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Abstract

In this paper, we obtain the Fekete-Szegd inequality for the generalized bi-subordinate
functions of complex order. The various results, which are presented in this paper, would
generalize those in related works of several earlier authors.
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1. Introduction

Let A be the class of analytic functions in the open unit disk D = {z € C : |2| < 1} and
let § be the class of functions f that are analytic, univalent in D and are of the form

f(2) :z+iakzk. (1.1)
k=2

The Koebe one-quarter theorem assures that the image of unit disk D under every
univalent function f € A contains a disk of radius 1/4. Thus every univalent function f
has an inverse f~! satisfying

fHf(2) =2 (z€D) and f(fH(w)) =w, (lw| <ro, 70 >1/4).
Furthermore, the Taylor-Maclaurin series of f~! is given by
Y w) = w — agw® + (243 — az)w® — - . (1.2)

A function f € A is said to be bi-univalent in D if f is univalent and f~! has univalent
analytic continuation, which we denote by g, to the unit disk D. Let o denote the class
of bi-univalent functions defined in the unit disk . Coefficient problem for bi-univalent
functions were recently investigated by several authors [1,4-8,15-17,19,20]. A function f €
A is said to be subordinate to a function h € A, denoted by f < h, if there exists an analytic
function w € By, where By := {w:w(0) =0, |w(z)| <1, z€ D} such that f(z) =
h(w(z)). We let 8* consist of starlike functions f € A, that is, Re{zf'(z),/f(2)} >0in D
and € consist of convex functions f € A, that is, 1+ Re{zf"(2),/f'(z)} > 0 in D. Ma and
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Minda [12] unified various subclasses of starlike and convex functions for which either of the
quantity zf'(2),/f(z) or 14+ zf"(2),/ f'(z) is subordinate to a more general superordinate
function. For this purpose, they considered an analytic function ¢ with positive real part in
the unit disk D and normalized by ¢(0) = 1 and ¢’(0) > 0. The class of Ma-Minda starlike
functions consists of functions f € A satisfying the subordination zf'(z),/f(z) < ¢(2).
Similarly, the class of Ma-Minda convex functions consists of functions f € A satisfying
the subordination 1+ zf"(2),/ f'(z) < ¢(z). Extensions of the above two classes (see [14])

are
2f'(2)

f(2)

2
corg)={reain+: (ZJ{C,((ZZ)')) <p(2), 7EC\{0}.

In literature, the functions belonging to these classes are called Ma-Minda starlike and
convex of complex order v (7 € C\{0}), respectively. A function f is bi-starlike of Ma-
Minda type of complex order 7 (7 € C\{0}) and bi-convex of Ma-Minda type of complex
order v (v € C\{0}) if both f and g are ,respectively, Ma-Minda starlike and convex of
complex order v (v € C\{0}). The classes consisting of bi-starlike of Ma-Minda type
of complex order v (v € C\{0}) and bi-convex of Ma-Minda type of complex order =y
(v € C\{0}) are denoted by 8%(v;¢) and Cs(7; ¢), respectively. As a special case v = 1
the classes 8% (v;¢) and Cy(7; ¢) reduce to bi-starlike of Ma-Minda type and bi-convex of
Ma-Minda type functions are denoted by 8% (¢) and C,(¢), respectively.

In this paper, we consider more general class 8,(\,v; ) for 0 < A < 1, v € C\ {0} which
was investigated by Deniz [5] wherein he obtained the bounds for as and ag. This motivated
us to study the Fekete-Szeg6 inequality to the class 8,(\,7;¢). Recently, some authors
have investigated the Fekete-Szegd problem for various subclasses of o (see [3,9,13,21,22]).

strig)={reaits 2 (2 1) <p2), vecvio]

and

2. Coefficient estimates

Throughout this paper ¢ denotes an analytic univalent function in D with positive real
part and normalized by ¢(0) = 1, ¢/(0) > 0. Such a function has series expansion of the
form

©(2) =1+ Biz+ Byz®> + B3> + ... (B; >0). (2.1)

Definition 2.1. For 0 < A < 1 and v € C\ {0}, the class 8(\,~; ¢) consists of functions
f € A satisfying

1 ( 2f'(2) + A2 f"(2)
(

A VTV T e ey

The class 85(\,7; @) consists of functions f € o such that f,g € S(\,7;¢) where g is the
analytic continuation of f~! to the unit disk D.

3 1) <p(z) (zeD).

The class 8(\,v;¢) was introduced by [18]. Motivated by this class the second au-
thor [5] defined and studied the class 8,(\,; ¢), which is called the class of generalized
bi-subordinate functions of complex order ~ and type A. As special cases of the class
8a(A,7:¢), we have 85(0,7;¢) = 85 (73 ¢) and S5 (1,7;¢) = Co (75 0).

The class 85 (A, ;) includes many earlier classes, which are mentioned below:
S85(0,1; ) = 8% () and 85(1,1;¢) = Cy(p), are classes of Ma-Minda bi-starlike and Ma-
Minda bi-convex functions, respectively, introduced and studied in [11].

85 ((0,1;(1+ Az) /(1 + Bz)) = 8;[A,B] and S, (1,1; (1 + Az) /(1 + Bz)) = C,[A, B]
(—1 < B < A <1) are, respectively, the classes of Janowski bi-starlike and bi-convex func-
tions. Additionally, for 0 < 8 < 1, 8;[1 — 28,1] = 85(B) and C,[1 — 26,1] = C,(S) are,
respectively, the classes of bi-starlike and bi-convex functions of order § introduced and
studied in [2].
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For 0 < 8 <1, 8, (0 1; (HZ)B) = 88:(B) and 8, (1,17 (lfz)6> = 8C;(pB) are,

respectively, classes of strongly bi-starlike and strongly bi-convex functions of order [
introduced and studied in [2].
For v € C\{0}, 8,(0,7; (1 +2),/(1 — 2)) = 83[y] and 8,(1,7; (1 +2),/(1 — 2))
are classes of bi-starlike and bi-convex functions of complex order, respectively.
To prove our next theorems, we shall need the following well-known lemma (see [10]).

Co[7]

Lemma 2.2 ([10]). Let the function w € Bg be given by
w(z) =crz+ 2+ (z€D),
then for by every complex number s,
’02 - scﬂ <14 (s|=1)|a)*.

In the following theorem, we consider functional |a3 — ,ua%} for v nonzero complex num-
ber and p € C.

Theorem 2.3. Let the function f given by (1.1) be in the 8;(\,7y; ). For v € C\{0}
and p € C, we have

17| B1
< 2.2
o] < 1L (22)
aal < 0 (2, (o] + 16} (2.3
and
_Bily| if £L<2
jas — pad| < § PG P (2.4)
I(T+2N) if £>
By, _ 4Biy(142) B B
where s = B2 — (117_’(_/\)2 ),t:B—fandL:gf+(l— )(ilT

Proof. Since f € 845(\,v;p), there exists two analytic functions w,v : D — D, with
u(0) = 0 = v(0), such that

L[ z2f(2) + \22f"(2)
2 ((1 N+ A f (=

- 1) —p(u(z)) (z€D) (2.5)

and

L1 ( wg' () + g/ (w)
7\ (1= A)g(w) + Awg' (w

Define the functions v and v by

- 1) — p(v(w)). (2.6)

u(z) =c1z + c92® + - and v(w) = dyw + dow? + - -+ . (2.7)
Using (2.1) with (2.7), it is evident that
o(u(z)) =1+ (Bic1)z + (Bica + Bacd) 22 + - - (2.8)
and
o(v(w)) =1+ (Bid1)w + (Bydy 4+ Bod?)w? + - - - . (2.9)

Also, using (1.1), we get

L[ 2f'()+A2f"(2) .\ _ (1+/\)a2z 2(142X\) as — (1 + \)° a2
GGt 1)~ 3

1+
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and using (1.2), we get
1<1WT)+Mf”() _Q
7\ (1= A)g(w) + Awg'(w)
u+xﬁmwl—ﬂ1+2may+@+ﬁx—xaﬁ
¥ gl

Equating coefficients of right sides of equations (2.8) with (2.10) and (2.9) with (2.11)
yield

1+

=1- w? -, (2.11)

1 2(142 —
M = Bjc, ( + >\) a3 ( + >\) = Bicy + BQCl (212)
Y Y
and
-1 —2(1+42 —A?) a3
( +)\)a2:Bld1, (14 2X) a3 + (346X A)a2231d2+32d% (2.13)
Y Y
so that, on account of (2.12) and (2.13)
cl = —dl, (2.14)
vB1
= 2.1
a2 1A (2.15)
and 5
_ 2 2 _ 2
az = ay + 74 (1 n 2)\) [BlcQ + Bgcl Bids Ble} . (216)

Taking into account (2.14), (2.15), (2.16) and the well known estimate |c¢;| < 1 of the
Schwarz lemma, we get

B B
|a|:‘71c‘<|7| ! (2.17)

T+ = 1T+
and from Lemma 2.2,

_ 2 i 2 . 2
|a3| = a5+ 11490 (1+2)\) [Blcz + Bac] — Bids Bzdl}
212
7"BY o Y 2 2
= Bics — B — (Bids — Bad
(1+M“ﬁ+ @+2M[(1@ QQ) (12 21”‘

_ B 4yBy (1 +2)) B
- 1+12AH (2_ R )Cﬂ_{drfidﬂ}‘

B 4vB1 (1 + 2
1+2>\ (1+>\)

"Y|Bl

< TGion \ RS (UETE)

"Y|Bl 2
0+ {2+<rs\ + [t - 2) |3}
Thus, using |c1| < 1 we have the desired estimate for |as]:
Y[ 1B
—_— 2 t
ool < i ass max(2, (o] + 1)
_ B 4B1y(142X _ B

Wheres—B—f—(lfT)z)andt—B—f.

To find an estimate for |az — pa3|, we express ag — pa3 in terms of ¢; and d;. Using the
equality (2.16), we have

as — ,ua% = (1 — u) a% + [Blcg + BQC% — Bidy — Bgdﬂ .

v
4(1+2))
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Therefore from Lemma 2.2, we obtain

[Blcg + BQC% — Bidy — Bgdﬂ

2
’03—,“@%‘ = ‘(1—H)a§+4(1+2)\)

~vB By 4vB1 (1 +2X) By
‘4<1+12A> { - <31 BT ) ] |- H

B B 4yBi (1+2))|  |B
< 4(1+21A){2+<Bj (1—u)(11+/\)2‘ B—f —2) \cﬂ}.(zls)

As a result of this, from |c1| < 1 we obtain

Bily| ;
L T
I bVEY if £ =2,
where £ = B2 4 (1 — ) 2800423
Bi (1+X)?
Thus the proof is completed. U

We next consider the cases v and p are real.

Theorem 2.4. Let the function f given by (1.1) be in the S;(\,7v;¢). For v > 0 and
uw € R, we have

(1) If [Bz2| = Bu, then

B 2p? .
2| o 2(71|+§‘A) — (=1 (Z—l—)é if p=l
’ag B MCLZ‘ - v1B2| 1 V2 BY ; 1
2(1+2N) +(p—1) RES\E if >
(2) If |B2’ < By, then
| Ba| ~?B? .
2&+§A) — (=1 (1+,\32 if o ps1-3
2 B .
‘(13—,&(12’ < (Yl;%f\) - if 1-F<pu<l+TF
0% .
2(1+§)\) +(:u_1) (1+)32 if p>1+9

_ (140)*(B1—|Ba))
’U]he'f’e ? —W

Proof. Using (2.18) and Lemma 2.2, we obtain

~B B 4yB1 (14 2X) B
o] = [t o (-0 2P 4] [a- ]}

asz — pag

"}/Bl B2 4’731 (1 + 2)\) BQ 9
< 5 Dy (12 gy DTV 1P
= A(1+2y { ( B, T T e B (&
7B v (|B2| — B1) v’ B} 2
< _q P b2 2.1
= 2(1+2>\)+{ 2i+zy g | (2.19)

Now, the proof will be presented in two cases:
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Firstly, we consider the case |Bs| > Bj.
If <1, then using (2.19) and |c;1| < 1, we obtain

7B v (|B2| — B1) v’ B}
‘“3_’“3‘ = 2(1+2)\)+{ 2(1+2/\)1 T )(1+A1)2}’cﬂ
VB 7 (|B2| — Bi) VBt
2(1+12)\)+{ 2(12+2/\)1 Fa=w (1+A1)2}
7B VBt

If > 1, then using (2.19) and |¢1]| < 1, we obtain

vBi1 7 (| B2| = B1) (1) V*Bi ’02‘
2(1+2)) 2(1+2y T a9

7B +{’Y(|BQ|_Bl)+( o ) VQB% }
)

‘as - Mag‘ <

= 2(142) 2(1+2)) (14 X)?
7By B}
= L L .
Sy T )(1+)\)2

Finally, we consider the case |Bs| < Bj. By using (2.19) and |c;| < 1, we obtain the
following results according to the cases of u and F.
For p <1 — 3, we have

‘ag—/mg‘ < 2(731 +{’Y(|B2|_Bl)+(1_ ) v2B? }’Cﬂ

142X 2(1+2)) (14 1)
VB 7 (|B2| — Bi) VBt
= 2(1+12)\) { 2(12+2/\)1 + _“)(1+A1)2}
7B VBt
sy # Y (1+A1)2’

and for 1 — F <u < 1, we yield
~vB Bs|— B v?B?
1 {7(| 2| 1) (1 ) 1 }’C%‘

2
— <
‘“3 “‘I?‘ = 2(1+2)) 2(1+2)) AL
< 'YiBl
— 2(142))
Similarly for 1 < pu < 1+ J, we obtain
B (1B2| — B1) VB
a2l < b1 v _1 1 2
a3 — pa| < 2(1+2)\) 22y W )(1+A)2 <]
< vB1
- 2142\
Finally for p > 1+ JF, we have
B (|1B2| — B1) VBt
_ a2l < YD1 i B 1 2
jas — pa| < 2(1+2)) 242y )(1+A)2 |
B4 7 (|B2| — Bi1) B}
< +(N_ ) 2
2 (1+ 2\ 2(1+2)) (14 A)
ol B 7232
= &j%u_l)il?
2(1+2X) (I+X)
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Thus the proof is completed. O

Finally, we consider the cases of v nonzero complex number and u € R.

Theorem 2.5. Let the function f given by (1.1) be in the S;(\,v; ). For v € C\{0}
and p € R, we have

(1) If %BQJ)‘BQ' > 1, then

|,Y|2Bf2 (1_M_%(k1))+w if p<1-—%R(k)

‘ag — an‘ <] 0+ 412
7 mBaatsing) - DPBY )y i ps 1 — R (k)
4(1+27) (14+2)? K 1 © 1

(2) If UHIDIBel < then,

LS (1= = R (k) + DB iy gy <1 — R (k) + N

(1+)) A)
g — pa3| < § GBS if 1=R(k)+N<p<1—R(k)-N
‘”"Bj("ff;“@') - ('Z'j (1—p—=R(k1)) if p=1—R(k)-N
where ki = BQ(I+)\ h/| and N = (1+>\) [|B2|(1+4|sin 8])—2B1]

4B7|v[(1+2X)

4B2M(1+2/\) ’
Proof. Let f € 8;(\,7;¢). By using (2.18) and Lemma 2.2, then we obtain
B B 4yB; (1+2\)| | B
2l o< B fo (1B ABIAH+2N) B Y
‘“3 ”“2’ = 4(1+2)) |5 (I=n) 1+ 272 15, ’Cl‘
WB: | B}
2(1+2\)  (1+A)7?
1= - By (1+X)? | (|Ba] —2By) (14 \)? ‘ 2‘
4By 1+ 20 AB? [y (1 + 2)) !
. i Ba(14))%e? Ba|—2B1)(1+))?
Taking |y| = e 0 k= % and {; = %, for B1, By € R and By > 0,

we rewrite

I i e e TR a2
— st R i 1]
< g (1w B )
_ 2(|i7|+B21)\) (Ilvljfi)i g+ D [|B2|S(‘;—|Ei;l)\0)|)—231]] 4.

Firstly, we consider the case % > 1.

Let £ <1—R(k1). Then from (2. 20) and |ci| < 1, we obtain

C a2 < DB B _ [Y[[1Baf (1 + [sin6]) = 2B1] || »
‘ag ,ua2’ S Sty (+)\)\ R (k)| + T4 20 ‘cl‘
7| B I* B? Y[ [1B2] (1 + |sin6]) — 2B ]
1—p—R(k
2142y (1+)\)2( uRk))+ 4(1+2))
h[* B? V11 B2| (1 + |sin b))

_ W(l—u—%(kl)ﬂ' 4(1+2))
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Let 4> 1— R (k1). Then from (2.20) and |c;| < 1, we yield
s —pad] < 5B (‘1’”+ Af 1= g |+ LI R _231]] ]
< b (|v|+ f)l s - PO ) 25
s 2
) I =),

Finally, we want to consider the case with %BTNBQ' < 1. By using (2.20) and |¢1| < 1,
we obtain the following results according to the cases of u, k1 and N.
For n <1 —R (k1) + N, we have

B B Y[ [| B (1 + |sin 0]) — 2B4]
_ a2l < 17| B1 2
“‘3 ”“2’ = 21420 (14 A )2‘1 — Rkl + 4(1+ 2N ‘Cl‘
17| B1 | B Y[ [| B (L + |sin]) — 28]
1—pu—R(k
= 2(1+2)) (1+>\)2( p R+ 4(1+27)
* B 7] [Be| (1 + [sin §])

(1—p—R(k))+

(14 2)° TEE
and for 1 — R (k1) + N<u <1 —R(k1), we obtain
B * B Y[ [ Bz (1 + |sin 0]) — 2B ]
) v B1 1 o 2
‘ai” ”“2’ = o2ty aeaEt Tl Rk + 4(1+ 2N “31‘
17| B1
- 2(142))
Similarly, for 1 — R (k1) < p <1 =R (k1) — N, we yield
B \7\ BY il [\Bz\(1+\SIH9\)—231]
_ a2l < v B1 1 o
17| By
— 2(1+42))
and finally, for p > 1 — R (k1) — N, we have
B h*B Y[ {[Ba| (1 + |sin 0]) — 2B, ]
_ a2l < 17| B1 _ 2
jas — pa| - < 2(1+2)) |1 +)\) ‘ Rkl + 4(1+2X) ]
7| B * B Y[ [1Baf (1 + [sin 0]) — 2B1]
R(k1)—1
T 2(142)) (1+/\)2(MJr (a) = 1)+ 4(1+2))

] |Ba| (1 + [sind])  |4° B
= — 1—pu—%R(k)).
4(1+2)) TSV A
Thus the proof is completed. O
Taking vy =1, A =0 and ¢(z) = (1 4+ Az)/(1+ Bz) (-1 < B < A <1) in Theorems
2.3, 2.4 and 2.5, we have the following corollary.
Corollary 2.6. If f € A is given by (1.1) belongs to the class 8, [A, B], then
(1) For peC,
‘a?)_wg‘ 4B if |IBl+4(1—p)(A—B)—B| <2
A EFEIBI+ 41— ) (A= B) = Bl if [B| +4(1— ) (A~ B) = B| > 2
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(2) For peR,

PGP — (u=1) (A-B)?
‘ag—ua§‘< A_TB

P 4+ (u=1) (A-B)’

and

(A-B) [(A-B)(1-p)+ 22
‘a:a—/w%’ﬁ A*TB

(A-B) [(A-B)(u-1)+ 22

Taking v =1, A = 1 and ¢(z2)
2.3, 2.4 and 2.5, we have the following corollary.

1703

if p<1-— =Bl

2(A-B)

. 1-|B 1-|B]
if 1— Z(A‘EL)<M<1+2(‘ B
B

if M>1+2%A|B|)

. B|+B—

if N<1+‘4(‘X s

if 14+ 582 <1 - P22
B|-B

if p=>1- ‘4(‘,4—3)2

= (14 Az)/(1+ Bz) (-1 < B < A<1) in Theorems

Corollary 2.7. If f € A is given by (1.1) belongs to the class C, [A, B], then

(1) ForpeC,
o< F, 1B+ 181 1) (A~ B)— B| <2
‘a‘g_”a?’g (A-B) '
o [IBl+13(1—p)(A=B) =Bl if |B|+[3(1-n)(A-B)—-B[=2
(2) For peR,
W_(M_l)m%faf i ou<1- ((;\g\))
’(IS*MCL%’ < A_TB if 1-— 3(({47\]]33\)) <p< 1+23((1AT,|];|))
2
IBIA=E) |y — 1) 45D if u21+%>,((1,47_‘g‘))
and
AP BA-B) -+ |Bl+B] i p<1+ A
‘GS_MG%’S A%B 'Lf 1+%<M<1_%
4B [3(A=B)(u—1)+|B|-B] if p>1- 220

Taking v € C\ {0}, A =0 and p(z) =
we have the following corollary.

(1+2)/(1—%) in Theorems 2.3, 2.4 and 2.5, then

Corollary 2.8. If f € A is given by (1.1) belongs to the class 8[|, then

(i) For v e C\{0} and p € C,

2 17|
az — pay| <
’ 2‘ { DU+ (1= ) 8y + 1]
(ii) For >0 and p € R,
oy v—4(p—1)5
s “a2)3{7+4(u1)72

(iii) For v € C\{0} and p € R,
47 (1 — p) 4 DlOtlsind]cosd)

‘a3 ,Ua%’ < |’7’
1+|sin 8|—cos 6 1 2
|| ( |s12 |—cos 6) ‘ | (1 )

(|sin f|—cos 6—1)

8] and x2 (77 9)

where x1 (v,6) =

— )8y <1
-—w&y=1

if
if

1+ (1
114 (1

if p<l1
if pu>1

if p<l+x1(v,0)
if 14+ x1(7.0)<p<1—x2(v,0)
if p>1-x2(v,0)

(|sin 8] +cos — 1)
8hl
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Taking v € C\ {0}, A =1 and p(2) = (1 + 2)/(1 — 2) in Theorems 2.3, 2.4 and 2.5, we
obtain the following corollary.

Corollary 2.9. If f € A is given by (1.1) belongs to the class C,[Y], then
(i) For v e C\{0} and p € C,

7] :
ol if 1+ —p)6y] <1
hyﬁmag{l% if 1+ (1= p) 61
3 N+ @ =pby+1] i 1+ (1 —p)6y =21
(ii) For >0 and p € R,
T (p—1)4? if p<1
a2 <{ g —(u=1)v f n<
‘a?’ ,ua2’_ T4+ (p—1)4° if p>1

(iii) For v € C\{0} and u € R,

a

[ P BEEEEEE <1 1(5,6)
s —pa3| < { Il if T+¢1(7,0)<p<1-¢2(v,0)
1+|sin 6| —cos 0 .
DICHROCl) — |y (1 =) if p21—pa(,6)

where @y (v,0) = BMLe0D) g ) (,0) = (EnOLbend=1),

Acknowledgment. The research of E. Deniz was supported by the Commission for the
Scientific Research Projects of Kafkas University, project number 2016-FM-67.
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