)(kj+r+L2MJIJ>> B Ei) =

Yokn+2r+i = (4.3)

9

=

R — ey — —
where R = (acor Fab Tt caBierbB)®’ D = acay + aby +caf + b8+ c+ v, By = cay + by,

Fy = caff + ¢+ bB, Fy = yac + Be, Fo = vab+ v+ Bb, Z1 = 2E1£7;:+2F1, Ty =
2E27m?j;i2 +2Fy, Nj = \;Eq 11222 + A1 — RD and T := \jE» yi;iz + AjFy — RD for

Yi— Z;
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ie{l,2}, j€{1,2}, ke Nand r € Sy, where
& {E=1=L 4130 = 0,k — 1} if (k— 1) odd,
BUTVEEEL vy = TRy if (k— i) even.

)

Ti_2 7& ED*)\jFl Yi—2 #

D ey 1
Theorem 4.1. Assume that R = <1 s NEL  Tns

N (aca7+ab7+7+caﬂ+c+bﬁ)2
RD—\; F: D)\~ F D)~ F i = _7
7)\ng 2, Lj = élN 1, Mj = JEQ 2, Nj = )\jElij,kig + )\jFl — RD and Tj =
)\jE%yjﬁz + NjFo — RD fori € {1,2} and j € {1,2}. Then the following statements are
true.

) If [\] > |A2] and |L1M4| < 1, then x,, — 0 and y, — 0, as n — co.

) If [\1]| > |A2] and |L1Mq| > 1, then |x,| = 0o and |y,| — oo, as n — oo.

) If [A1| > |X2| and L1 My =1, then (xn)n>—k—1 and (Yn)n>—k—1 are convergent.

) If ‘)\1| > |>\2| and LiMy = —1, then (Z'ka—l—ZT—l—i)nENo and (kan+2r+i)n6Noz Jor
i €{1,2}, r € Sg; are convergent.

If M| < |A2| and |LaoMs| < 1, then xn, — 0 and y, — 0, as n — oo.

If IA\1] < |A2| and |LaoMs| > 1, then |z,| — oo and |y,| — oo, as n — oo.

If M| < |A2| and LoMy =1, then (xp)n>—k—1 and (Yn)n>—k—1 are convergent.

If M| < |Xo] and LoMsy = —1, then (Togp42r+i)neNy And (Y2knt2r+i)neNy, for
i €{1,2}, r € Sg; are convergent.

(
(

(e
(f

(a
(b
a

— — —

(8
(h
Proof. Suppose that

By N AP Nt By

i—k—1 i—k—1 (4.4)
§ (DTI)\k:errﬂ 5 j+1_T2)\12~m1+r+L 5 +1 F2)

1 Z 2
By knitr+ | SE=1| kni+r+| =E=1 Es

aﬁfl) =

( D Nyt _ kit F1>

and

pr) —

ni

D TyAymtr L o kel g
By myfmtr bt By
kn1+r+|_i_g_lj+l Fl) (45)

knatr+ | ==L | +1

) (D N ~ N

k44| k=l kny+r+| k=L B Ef
NAFAT L=y \Er L 1

Eq

for n1 € Ny, i € {1,2} and r € Si;. Then, if [Ai| > |2, we get

DM\ — F D)\ — F:
) e () 1— B 1 — I3
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for each ¢ € {1,2}. From (4.2), (4.3), and (4.6), the results follow from the assumptions in
(a) and (b). For each i € {1,2} and sufficiently large ni, (4.4) and (4.5) can be written as

kn1+7"+1)

kni+r

)kn1+r+LM2_1J+1>

Sﬁ
)
>
et
VR
—
|
53
/N ~~
xR

)km—&-r—i-v_kT_lj

it

F, D) DN Mg\ Fratr A\ 2k
:<—]>%1+ 2 (A — Aﬁ(f) +o<;> (4.7)
1 1

En Enq Ey Ny
F, D\ | DTy Ao : Ao\ ZEm1
« e L Aﬂ( > +o(A>
1

EQ E2 E2T1 /\1

)\2 ) kn1+r+L7i7};71J

DTy
=I{My+ L A A
1My + 1E2T1(1 2)<)\1

DN2 )\2>k‘n1+7‘ ()\2>2kn1
M Al — A — Q)
+ 1E1N1(1 2)(>\1 + "

and

kni+r+1
Ty (X
Br) B D Al( 7 () )

ni E2 + = E2 L T (ﬁ)kn1+r
A1

k 147 Li—k—lJ 1
N A v 2
Fl D )\1 (1 N TV? ()\7?) )

B By No (o \ it 5=
1- 52 (%)
F, D) DTy (Ag)’mm ()\2)2kn1
S A — A o2 4.8
( E2+ Es +E2T1( 1= %) A " A (4.8

1
F. D\ DN, <A2> <A2>2’m1
B AL — A o2
X( 5t E e, MM O\

= MLy + M,

i—k—1
DN, Ao\ Fratr+l=o—]
LN, (A1 —A2) (M)

DTQ )\2 kni+r )\2 2kny
L A A O— .
* "B Ty (A1 = o) <)\1> * (M)
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From (4.2), (4.3), (4.7), and (4.8), the results in (c¢) can be seen easily. For each i € {1,2}
and sufficiently large ni, (4.4) and (4.5) can be again written as

knqi+r+1
No (A
2 D_)“(_l M (Tf) )

e

ny - _F E N. A\ kni+r
L RE)
k"1+7‘+\_l k— 1J+1
A
R ()
Fy n D
Ey Es 1_D Ao kn1+r+|_i—’€T—1j
-7 (%)
F DX Ny (Ao — A Ao\ Fratr Ao\ 2kn1
— (L= (1 — 2(21)> <2> +0 <2> (4.9)
E E Ny M N N
" I n DX\ (1 T (Ao — )\1)) ()\Q)km-l—r-i-Li—g_lj o ()\2)21%
Ey Eo T A oW »
_ (1o M=) (MY”W T e—N) <M>km+r+v'§1
1M1 Ny A M T, ¥ N
A2 2kn1
O =
" (/\1)
and
kni+r+1
— — Ty (A2
p(r) — 7&4»2 /\1< 1+T1 ()\1) )
n1 Es FEs T (ﬁ)knl-ﬁ-r
T \ A1
kn1+r+Li7’;’1J+1
— — Ny (A2
X ﬂ+£ )\1( 1+N1(’\1) )
El El 1 N (Az)knl-s-r_A,_L#J
TN\ X
= <_E2+ FEs (1_T1 A ) ()\1> +0 " (410)

X _ﬂ‘FDiAl 1-— NQM & knatrt =5 Lo & 2kny
E] E1 N] )\1 )\1 )\1

QM é kni+r N2 M Ao kny+r+| 5=
T1 )\1 Nl )\1 )\1

AL
)\2 anl
+o(2)

From (4.2), (4.3), (4.9), and (4.10), the results in (d) can be seen easily. Proofs of the
(e)-(h) are not given in here since they could be obtained similar with proofs of the (a)-
(d). O
Theorem 4.2. Assume that R = (acoc'y—f—ab’y-i—';:j—caﬁ—&-c-i—bﬁ) = i, Tik—2 Yi—k—o # 0 for
i €{1,2}, D = acay+aby+caf+bf+cty, Z1 = 2B ;72 Ti=2 2A2F, Zy = 2E2$y7k 2P
Then the following statements are true.

(a) If|%\ <1, then x, = 0 and y, = 0, as n — oco.

ML, (1 —
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(b) If]w\ > 1, then |x,| — oo and |y,| — o0, as n — oo.

(c) If|w] 1 (mdw>0 then |z,| — oo and |y,| — oo, as

1E, B3 D(D—F—F%)
H
? D002F1 (D—2F5) 1 and L=2P)MD=2F) (4 0 and 0
(d) f‘—4E1E2 | =1 an SDD-F—fy) <0, then zn — and y, — 0, as
n — oo.
Proof. If R = 1 > = %, then we get A\ = Ay = % Let

(acary+aby+y+caf+c+bB)
) _ (DZ1+(Z1 — D)(kny +7r+1) _Fl>
m =\ Ey 271 + (221 — 2D)(kny +1) By
D Zy+ (Zo—D)(kny +r+ |51 1 1) By (411)
<E2 275 + (275 — 2D)(kny + 1 + | =5-1]) E2>

and

4 (DZ2+(Z2 — D)(kny +r+ +1) B Fg)
™ Ey 275+ (2Z2 — 2D)(kn1 + T) Ey
D Zi+(Zy = D)(kni +7+ | ==L +1) R (4.12)
<El 27, + (221 — 2D)(kny + 1 + | =E=1]) El)
for every n1 € No, ¢ € {1,2} and r € S ;. If at least one of the coefficients of n; is different
from 0, then we have

o (D=2R)(D=-2F)
n}gnoo ni = 4F1 FEy o n}ll)noo dnl (413)
for each ¢ € {1,2}. Otherwise, when yfleQ = D;bglFl and xf’:: = D~ 2F2 for i € {1,2},

we get the equality (4.13). From (4.13), the results follow from the assumptlons in (a)
and (b). Now we consider the other cases. For each i € {1,2} and sufficiently large ni, we
obtain

st (B ()
(&5 Grmo(w)
- (D;E?Fl 2Eﬁ:n1 0 (nll>) <D2_E22F2 + 2E2Dl<m1 0 (%))
_

2D(D—F,— F»)
—2F)(D — 2F) 1 4 D2R)D=2F) | g <1> (4.14)
- )

4E1 E2 ]f?’ll

1 1
=+ (1+ (D—2F)(D—2F3) p - +0 (ng))

2D(D—Fy—F3)

1 1
j:exp((D P ) (D QFZ)k;n +O(n%))

2D(D—F;—

From (4.14), by using the fact that >>"'_;(1/j1) — oo as n; — oo, then the statements
easily follow. O

5. Some other applications

Now, we will give theoretical explanations for the formulas of solutions of difference
equations systems given in [41] as some applications of the main results in Section 2.
First, we consider k =1 =1, a = o = 0. In this case the system (1.5) becomes

dYn—1Tn—2 _ 0Tn—1Yn—2

_OYnATnz o OTnollnm2 o N 5.1
brp—2 + CYn—1 n Byn—2 +yTn-1 0 (5:-1)

Ip —
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5.1. Case b=c=d=p=~v=0=1

We will derive the solution forms of the system (5.1) withb=c=d==~v=460 =1,
that is, the system

—1Tn— Ln— —
gy = Inm1tn=2 o, Inol¥n=2 o, (5.2)

y Yn
Tpn—2 + Yn—1 Yn—2 + Tp—1

given in [41], through analytical approach. Also, the general solutions of the system (5.2)
are expressed in terms of Fibonacci numbers. Now, to begin with, takingb=c=d =0 =
v=0=1in (2.12)-(2.13), we have

1
m+1 = Gm + Gm-1 = 0,m € Ny. (5.3)

The characteristic equation of (5.3) can be clearly obtained as of the form A% — X + % =0,
2~ 2
with the roots \; = 3“'6\@ = % (1+2\/g) = %2 and \y = 3= \f =3 (1 \f) = ﬁ2 On the

other hand, taking into account A =3,8B1 =By =1,C1 = C’2 = 2 and the Blnet Formula
for Fibonacci numbers, we can rewrite the equations in (2.18)-(2.19) as

Mg + 201 — DN — Dqui_g + 20 — DA
U2m—+i = 3( 12 i . 3)11 ( 2t 2 i{’) - 27 (54)
(Ao +2A1 — 3)AT — (A2ui—2 +2X2 — 3) AR
MU 4+ 221 — AL = (Aqu;_o + 209 — DAL
U2m+i:3( 1Vi—2 + 2\ 3)11 (A2vi—2 + 2X2 ;1),) 9 9, (5.5)
(AM1vimg +2A1 — 3)AT — (Aavi—g + 2X2 — 3)AY

for m € Ny, i € {1,2}.
Using the relations & = —1,a2 + 3 = 2,32 + a = 2 in (5.4)-(5.5) we get

(a2m+4 _ B\2m+4) ot (’\2m+6 Ezmﬂs) _ (an+3 _ Ezm+3) _ (a2m+2 _ Ezm+2)

-2

u = — = = =
Fmti (Q2m+2 — B2m+2)y, o 4 (Q2m+4 — B2m+d) — (G2m+1 — B2mt1l) _ (§2m — 32m)
_ Fomyati—2 + Fomy6 — Fomqs — Fomqa 9 (5.6)
Fomypoui—2 + Fomya — Fomg1 — Fom
_ Fompiui—o + Fomqo
Fomyoui—2 + Famys’
(a2m+4 _ EQm+4)Ui_2 + (a2m+6 _ E2m+6) _ (a2m+3 _ E2m+3) _ (a2m+2 _ §2m+2)
v ; = = = = = -2
2mti (a2m+2 _ /82m+2)vi_2 + (82m+4 _ ﬁ2m+4) _ (82m+1 _ ﬂ2m+l) _ (a2m _ BQm)
_ FPomiavico 4 Fomie — Fomis — Fomio 9 (5.7)

Foriovi—o + Fomya — Fomq1 — Fom
_ Pomt1vi—2 + Fomgo

b
Fomiovi—2 + Fomys

where Fy, is n-th Fibonacci number, u;_o = Y Vi = Yic2 2. From (2.1), (5.2), and (5.6),
we get that, for m € Ny and 7 € {1,2},

Fopp1u_1 + Fomyo

U2m~+1 =
" Fopqou_1 4+ Fopmys (5.8)
_ T_1Fomi1 + y—2Fomy2 )
T 1Fomi2 +y—2Fomys’
Fomtrug + Fomqo
U2m+2 =

Fomqoug + Fopmys (5.9)
_ Y—1Fomi2 +x_2Fomy3 )
Y1Fomis + 2 o0Fomia’
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Similarly, from (2.1), (5.2), and (5.7), we get that, for m € Ny and i € {1, 2},

Fopm1v_1 4+ Fomyo

Vo1 =
m Fopyov_1 4+ Fomys (5.10)

_ Yy-1Fomi1 + 2 2Fom 12
Y-1Fomio + 2 0Fomy3’

Fomi1vo + Fomyo

02m+2

2 1Fomi2 +Y—2Fomys

2 1Pz +y2Fomia’
By substituting the formulas in (5.8)-(5.11) into (2.27)-(2.28) and changing indexes, we
have the following results.

Theorem 5.1. Assume that (zy,yn)n>—2 s a well-defined solution of the system (5.2).
Then the following results are true.

T_1Y—2 . Tomy2 = Y122 ’
Y—2Fomys3 + - 1F2mi2 Y-1Fomys + 2 2Fomisa

m > —1,

To2m+1 =

Y_1T_2 - T_1Y_2
T 9Fomi3+y 1Fomsa’ T T 1 Fomys + y—2Fomya’
where {F,}>> ,={0,1,1,2,3,5,8,13,...}, .1 = 1.

m > —1,

Yom+1 =

5.2. Case b=—c=d=—-0=—y=0=1
We will derive the solution forms of the system (5.1) with b = —c=d= - = —y =
6 =1, that is, the system
Ty = Yn—1Tn—2 Yn = LTn—1Yn—2 . neNy, (512)
Ipn—2 — Yn—1 —Yn—2 — Tp—1
given in [41], through analytical approach. Also, the general solutions of the system (5.12)
are expressed in terms of Fibonacci numbers. Now, to begin with, taking b = —c =d =
—f=—y=0=1in (2.12)-(2.13), we have
1
gm+1 — Gm + §mel =0,m € Np. (5'13)
The characteristic equation of (5.13) can be clearly obtained as of the form A% — X\ + % =0
5 ~
with the roots Ay = 5% = L (15/5)" = &% and ), = 355 = 1 (15 f) — 2. On the
other hand, taking into account A = —3,B1 = —1, By = 1 ,C1 = (C9 = —2 and the Binet
Formula for Fibonacci numbers, then we can rewrite the equations in (2.18)-(2.19) as
(=Mti_g — 2\ + )Am“ (—A2uim — 220 + AP
(—/\1ui 9 — 2\ + ))\m — (—Azui_g 29 + ))\m

(AMvica — 201 + AT — (Aowvi_o — 200 + AT
()\1’[)1'_2 —2M1 + 3))\7171 — ()\QUZ‘_Q —2Xo + 3))\72”

U2m+i = 3 - 2, (5.14)

Vom+4i = — + 2, (515)

for m € Ny, i € {1,2}.
Using the relations & = —1,a2 + 5 = 2,32 + a = 2 in (5.14)-(5.15) we get
_(azm+4 _ B\2m+4)ui72 _ (a2m+6 _ B\2m+6) + (a2m+3 _ E2m+3) + (A2m+2 E2m+2)

U2m4i = — = — = — = -2
_(a2m+2 _ B2m+2)ui72 _ (a2m+4 _ 52m+4) + (a2m+1 _ B2m+l) (062"7‘ _ ﬂ?m)

—Fomtatti2 — Fomio + Fomas + Fomi2 (5.16)
—Fomioui—2 — Fomya + Fomt1 + Fom
—Fomi1tioo — Fomyo

b
—Fomioui—2 — Fomys
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(a2m+4 _ B\2m+4) ~2m—+6 B\2m+6) + (a2m+3 _ B\2m+3) + (a2m+2 _ B\QerZ)

Vi—2 — (Oé

(azm+2 — //8\2m+2),vi72 — (G2m+a — E2m+4) + (@2m+1 — //B\2m+1) + (@2m — §2m)

__Fomiavioz — Fomye + Fom+s + Fomo P (5.17)
Fomiovi—a — Fomya + Fomi1 + Fom

= Fomp1vi—2 + Fomqa

+2

Vo2m+4i = —

Fomt2vi—a — Famys '
where F,, is n-th Fibonacci number, u; o = =2 v;_o = “=2_ From (2.1), (5.12), and

Yi—3"’ Ti—3
(5.16), we get that, for m € Ny and i € {1,2},
_ —Fompau—1 — Fomqo
Ugm41 =
—Fomyou_1 — Fomys
(5.18)

_ =T 1Fmi1 —y-2Fomio

—2_1Fi0 — y—2Fomts’
= Fomiiug — Fomgo

U2m+2 =

—Fomqoug — Fopmys
5.19
_ Y—1Fomio — x_2Fop 43 (5.19)

Y-1Fomy3 — v _oFomya
Similarly, from (2.1), (5.12), and (5.17), we get that, for m € Ny and 7 € {1,2},

—Fomy1v-1 4+ Fomqo

Vom+1 =
Fomyov_1 — Fomys (5.20)
 —Yy—1Fomg1 + 22 Fomyo
- )
Y-1Fomyo2 —x oFomy3
_ —Fomi1v0 + Fomqo
Vom+42 =

Fomt2vo — Fomys

—x_1Fomi2 — y—2Fomy3 (5:21)
T 1Fomi3+y-oFomya

By substituting the formulas in (5.18)-(5.21) into (2.27)-(2.28) and changing indexes, we
have the following results.

Theorem 5.2. Assume that (Tn, Yn)n>—2 is a well-defined solution of the system (5.12).
Then the following results are true.

(=) 1y o (=)™ ly 2,y

y  L2m+2 = )
Y-2Fomis+x_1Fomyo —Y-1Fomi3 +x_2F 44

m > —1,

T2m+1 =

(=)™ ly_1zs Yomis = (=1)™mx_1y_2
T_9Fomi3 — y—1Fomi2’ m T_1Fomi3 + y—2Fomia’
where {F,}°°, ={0,1,1,2,3,5,8,13,...}, F_; = 1.

m > —1,

Yom+1 =

53. Case b=—c=d=p=v=0=1

We will derive the solution forms of the system (5.1) withb = —c=d=p=v=4§ =1,
that is, the system
Yn—1Tn—2 Tn—1Yn—2
Y%=
Tn—2 — Yn—1 Yn—2 + Tp—1
given in [41], through analytical approach. Also, the general solutions of the system (5.22)

are expressed in terms of Fibonacci numbers. Now, to begin with, taking b = —c=d =
f=v=09=11in (2.12)-(2.13), we have

Ty = , n € Np, (5.22)

Im+1 — Gm — gm—1 = 0,m € No. (5.23)
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The characteristic equation of (5.23) can be clearly obtained as of the form A2 — X —1 =10

with the roots \; = 1+27\/5 = @& and Ay = 172—\/5 = B On the other hand, taking into
account A = 1,81 = 1,By = —1,Cy = 0,03 = 2 and the Binet Formula for Fibonacci
numbers, we can rewrite the equations in (2.18)-(2.19) as for, m € Ny and i € {1, 2},

(Mui—o + 1))\71n+1 — (Aoui—o + 1))\31+1

, 5.24
(Mui—o + DAT — (Aaui—a + 1)AT? ( )

U2m+4i =

(=A1vip + 2 + DAT = (“dovin 4200 + DA
Vomi = — ,
e (=A1vi—2 + 201 + DAT — (=Avi—2 + 20 + 1)AT
for m € Ny, i € {1,2}.
Using the relations a3 = —1,a% + § = 2, 3% + @ = 2 in (5.24)-(5.25) we get

(am+2 _ Bm+2)ui_2 + (am+1 _ Bm+1)

(5.25)

u9 P = = =
m-—+1 (am—f—l _ 5m+1)ui_2 + (&m _ 6m) (526)
_ Bnpotio 4 Fin
Fotiui—o + 7
o (amt?— B2,y — (@ — Gt
Y2mti = (@Ml — Bmtlyy_, 4 (@mt3 — gmts)
_ Fmiovica = Fmia (5.27)

—Fpp1vi—o + Figs
—Fn_1vi—2 + Fp1

b
—Fpp1vi—o + Figs

where F), is n-th Fibonacci number, u; o = zj—:;, Vi_g = z:z From (2.1), (5.22) and

(5.26), we get that, for m € Ny and i € {1,2},
Friiou_1 + Fpp
Fppuq+ Fy
_ T 1 Fpyo +y—2Fni
1 Fpi1 +y-2Fn

U2m+1 =
(5.28)

Frypoup + Frng
Foauo + Fiy

_ —Yy—1Fmp 2 2Fm43

Yy Fmtz_oFnye

Similarly, from (2.1), (5.22), and (5.27), we get that, for m € Ny and ¢ € {1, 2},

U2m+2 =
(5.29)

—Fp—1v-1 + F

V2m+1 =

—Fpp1v-1 + Fings
5.30
_ —y_1Fm—1+2_2Fn41 (5-30)
—y_1Fpi1 + 2_9Fy43

—Fm—100 + Fint1
—Fm1vo + Fings
5.31
_ b+ y-oFn (5:31)
T 1 Fpi3+y—oFnio
By substituting the formulas in (5.28)-(5.31) into (2.27)-(2.28) and changing indexes, we
have the following results.

Vam+2 =
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Theorem 5.3. Assume that (T, Yn)n>—2 is a well-defined solution of the system (5.22).
Then the following results are true.

_——— , Tomt2 = yo1r ;
Y—2Fm + 2 1Fnt1 —Y—1Fm +x_2Fm42

Tom+1 = m > —1,
Y—-12-2 y T-1Y-2

9 2m—+2 — 9

‘T—QFm-‘rfﬂ - y—lFm+1 w—lFm-‘,—?) +y—2Fm+2

where {F,}>" 0 =1{0,1,1,2,3,5,8,13, ...}, F_; = 1.

m > —1

— )

Yom+1 =

54. Case b=c=d=p=—y=0=1

We will derive the solution forms of the system (5.1) withb=c=d==—-—y =0 =1,
that is, the system
Yn—1Tn—2 _ Tpn-1Yn-—2
Tn-2+Yn-1 °"  Yn-2— Tn_1
given in [41], through analytical approach. Also, the general solutions of the system (5.32)

are expressed in terms of Fibonacci numbers. Now, to begin with, takingb=c=d =0 =
—y =49 =11in (2.12)-(2.13), we have

, n € Np, (5.32)

Ty =

dm+1 = gm — gm-1 = 0,m € No. (5.33)
The characteristic equation of (5.33) can be clearly obtained as of the form A2 — A —1 =0

with the roots A\; = 1‘*'27‘/5 = a and Ay = 1_7\/5 = B On the other hand, taking into
account A = 1,B1 = —1,By = 1,C; = 2,C5 = 0 and the Binet Formula for Fibonacci
numbers, then we can rewrite the equations in (2.18)-(2.19) as

(=M1t + 201 + DAL — (“hguio 4 20 + AT
(—)\1u1‘—2 + 2\ + 1))\7171 — (—)\Qui_z 4+ 2X9 + 1))\7271
(Mvi_g + DA — (Ao + 1A

m+i = , 5.35
V2mt (Mvi—g + DAT — (Agvi—g + 1)AT ( )

+2, (5.34)

U2m+i = —

for m € Ny, i € {1,2}.
Using the relations a3 = —1,a2 4+ = 2,82 +a = 2 in (5.14)-(5.15) we get

(@72 = B )uiy — (@ - 5
U2m+i = — = — = +2
_(am—i—l _ 6m+1)ui_2 + (am+3 _ le—i—S)
_ Fmiovico = Fnia (5.36)

—Fppiui—o + Frg3
—Fp1ui—o + Fpqa

9
—Fmiiui—2 + Fiys

(am+2 . B\m+2)vi72 + (am—H _ Bm-H)

(am—i-l _ Bm+l)vi—2 + (am _ Em) (537)
_ Bny2vioz + Fini
Frv1vio + Fi

where F), is n-th Fibonacci number, u;_y = ~=2 v;_o = =2 From (2.1), (5.32), and

Vom+i =

Y

Yi—3 Zi—3
(5.36), we get that, for m € Ny and i € {1,2},
U 1= —Lm—-1U—1 + Fm+1
m+1 —
— 1+ F

—r_1Fp_1 +y—o2Fni
—&_1Fp1 + y—2Fni3’
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—F1ug + Finga

U2m+2 =

—Fnt1uo + Finys

Y-1Fmp1 + 1 2Fy

Y1 Fmas 3 _oF g0

Similarly, from (2.1), (5.32), and (5.37), we get that, for m € Ny and 7 € {1,2},
Fripov_1+ F

Fppva+ Fy
Y 1Fnpe + 1 oFn
Yy Fpi oy

(5.39)

V2m+1 =
(5.40)

Fngov0 + Fn1
Fon1vo + Fip
2 Fpp Hy—2Fng3
 —z Pty oFnge
By substituting the formulas in (5.38)-(5.41) into (2.27)-(2.28) and changing indexes, we
have the following results.

VIm+2 =
(5.41)

Theorem 5.4. Assume that (Tn, Yn)n>—2 is a well-defined solution of the system (5.32).
Then the following results are true.

Ty y Tomi2 = Yot :
Y—2Fmys — 21 Fmp1 Y—1Fmys +x2Fnio

m > —1,

Tom+1 =

Y-1T-2 Yomr2 = T_1Y—2
T oFm + Yy 1Fpe’ T —r_ 1 Fp +y—oFmyo’

where {F,}>" , =1{0,1,1,2,3,5,8,13, ...}, F_; = 1.

m > —1,

Yom+1 =
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