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Abstract
In this paper we introduce the concepts of CD-rings and CD-modules. Let R be a ring
and M be an R-module. We call R a CD-ring in case every cosingular R-module is
discrete, and M a CD-module if every M -cosingular R-module in σ[M ] is discrete. If R
is a ring such that the class of cosingular R-modules is closed under factor modules, then
it is proved that R is a CD-ring if and only if every cosingular R-module is semisimple.
The relations of CD-rings are investigated with V -rings, GV -rings, SC-rings, and rings
with all cosingular R-modules projective. If R is a semilocal ring, then it is shown that
R is right CD if and only if R is left SC with Soc(RR) essential in RR. Also, being a
V -ring and being a CD-ring coincide for local rings. Besides of these, we characterize
CD-modules with finite hollow dimension.
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1. Introduction
Throughout this paper, R is always an associative ring with identity and all modules are

unitary right R-modules, unless otherwise stated. Let M be an R-module. An R-module
N is generated by M or M -generated if there exists an epimorphism f : M (I) → N for
some index set I. An R-module N is said to be subgenerated by M if N is isomorphic
to a submodule of an M -generated module. We denote by σ[M ] the full subcategory of
R-modules whose objects are all R-modules subgenerated by M (see [18]). A submodule
L of M is essential in M , denoted by L ≤e M , if for every nonzero submodule K of M ,
L ∩ K ̸= 0. As a dual concept, a submodule N of a module M is called small in M ,
denoted by N ≪ M , if for every proper submodule L of M , N + L ̸= M . A module M is
called hollow if every proper submodule of M is small in M .
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Rad(M), Soc(M), and Z(M) denote the radical, the socle, and the singular submodule
of M , respectively, and J(R) stands for the Jacobson radical of a ring R. Let M be a
module. The notations N ≤ M and N ≤⊕ M will denote a submodule and a direct
summand of M , respectively.

Let M and N be two modules. Then N is said to be small (M -small) if there exists
a module L (L ∈ σ[M ]) such that N ≪ L (in σ[M ]). It is well-known that a module is
small (M -small) if and only if it is small in its injective envelope (in σ[M ]). A submodule
N of a module M lies above a direct summand K of M if N/K ≪ M/K. Let N and L
be submodules of M . N is called a supplement of L in M if it is minimal with respect to
the property M = N + L, equivalently, M = N + L and N ∩ L ≪ N . The module M
is called supplemented if for each submodule A of M , there exists a submodule B of M
such that M = A + B and A ∩ B ≪ B. A submodule N of M has a weak supplement
L in M if N + L = M and N ∩ L ≪ M , and M is called weakly supplemented if every
submodule N of M has a weak supplement. Any module M is called amply supplemented
if for any two submodules A and B with M = A + B, A contains a supplement of B in
M . Recall that M is called H-supplemented provided for every submodule N of M , there
exists a direct summand D of M such that N+D

N ≪ M
N and N+D

D ≪ M
D . Also M is called

⊕-supplemented in case for every N ≤ M , there exists a direct summand K of M such
that M = N + K and N ∩ K ≪ K, and in [17], M is called principally ⊕-supplemented
in case for every m ∈ M , there exists a direct summand K of M such that M = mR + K
and mR ∩ K ≪ K.

In [15], Talebi and Vanaja define ZM (N) as a dual of M -singular submodule as follows:
ZM (N) = Rej(N,MS) =

∩
{Kerf | f : N → S, S ∈ MS} =

∩
{U ≤ N | N/U ∈ MS}

where MS denotes the class of all M -small modules. They call N an M -cosingular (non-
M -cosingular) module if ZM (N) = 0 (ZM (N) = N). Clearly, every M -small module is M -
cosingular. We should note that cosingular and non-cosingular concepts mean R-cosingular
and non-R-cosingular. Let S′ and S denote the classes of left and right small modules
respectively. Recall from [15], Z(RR) = Rej(R, S′) =

∩
{Kerf | f : R → U, U ∈ S′} and

Z(RR) = Rej(R, S) =
∩

{Kerf | f : R → U, U ∈ S}. By [1, Corollary 8.23], Z(RR) and
Z(RR) are two-sided ideals of R. A ring R is said to be right (left) cosingular if Z(RR) = 0
(Z(RR) = 0).

In [6], Keskin and Tribak introduce and study modules M such that every M -cosingular
module in σ[M ] is projective in σ[M ]. They call such modules COSP . They investigate
some general properties of COSP -modules. COSP -modules are also characterized when
every injective module in σ[M ] is amply supplemented. Finally they show that a COSP -
module is Artinian if and only if every submodule has finite hollow dimension.

In [14], the present authors work on rings for which every (simple) cosingular module is
projective. They show that for a ring R, every simple cosingular R-module is projective
if and only if R is a GV (GCO) ring. They give some conditions for a ring R to have the
property that every cosingular R-module is projective. It is also shown for a right perfect
ring R under an assumption that every cosingular R-module is projective if and only if R
is a left and right Artinian serial ring with J(R)2 = 0.

It is known by [9, Theorem 2.3] that a ring R is right perfect if and only if every
quasi-projective R-module is discrete. Inspired by [6] and [14], in this paper, we study
rings R (resp., modules M) such that every (resp., M -)cosingular R-module (resp., in
σ[M ]) is discrete. We call them CD-rings (resp., CD-modules). The aim of this article is
to characterize rings for which every cosingular module is discrete. We investigate basic
properties of CD-modules. It is obtained that every small module over a right CD-ring
is semisimple. It is proved that a lifting CD-module has an essential socle. We show that
every module over a right V -ring is CD, and so every right V -ring is right CD, the converse
is true for local rings. By [7, Proposition 2.7], it is known that every module with finite
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hollow dimension is semilocal. We observe that a semilocal Artinian (or Noetherian) CD-
module has finite hollow dimension. We also give a characterization of a CD-module with
finite hollow dimension. This characterization reveals that this kind of module is finitely
generated. On the other hand, we investigate under what conditions a CD-module with
finite hollow dimension is finitely cogenerated. We show that for a semilocal ring R, R is
right CD if and only if R

Z(RR) is semisimple. For a right perfect ring R, it is proved that

every Z
2-torsionfree R-module is (quasi-)discrete if and only if R is right CD. We also

present some examples to illustrate different concepts.

2. CD-Modules and CD-Rings
In this section, we introduce a new class of modules (resp. rings), namely CD-modules

(resp. CD-rings). An R-module M is CD provided that every M -cosingular R-module in
σ[M ] is discrete. The class of CD-modules contains semisimple modules and V -modules.
We introduce and study rings for which every cosingular module is discrete, in this case
we call them right CD-rings. Every right V -ring is right CD. We also investigate general
properties and some characterizations of CD-rings. For a ring R, we show that R is right
CD if and only if every cosingular module is semisimple, under the additional standing
assumption that the class of cosingular R-modules is closed under taking homomorphic
images.

Let us recall some conditions on a module M as follows:
(D0) For every decomposition M = M1 ⊕M2 of M , M1 and M2 are relatively projective;
(D1) Every submodule of M lies above a direct summand of M ;
(D2) If M/A ∼= B ≤⊕ M , then A ≤⊕ M ;
(D3) If M1 and M2 are direct summands of M with M = M1+M2, then M1∩M2 ≤⊕ M .

The module M is called discrete if it satisfies (D1) and (D2), quasi-discrete if it satisfies
(D1) and (D3), and lifting if M satisfies (D1). We have the following hierarchy:
discrete ⇒ quasi-discrete ⇒ lifting ⇒ H-supplemented ⇒ ⊕-supplemented ⇒ supple-
mented.

It is not hard to verify that a ring R is right CD if and only if the R-module RR is CD
if and only if every cyclic R-module is CD.

Proposition 2.1. Any homomorphic images of a CD-module is CD. In particular, any
direct summand of a CD-module is CD.

Proof. Let M be CD and N ≤ M . Suppose that L is an M/N -cosingular module in
σ[M/N ]. Since σ[M/N ] ⊆ σ[M ], we conclude that ZM (L) ⊆ ZM/N (L). Hence L is
M -cosingular in σ[M ]. Therefore, L is discrete. �

As a consequence, every ring homomorphic image of a CD-ring is CD. The next result
is an immediate consequence of Proposition 2.1.

Corollary 2.2. The following are equivalent for a ring R.
(1) Every R-module is CD;
(2) Every free R-module is CD;
(3) Every projective R-module is CD;
(4) Every flat R-module is CD;
(5) R is right CD and the class of CD-modules is closed under direct sums.

Corollary 2.3. Let R be a right CD-ring and M be a module with cyclic radical. Then
Rad(M) is CD as both an R-module and an R/Z(RR)-module.

Proof. Since R is right CD and Rad(M) is cyclic, clearly, Rad(M) is CD as an R-
module. On the other hand, by [16, Proposition 2.1], Rad(M) is an R/Z(RR)-module.
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Also, by Proposition 2.1, R/Z(RR) is a right CD-ring. Therefore Rad(M) is CD as an
R/Z(RR)-module. �

Proposition 2.4. If a module M is CD as an R/Z(RR)-module, then it is CD as an
R-module. The converse holds if M is a cosingular R-module.

Proof. Let N ∈ σ[M ] be an M -cosingular R-module. By [16, Proposition 2.1], NZR(RR) ⊆
ZR(N). Note that ZR(N) ⊆ ZM (N). Since N is M -cosingular, NZR(RR) = 0. Hence
N has an R/Z(RR)-module structure. By hypothesis, N is a discrete R/Z(RR)-module,
and so it is a discrete R-module. Thus M is CD as an R-module. Assume now that
M is a CD cosingular R-module. Since M is cosingular, MZR(RR) ⊆ ZR(M) implies
that M is R/Z(RR)-module. Any M -cosingular R/Z(RR)-module N in σ[M ] is also an
M -cosingular R-module. Then N is discrete as an R-module. Hence N is a discrete
R/Z(RR)-module. This completes the proof. �

Let A be a class of R-modules. An R-module M is said to be A-projective in case M is
projective relative to all elements of A.

Theorem 2.5. Let A be a class of R-modules and consider the following conditions.
(1) Every module in A is semisimple;
(2) Every module in A is discrete;
(3) Every module in A is quasi-discrete;
(4) Every module in A satisfies (D0);
(5) Every module in A is A-projective.

Then (1) ⇒ (2) ⇒ (3) ⇒ (4). If A is closed under finite direct sums, then (4) ⇒ (5). If A
is closed under homomorphic images, then (5) ⇒ (1).

Proof. (1) ⇒ (2) It is clear by definitions.
(2) ⇒ (3) It follows from [8, Lemma 4.6].
(3) ⇒ (4) By [8, Lemma 4.23], every quasi-discrete module satisfies (D0).
Assume now that A is closed under finite direct sums. (4) ⇒ (5) Let M1, M2 ∈ A and
M = M1 ⊕ M2. By assumption M ∈ A, and by (4), M satisfies (D0). Hence M1 and M2
are relatively projective.
Let A be closed under homomorphic images. (5) ⇒ (1) Let M ∈ A and L ≤ M . By
assumption, M/L ∈ A, and it is M -projective by (5). It follows that L is a direct summand
of M . Therefore M is semisimple. �

If we replace A with the class of cosingular modules, we have the following result.

Corollary 2.6. If the class of cosingular R-modules is closed under homomorphic images,
then the following statements are equivalent.

(1) R is right CD;
(2) Every cosingular R-module is semisimple;
(3) Every cyclic cosingular R-module is semisimple;
(4) Every cosingular R-module is quasi-discrete;
(5) Every cosingular R-module satisfies (D0);
(6) Every cosingular R-module is N -projective for every cosingular R-module N .

If any of above statements holds, then every cosingular R-module is quasi-projective.

Proposition 2.7. Let R be a right perfect ring and M an R-module. Then the following
are equivalent.

(1) Every direct product of M -projective R-modules is discrete;
(2) Every direct product of M -projective R-modules satisfies (D0).

In this case, the class of M -projective R-modules is closed under direct products.
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Proof. (1) ⇒ (2) It follows from [8, Lemma 4.23].
(2) ⇒ (1) Let N =

∏
i∈I Ni be a product of M -projective R-modules. Then, by assumption

N × N ∼= N ⊕ N satisfies (D0). Hence N is quasi-projective. Since R is right perfect, by
[9, Theorem 2.3], N is discrete.

To prove the last statement, note that R is right perfect, so M has a projective cover
f : P → M . By assumption, N ⊕ P satisfies (D0) where N =

∏
i∈I Ni is a product of

M -projective R-modules. Hence N is P -projective. Therefore N is M -projective. �

As a consequence of Proposition 2.7, we give a new characterization of commutative
Artinian rings.

Corollary 2.8. Let R be a commutative perfect ring. Then the following are equivalent.
(1) R is Artinian;
(2) Every direct product of projective R-modules is discrete;
(3) Every direct product of projective R-modules is quasi-discrete;
(4) Every direct product of projective R-modules satisfies (D0).

Proof. (1) ⇒ (2) By [2, Theorems 3.3 and 3.4], every direct product of projective R-
modules is projective and also discrete by [9, Theorem 2.3].
(2) ⇒ (3) Obvious.
(3) ⇒ (4) It follows from [8, Lemma 4.23].
(4) ⇒ (1) Let P be a direct product of projective R-modules and M an arbitrary R-
module. There exists a set I and a submodule L of R(I) such that M ∼= R(I)/L. Let
N = P ⊕ RI which is a direct product of projective modules. By (4), N satisfies (D0). It
follows that P is RI -projective. By [8, Proposition 4.31], P is R(I)/L-projective. Hence P is
M -projective. Therefore P is a projective R-module. The result follows from [2, Theorem
3.4]. �

Now we can replace A in Theorem 2.5 with the class of small modules.

Corollary 2.9. Let R be a ring. Then the following statements are equivalent.
(1) Every small R-module is semisimple;
(2) Every small R-module is discrete;
(3) Every small R-module is quasi-discrete;
(4) Every small R-module satisfies (D0);
(5) Every small R-module is N -projective for every small R-module N .

Let M be a module. In [19], M is called coatomic if every proper submodule is contained
in a maximal submodule, or equivalently, for a submodule N of M , if Rad(M/N) = M/N ,
then M = N . Finitely generated modules and semisimple modules are coatomic. The
following result exhibits some basic properties of CD-modules.

Proposition 2.10. Let M be a CD-module. Then the following hold.
(1) Every M -small module is semisimple. In particular, every small submodule of M

is semisimple.
(2) Rad(M) ⊆ Soc(M).
(3) M is coatomic.
(4) Rad(M) ≪ M .
(5) Every finitely generated submodule of Rad(M) is Artinian (Noetherian).

Proof. (1) Every M -small module is M -cosingular, therefore discrete. Since the class of
M -small modules is closed under finite direct sums and homomorphic images, by Theorem
2.5, every M -small module is semisimple.
(2) By (1), Rad(M) is semisimple and hence Rad(M) ⊆ Soc(M).
(3) By (2), Rad(M) ⊆ Soc(M). If Soc(M) = M , then Rad(M) = 0 and if Soc(M) ̸= M ,
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then Rad(M) ̸= M . In both conditions, M has a maximal submodule. Applying the same
argument for M/N where N � M implies that N is contained in a maximal submodule
of M since M/N is a CD-module. Thus M is coatomic.
(4) Assume that Rad(M) is not small in M . Then there exists a proper submodule N of
M such that M = Rad(M) + N . By (3), N is contained in a maximal submodule K of
M . It follows that K = M . This contradiction implies Rad(M) ≪ M .
(5) The result follows from the fact that Rad(M) is semisimple. �

By the above proposition, a CD-module cannot be radical and small right ideals of
right CD-rings are semisimple as an R-module.
Corollary 2.11. Let R be a right CD-ring. Then the following statements hold.

(1) Every small R-module is semisimple.
(2) J(R) ⊆ Soc(RR).

For an easy reference we note the following result.
Lemma 2.12. Let M be a module such that M/ZM (M) is semisimple, then Rad(M) ⊆
ZM (M). The converse holds if M is a lifting module.

Proof. Let M be a module such that M/ZM (M) is semisimple and π denote the natural
epimorphism from M onto M/ZM (M) with kernel ZM (M). Since M/ZM (M) is semisim-
ple, Rad(M/ZM (M)) = 0. Hence π(Rad(M)) = 0. Therefore Rad(M) ⊆ ZM (M).
Conversely, assume that Rad(M) ⊆ ZM (M). Let N/ZM (M) ≤ M/ZM (M). By hypoth-
esis, there exists a submodule A ≤ N such that M = A ⊕ B with N ∩ B small in B. Then
N ∩B ⊆ Rad(M) and hence N ∩B ⊆ ZM (M). Since N ∩(B+ZM (M)) = ZM (M)+N ∩B,
M/ZM (M) = N/ZM (M) ⊕

(
(B + ZM (M))/ZM (M)

)
. This completes the proof. �

Let U be a submodule of a module M . Recall that M is called U -lifting if for any
submodule N of M , there exists a decomposition M = A ⊕ B such that A ≤ N and
N ∩ B ≤ U .
Proposition 2.13. Consider the following conditions for a module M .

(1) M is ZM (M)-lifting;
(2) M/ZM (M) is semisimple;

Then (1) ⇒ (2). The converse holds if M is lifting.

Proof. (1) ⇒ (2) Let N be a submodule of M with ZM (M) ≤ N . There exists a
submodule A ≤ N such that M = A ⊕ B and N ∩ B ≤ ZM (M). Then M/ZM (M) =
N/ZM (M) ⊕ (B + ZM (M))/ZM (M).
Assume that M is lifting. (2) ⇒ (1) Let N be any submodule of M . By assumption, N has
a submodule A such that M = A⊕B with N ∩B small in B. Then N ∩B ⊆ Rad(M). By
Lemma 2.12, all small submodules of M are contained in ZM (M). Hence N ∩B ≤ ZM (M).
This completes the proof. �
Theorem 2.14. Let M be a lifting CD-module. Then Soc(M) is essential in M .
Proof. Assume that Soc(M) is not essential in M . There exists a nonzero submodule
N of M such that it is maximal with respect to the property Soc(M) ∩ N = 0. Then
Soc(M) ⊕ N is an essential submodule of M . M being lifting implies that there exists a
direct summand A of M such that A ≤ N , M = A ⊕ B with N ∩ B small in B and also
in M . So N ∩ B is semisimple by Lemma 2.10. Then N ∩ B = 0. Hence M = N ⊕ B. It
follows that N is a lifting CD-module as a direct summand of M . Let X be any submodule
of N . There exists a direct summand Y ≤ X of N such that N = Y ⊕ Z with X ∩ Z
small in Z and in N and so in M . Again by Lemma 2.10, X ∩ Z is semisimple. Hence
X ∩ Z = 0. Thus N = X ⊕ Z. It follows that N is semisimple. Thus N = 0 and Soc(M)
is essential in M . �
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Corollary 2.15. Let M be a CD-module having a decomposition M = Soc(M) ⊕ N with
N lifting. Then M is semisimple.

Proof. As a direct summand, N is a lifting CD-module. By Theorem 2.14, Soc(N) is
essential in N . Hence N = 0. So M is semisimple. �
Corollary 2.16. Let R be a right CD-ring having a decomposition R = Soc(RR) ⊕ N
with N lifting as an R-module. Then R is semisimple.

Recall from [18] that a ring R is a right V -ring provided that every simple R-module is
injective, equivalently, R is a right V -ring if and only if every R-module has zero radical.
Since the only cosingular module over a right V -ring is zero, every right V -ring is right
CD. A ring R is right generalized co-semisimple (GCO for short) provided that every
simple singular R-module is injective, and R is a right GV-ring if each simple R-module
is either injective or projective. Note that R is right GCO if and only if it is right GV .
Observe that a right GV -ring with zero socle is a right V -ring. The next result shows that
every module over a right V -ring (equivalently, a right CD local ring) is CD.

Theorem 2.17. Let R be a ring and consider the following conditions.
(1) R is a right V -ring;
(2) Every R-module is CD;
(3) R is right CD.

Then (1) ⇒ (2) ⇒ (3). If R is local, then all of them are equivalent.

Proof. (1) ⇒ (2) Let R be a right V -ring and M an R-module. For any M -cosingular
module N ∈ σ[M ], by [16, Proposition 2.10], ZM (N) = N = 0. Hence N is discrete, thus
M is CD.
(2) ⇒ (3) Obvious.
Assume now that R is a local ring. (3) ⇒ (1) Let a ∈ R. Since R is local, it is principally
hollow (see [5]). This implies that aR is small in R. Then for any homomorphism f : R → S
with S small, f(a)R is small in S. On the other hand, R being right CD implies that S is
semisimple by Corollary 2.11(1). Hence f(a)R is a direct summand of S. Thus f(a)R = 0,
i.e., a ∈ Kerf . It follows that a ∈ ZR(RR), and so R = ZR(RR). By [15, Corollary 2.6],
R is a right V -ring. �
Proposition 2.18. Let R be a ring such that every cosingular module is amply supple-
mented. Then R is right GV if and only if every cosingular R-module is projective. In this
case R is right CD and the class of cosingular R-modules is closed under homomorphic
images.

Proof. Assume that R is right GV . Let 0 ̸= M be a cosingular R-module, 0 ̸= x ∈ M
and K a maximal submodule of xR. Now the simple module xR/K is either singular
or projective (but not both). If xR/K is singular, then it will be noncosingular by [10,
Theorem 4.1]. Consider the natural epimorphism π : xR → xR/K. By assumption, xR is
amply supplemented. Now [15, Theorem 3.5] implies that 0 = π(Z2(xR)) = Z

2(xR/K) =
Z(xR/K) = xR/K. which is a contradiction. Then xR/K is projective and so K is a
direct summand of xR. Hence xR and, therefore M is semisimple. Let M = ⊕i∈IMi where
each Mi is simple. Then Mi is singular or projective. Assume that it is singular. Then
[10, Theorem 4.1] implies that it is noncosingular that contradicts M is cosingular. Hence
each Mi is projective and so is M . Conversely, suppose that every cosingular module
is projective. In particular every simple cosingular module is projective. Let M be a
simple singular module. Then M is either small or injective. If M is small, then M is
projective by supposition since every small module is cosingular. The module M being
simple singular implies that M cannot be projective. Thus M is injective. It follows that
R is right GV . �
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A ring R is right (resp. left) nonsingular if Zr(R) = {x ∈ R | xI = 0, I ≤e RR} = 0
(resp. Zl(R) = {x ∈ R | Ix = 0, I ≤e RR} = 0). A ring R is right (resp. left) SI provided
that every singular right (resp. left) R-module is injective. These rings were introduced
and fully investigated by Goodearl in [4].
Remark 2.19. If for a CD-module M , the class of M -cosingular modules is closed under
factor modules, then every M -cosingular M -injective module is zero. So for a right CD-
ring R such that the class of cosingular R-modules is closed under homomorphic images
(e.g. semiperfect right SI-rings), every cosingular injective R-module is zero. This answers
one of the questions posed by Talebi and Vanaja (see [15, Page 1460, Question 3]).
Proposition 2.20. Let R be a right GV -ring. Then R is right CD if and only if every
cyclic cosingular R-module is amply supplemented.
Proof. Assume that every cyclic cosingular R-module is amply supplemented. Let 0 ̸= M
be a cosingular module. By a similar discussion in the proof of Proposition 2.18, M is
semisimple. Clearly M is discrete. Conversely, assume that R is CD and let M be a cyclic
cosingular module. By assumption, M is discrete. So M is lifting and obviously amply
supplemented. �
Remark 2.21. Let R be a right cosingular right CD-ring. Then by Corollary 2.6, every
cosingular R-module is R-projective. In particular, any finitely generated cosingular R-
module is projective.

A module M is said to have finite hollow dimension in case there exists an epimorphism
f : M →

∏n
i=1 Hi with all Hi hollow and Kerf ≪ M . In this case, it is said that the

hollow dimension of M is n. Recall that a module M is called semilocal if M/Rad(M) is
semisimple (see [7] for details). A ring R is semilocal if the right R-module R is semilocal,
i.e., R/J(R) is a semisimple ring. By [7, Proposition 2.7], every module with finite hollow
dimension is semilocal. The converse statement holds for finitely generated modules. In
particular, for CD modules we have the following result.
Proposition 2.22. Let M be an Artinian (or Noetherian) and CD-module. Then the
following conditions are equivalent.

(1) M has finite hollow dimension;
(2) M is weakly supplemented;
(3) M is semilocal.

Proof. (1) ⇒ (2) ⇒ (3) By [7, Proposition 2.7].
(3) ⇒ (2) Since M is a CD-module, by Proposition 2.10, Rad(M) is small in M . The rest
is clear by [7, Proposition 2.7].
(2) ⇒ (1) The module M being CD implies that Rad(M) ≪ M , and so the hollow dimen-
sions of M and M/Rad(M) are equal due to [7, Remark 1.4]. On the other hand, since
M is weakly supplemented, M/Rad(M) is weakly supplemented. Hence by [7, Corollary
2.3], the hollow dimension and length of M/Rad(M) are equal. The hypothesis and the
semisimplicity of M/Rad(M) imply that M/Rad(M) is both Artinian and Noetherian.
Thus M/Rad(M) has finite length. Therefore the hollow dimension of M is finite. �

The next result shows that every CD-module with finite hollow dimension is finitely
generated.
Theorem 2.23. The following are equivalent for a CD-module M .

(1) M has finite hollow dimension;
(2) M is semilocal and finitely generated.

Proof. In light of [7, Proposition 2.7], it is enough to prove that a CD-module with finite
hollow dimension is finitely generated. Let M be a CD-module with finite hollow dimen-
sion. By [13, Corollary 1.11], M/Rad(M) is semisimple and Artinian. Hence M/Rad(M)
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is finitely generated. On the other hand, M being a CD-module implies that Rad(M) is
small in M by Proposition 2.10. Therefore M is finitely generated due to [1, Theorem
10.4]. �

We now investigate under what conditions a CD-module with finite hollow dimension
is finitely cogenerated.

Proposition 2.24. The following statements are equivalent for a CD-module M with
finite hollow dimension.

(1) M is finitely cogenerated;
(2) Rad(M) is Artinian;
(3) Soc(M) is Artinian;
(4) M is Artinian.

Proof. (1) ⇒ (2) Rad(M) is finitely cogenerated as a submodule of finitely cogenerated
M , and by Proposition 2.10, Rad(M) is semisimple. Hence Rad(M) is Artinian.
(2) ⇒ (1) Since M has finite hollow dimension, M/Rad(M) is semisimple Artinian by
[13, Corollary 1.11], and so M/Rad(M) is finitely cogenerated. On the other hand, by
Proposition 2.10, Rad(M) is semisimple. Hence (2) implies that Rad(M) is finitely co-
generated. Since both of Rad(M) and M/Rad(M) are finitely cogenerated, M is finitely
cogenerated.
(1) ⇒ (3) By [1, Theorem 10.4], Soc(M) is finitely cogenerated, and so it is Artinian.
(3) ⇒ (1) Since M has finite hollow dimension, Proposition 2.22 implies that M is semilo-
cal, i.e., M/Rad(M) is semisimple. Then M/Soc(M) is semisimple as a homomorphic
image of semisimple module M/Rad(M). By [7, Proposition 2.1(c)], M has a decomposi-
tion M = M1 ⊕M2 where M1 is semisimple and Soc(M) is essential in M2. Hence M1 = 0,
and so Soc(M) is essential in M . Thus M is finitely cogenerated due to [1, Theorem 10.4].
(3) ⇒ (4) By a similar discussion in the proof of (3) ⇒ (1), [13, Corollary 1.11] implies
M/Rad(M) is Artinian, and so is M/Soc(M). Since both of Soc(M) and M/Soc(M) are
Artinian, M is also Artinian.
(4) ⇒ (3) Obvious. �

Corollary 2.25. Let R be a right Noetherian ring and M a CD-module with finite hollow
dimension. Then the following are equivalent.

(1) M is finitely cogenerated;
(2) Soc(M) is essential in M .

Proof. (1) ⇒ (2) It is known by [1, Theorem 10.4].
(2) ⇒ (1) Since M is a CD-module with finite hollow dimension, M is finitely generated
by Theorem 2.23. The ring R being right Noetherian implies that Soc(M) is also finitely
generated. Therefore [1, Proposition 10.7] completes the proof. �

Proposition 2.26. Let R be a commutative domain. Then the following are equivalent.
(1) R is CD;
(2) Every cosingular R-module is projective;
(3) R is a field.

Proof. (1) ⇒ (2) Let R be a CD commutative domain. It is well-known that RR is a
small R-module. So, by Proposition 2.11(1), R is semisimple. Then every R-module is
projective, so (2) holds.
(2) ⇒ (3) Let I ≤ R. Then R/I is cosingular since R is small and homomorphic images
of small modules are small. By (2), R/I is projective, therefore I is a direct summand of
R. Hence R is simple and so a field.
(3) ⇒ (1) Clear. �
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Proposition 2.27. Let R be a ring such that the class of cosingular R-modules is closed
under factor modules. Then the following statements are equivalent.

(1) R is right CD;
(2) Every cosingular R-module is semisimple;
(3) The ring R/Z(RR) is semisimple.

Proof. (1) ⇔ (2) It follows from Corollary 2.6.
(2) ⇔ (3) This follows from [16, Proposition 2.1(2)] and the fact that R/Z(RR) is a
cosingular R-module. �
Proposition 2.28. Let R be a ring such that every cosingular R-module is semisimple.
If for every R-module M , Z(M) ≤⊕ M , then every cosingular R-module is projective.

Proof. Let N be an R-module. Then N = Z(N) ⊕ T , where Z(N) is non-cosingular
and L is cosingular and hence semisimple. We show that every cosingular R-module is
projective. Let M be a cosingular R-module and f : N −→ M an epimorphism with N
a free module. Now, f(Z(N)) ⊆ Z(M) = 0. Hence Z(N) ⊆ Kerf . It follows that
Kerf = Z(N) ⊕ (T ∩ Kerf). Since T is semisimple, T = (T ∩ Kerf) ⊕ S for some
submodule S of T . It is easy to check that N = Kerf ⊕ S. Therefore M is projective. �
Corollary 2.29. Every cosingular R-module is projective in each of the following cases:

(1) R is a right CD-ring such that the class of cosingular R-modules is closed under
factor modules and for every R-module M , Z(M) ≤⊕ M .

(2) Every R-module is a direct sum of a non-cosingular R-module and a semisimple
R-module. (Clearly in this case R is also right CD).

Proof. (1) It follows from Corollary 2.6 and Proposition 2.28.
(2) By [15, Corollary 3.9]. �

3. Applications to some classes of modules and rings
In this section, we study the CD-property for some classes of modules and rings, and

present some examples. We show that for a semilocal ring, being a right CD-ring implies
being a left CD-ring. By a similar argument to [16, Corollary 2.7], for a semilocal ring R,
we have Z(RR) = Soc(RR) and Z(RR) = Soc(RR).

Lemma 3.1. Let R be a semilocal ring. Then there exists a decomposition R = R1 ⊕ R2
with R1 semisimple, J(R) essential in R2, R2/J(R) semisimple and Soc(RR) ⊆ R1⊕J(R).
If J(R) ⊆ Soc(RR), then Soc(RR) = R1 ⊕ J(R).

Proof. By [7, Theorem 3.5], R has a decomposition R = R1 ⊕ R2 with R1 semisimple,
J(R) essential in R2 and R2/J(R) semisimple. J(R) being essential in R2 implies that
Soc(RR) ⊆ R1 ⊕ J(R). If J(R) ⊆ Soc(RR), then clearly, R1 ⊕ J(R) ⊆ Soc(RR). �

The following result introduces a large class of two-sided CD-rings. It is known by
Corollary 2.11 that if a ring R is right CD, then J(R) ⊆ Soc(RR), and so J(R)2 = 0. The
next result also exhibits that the converse of this statement holds for semilocal rings.

Proposition 3.2. Let R be a semilocal ring with J(R) ⊆ Soc(RR) (resp., J(R) ⊆
Soc(RR)). Then R is left (resp., right) CD. In particular, every semilocal ring with
J(R)2 = 0 is left and right CD.

Proof. Let R be a semilocal ring with J(R) ⊆ Soc(RR). It follows that R
Soc(RR) = R

Z(RR)
is semisimple, since R

Z(RR) is a homomorphic image of R/J(R). Hence every cosingular
left R-module is semisimple by [16, Proposition 2.1(2)] and therefore R is left CD. To
prove the last part, let R be semilocal with J(R)2 = 0. By [16, Proposition 2.6 and
Corollary 2.7], Soc(RR) = Annr(J(R)) and Soc(RR) = Annl(J(R)). Since J(R)2 = 0, we



Rings for which every cosingular module is discrete 1645

have J(R) ⊆ Soc(RR) and J(R) ⊆ Soc(RR). Hence by the first part, R is left and right
CD. �

We now present a right (left) cosingular semilocal ring which is not right (left) CD.
Example 3.3. Let D be a commutative local integral domain with field of fractions Q
(for example, we might take D the localization of the integers Z by a prime number p, i.e.,
D is the subring of the field of rational numbers consisting of fractions a/b such that b is

not divisible by p). Let R =
(

D Q
0 Q

)
. The operations are given by the ordinary matrix

operations. Since D is local it has a unique maximal ideal, say m and the Jacobson

radical of R is J(R) =
(

m Q
0 0

)
. Then R/J(R) ∼= (D/m) × Q. Thus R is semilocal. On

the other hand, if we suppose that D has zero socle, then R has zero left socle and so
Z(RR) = Soc(RR) = 0. Hence R is right cosingular. But R has non-zero right socle,

namely, Z(RR) = Soc(RR) =
(

0 Q
0 Q

)
. It follows that R is right cosingular but not left

cosingular. Since J(R) * Soc(RR) and J(R) * Soc(RR), R is neither right CD nor left
CD by Corollary 2.11.

The following example shows that the class of CD-rings contains properly the class of
V -rings.

Example 3.4. Let F be a field and R =
(

F F
0 F

)
the ring of 2 × 2 upper triangular

matrices over F . It is well-known that R is a right and left (SI) GV -ring which is neither

a right nor a left V -ring because of J(R) =
(

0 F
0 0

)
. Since R is left and right Artinian

serial with J(R)2 = 0, by Proposition 3.2, R is left and right CD.
Recall that a ring R is called right Harada (a right H-ring for short) provided that every

injective right R-module is lifting. It is well-known that R is a right H-ring if and only if
every right R-module is decomposed to a small module and an injective module.
Proposition 3.5. Let R be a right CD right H-ring. Then R is an (left and right)
Artinian serial ring with J(R)2 = 0.
Proof. Let R be a right CD right H-ring. By [3, 28.10], for every R-module M , there
exists a direct decomposition M = S ⊕E where S is small and E is an injective R-module.
Since R is right CD, S is semisimple by Corollary 2.11(1). It follows that R is Artinian
serial with J(R)2 = 0 by [3, 29.10]. �
Remark 3.6. Note that a semilocal non-semisimple ring with Soc(RR) right semisimple
cannot have the property that all cosingular right R-modules and all cosingular left R-
modules are projective. For if, assume that R is a semilocal ring such that all cosingular
right R-modules and all cosingular left R-modules are projective. Then J(R) ⊆ Soc(RR) =
Z(RR) ≤⊕ R. Since J(R) ≪ R and Z(RR) ≤⊕ R, we have J(R) ≪ Z(RR). Since Z(RR)
is a right semisimple R-module, it follows that J(R) = 0. Hence R is semisimple. The ring
R = Z

4Z is a local CD-ring but does not have the property that every cosingular R-module
is projective. Also R is not GV .

An R-module M is called an SI-module provided that every M -singular R-module is M -
injective. A generalization of SI-rings is SC-rings. In [12], Sanh defined and investigated
SC-modules. An R-module M is called an SC-module if every M -singular R-module is
continuous. A ring R is a right SC-ring if the right R-module R is an SC-module, that is,
every singular right R-module is continuous. Left SC-rings are defined similarly. SC-rings
generalizes SI-rings and SC-rings were introduced and studied by Rizvi and Yousif [11].
Note that every semiperfect right SI-ring is a right CD-ring by Proposition 2.18.
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Lemma 3.7 ([12, Corollary 8]). For a module M , the following conditions are equivalent.
(1) M is an SC-module with essential Soc(M);
(2) M/Soc(M) is semisimple.

In what follows, we show that being a CD-ring is left-right symmetric for semilocal
rings.

Theorem 3.8. Let R be a semilocal ring. Then the following statements are equivalent.
(1) R is a left SC-ring with Soc(RR) essential as a left ideal in R;
(2) R is right CD;
(3) The ring R/Z(RR) is semisimple;
(4) The ring R/Soc(RR) is semisimple.

If R satisfies one of these conditions, then R is a left CD-ring.

Proof. (1) ⇔ (4) It follows from Lemma 3.7.
(3) ⇔ (4) It is clear from the fact that R is semilocal and so Z(RR) = Soc(RR).
(2) ⇒ (3) It is well-known that R/Z(RR) is a subdirect product of small R-modules.
Since R is right CD, all small right R-modules are semisimple by Corollary 2.11 (1). Also
since R is semilocal, every direct product of semisimple R-modules is semisimple. Hence
R/Z(RR) is semisimple.
(3) ⇒ (2) In this case every cosingular right R-module is semisimple and every semisimple
module is discrete. Therefore R is right CD.
For the last statement, since R is right CD, by Corollary 2.11(2), J(R)2 = 0. So R is left
CD by Proposition 3.2. �
Corollary 3.9. Let R be a commutative semilocal ring. Then R is CD if and only if R
is SC.

Proof. It follows from [11, Theorem 3.8] and Theorem 3.8. �
Remark 3.10. Every non-trivial ideal of a local right CD-ring R (or a ring R with all
cosingular right R-modules projective) is semisimple. However, R need not be semisimple.
For instance, R = Z/4Z is a local CD-ring by Theorem 3.8, and its only non-trivial ideal
is simple and R is not semisimple.

Lemma 3.11. A ring R is left nonsingular, semilocal with R/Z(RR) semisimple if and
only if R is semisimple.

Proof. One direction is clear. For the other direction, assume that R is a semilocal, left
nonsingular ring with R/Z(RR) semisimple. Then R/J(R) is semisimple. To complete
the proof we show J(R) = 0. For the semilocal ring R, R/Z(RR) being semisimple implies
that R/Soc(RR) is semisimple. By [7, Proposition 2.1(c)], Soc(RR) is essential in R as a
left ideal and so J(R) is singular as a left R-module. By assumption, J(R) = 0. Thus R
is semisimple. �

The following example shows that a right CD-ring need not be SI or GV or have the
property that every cosingular R-module is projective.

Example 3.12. Let p and q be two distinct prime numbers. Then for m, n ∈ {0, 1, 2},
the ring R = Z

pmqnZ is a CD-ring but does not have the property that every cosingular
R-module is projective (m and n cannot both be zero and also cannot both be one).

Proof. It is clear that R is semilocal. Let m = 2 and n = 1. Then Soc(R) = pqZ
p2qZ + p2Z

p2qZ .
Since | Soc(R) |= pq, we have R

Z(R) = R
Soc(R) is a field. Now by Theorem 3.8, R is SC

and CD. Let I1, I2 and I3 be non-trivial ideals of R with | I1 |= p, | I2 |= p2 and
| I3 |= pq. We also have Z(R) = Soc(R) = I3. Since Soc(I2) ̸= 0, it follows that Z(R) is
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not a direct summand of R. Therefore, every cosingular R-module is not projective (see
Remark 3.6). Now, let m = 2 and n = 2. Suppose that I1, . . . , I7 be non-trivial ideals
of R such that | I1 |= p, | I2 = q, | I3 |= pq, | I4 |= p2q, | I5 |= pq2, | I6 |= p2 and
| I7 |= q2. Then Soc(R) = Z(R) = I1 + I2 = I3, which implies | R

Z(R) |= pq, hence it is
semisimple. It is not hard to verify that Z(R) is not a direct summand of R. So not every
cosingular R-module is projective. Similar arguments hold for the case m = 2 or n = 2.
Since the rings as above are not semisimple, by Lemma 3.11, R is not nonsingular. Now,
by [11, Lemma 3.1] R is not SI. Also R is a perfect ring, so that R is not a GV -ring by
Proposition 2.18. We conclude that the class of cosingular R-modules is not closed under
homomorphic images. �

Recall that for a module M , Z
2(M) is defined as Z(Z(M)).

Definition 3.13. A module M is called Z
2-torsionfree in case Z

2(M) = 0.

It is easy to see that every cosingular module is Z
2-torsionfree. The class of Z

2-
torsionfree modules is closed under submodules, direct sums and direct products (see
[15, Proposition 2.1]). By [8, Theorem 4.41] and [15, Proposition 2.1 and Theorem 3.5],
it also follows that for a perfect ring R, the class of Z

2-torsionfree R-modules is closed
under factor modules.

Theorem 3.14. Let R be a right perfect ring. Consider the following conditions.
(1) Every Z

2-torsionfree R-module is discrete;
(2) Every Z

2-torsionfree R-module is quasi-discrete;
(3) Every Z

2-torsionfree R-module is semisimple;
(4) R is right CD.

Then (1) ⇒ (2) ⇒ (3) ⇒ (4). If R is right GV , then (4) ⇒ (1).

Proof. (1) ⇒ (2) Clear by definitions.
(2) ⇒ (3) Let M = yR be a cyclic Z

2-torsionfree R-module and x ∈ yR. Let K be
a maximal submodule of xR. Since R is right perfect and yR is Z

2-torsionfree, xR/K

is Z
2-torsionfree. So xR/K ⊕ xR is Z

2-torsionfree. Now, by assumption, xR/K ⊕ xR is
quasi-discrete and hence satisfies (D0)-condition by [8, Lemma 4.23]. It follows that xR/K
is xR-projective. This implies that K ≤⊕ xR. Hence, xR and finally yR are semisimple.
It follows that every Z

2-torsionfree R-module is semisimple.
(3) ⇒ (4) By the fact that every cosingular module is Z

2-torsionfree, (3) implies that
every cosingular R-module is semisimple. Thus R is right CD.
Assume now that R is right GV . (4) ⇒ (1) Let R be a right CD ring. Since R is
right perfect, every cosingular R-module is projective by Proposition 2.18. Let M be a
Z

2-torsionfree R-module. Then Z(M) is cosingular. Since M/Z(M) is cosingular, it is
projective, and so Z(M) is a direct summand of M . Hence M = Z(M) ⊕ N for some
cosingular N . It follows that Z(M) = 0, i.e., M is cosingular. The assumption of (4) now
shows that M is discrete. �

Let R be a ring such that every cyclic cosingular R-module is discrete. Then R need
not be a CD-ring as the following example shows.

Example 3.15. The ring R = Z8 is a local ring such that R
Z(R) = R

Soc(R) is not semisimple.
So by Theorem 3.8, R is not a CD-ring. Let M be a nonzero cyclic R-module. Then M
is isomorphic to M1 = R

(2) = R
J(R) or M2 = R

(4) = R
Soc(R) or M3 = R. The module M1 is

simple. The module M2 is an indecomposable local R-module and M3 is discrete since R
is semiperfect. Hence all cyclic (cosingular) R-modules are discrete.
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