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Abstract  Öz 

Bootstrap is a technique for estimating standard error and bias of the 
statistic of interest. The idea behind the bootstrap technique is that 
bootstrap distribution generated by resampling from the sample at 
hand mimics the sampling distribution of the statistic. Nevertheless, the 
effect of sample size and number of bootstrap replications on the 
accuracy of bootstrap predictions is rarely considered and ignored 
while applying bootstrap. Although there exist limited studies on this 
matter in the literature, results obtained in these studies are expressed 
based on the population distribution. In this paper, we provide results of 
an empirical study that examines the relationship between sample size 
and number of bootstrap replications and standard errors of bootstrap 
estimates of location parameters for different population distributions. 
To that end, we focus on the representativeness of bootstrap 
distribution to sampling distribution for different continuous and 
discrete population distributions and different sample sizes, firstly. 
According to application results, we observe that sample size has more 
impact on accuracies of bootstrap estimates as regards to number of 
bootstrap replications. Additionally, we confirm that bootstrap 
distributions of median based on small sample sizes are inadequate for 
representing sampling distribution. Lastly, in order to model 
relationship between standard errors of bootstrap estimates and 
sample size and number of bootstrap estimations independently of 
population distribution, we propose a methodology based on jackknife-
after-bootstrap technique and regression modeling. 

 Bootstrap bir istatistiğin standart hatasını ve yanlılığını tahmin etmek 
üzere kullanılan bir tekniktir. Bootstrap tekniği; eldeki örneklemden 
yeniden örnekleme ile üretilen bootstrap dağılımının, istatistiğin 
örneklem dağılımını temsil edeceği ana fikri üzerine kuruludur. Buna 
karşın; bootstrap uygulanırken örneklem büyüklüğünün ve bootstrap 
yineleme sayısının bootstrap tahminlerinin doğruluğuna olan etkisi 
genelikle dikkate alınmamakta ve ihmal edilmektedir. Her ne kadar 
literatürde bu konuyu ele alan sınırlı sayıda çalışma olsa da, bu 
çalışmalarda elde edilen sonuçlar örneklemin alındığı ana kütle 
dağılımına bağımlı olarak ifade edilmektedir. Bu makalede, örneklem 
büyüklüğü ve bootstrap yineleme sayısı ile konum parametrelerinin 
bootstrap tahminlerinin standart hataları arasındaki ilişkiyi farklı ana 
kütle dağılımları için inceleyen ampirik bir çalışmanın sonuçları 
sunulmaktadır. Bu maksatla öncelikle farklı sürekli ve kesikli 
dağılımlardan çekilmiş farklı büyüklüğe sahip örneklemlere uygulanan 
bootstrap işlemi sonrası bootstrap dağılımının örneklem dağılımını ne 
oranda temsil ettiği incelenmektedir. Uygulama sonucunda, bootstrap 
tahminlerinin doğruluğuna örneklem büyüklüğünün bootstrap 
yineleme sayısına göre daha fazla etki ettiği görülmüştür. Ayrıca, 
medyana ilişkin bootstrap dağılımlarının özellikle küçük örneklemler 
için örnekleme dağılımını temsil etmede oldukça yetersiz olduğu tespit 
edilmiştir. En son olarak da bootstrap tahminleri standart hataları ile 
örneklem büyüklüğü ve bootstrap yineleme sayısı arasındaki ilişkinin 
ana kütle dağılımından bağımsız olarak tahmin edilebilmesi için 
jackknife-sonrası-bootstrap tekniği ve regresyon modeli tabanlı bir 
yöntem önerilmektedir. 

Keywords: Bootstrap, Bootstrap repetitions, Jackknife-after-
bootstrap, Sampling variability, Resampling variability 

 Anahtar kelimeler: Bootstrap, Bootstrap yinelemesi, Jackknife-
sonrası-bootstrap, Örnekleme değişkenliği, Yeniden örnekleme 
değişkenliği 

1 Introduction 

A statistical inference is based on the sampling distribution of 
sample statistics. A sampling distribution of a statistic is the 
distribution of the statistic for all possible samples of some size 
n from the same population. If we knew the sampling 
distribution of a statistic, then we would be able to draw 
conclusions about the behavior of the statistic under random 
sampling. When the statistic of interest is the mean, then the 
Central Limit Theorem states that the sampling distribution 
follows 𝑁(𝜇, 𝜎2/𝑛) provided that the population is normal, or 
sample size is large. However, life is usually not that easy; 
sometimes the statistic of interest is median, trimmed mean or 
quantiles. We do not have smooth approximations for these 
statistics. Additionally, most of the time we have no idea about 
the population from which the sample comes. In these 
situations, bootstrap methods help. First introduced by Efron 

[1], bootstrap method is a kind of Monte Carlo simulation 
where sample at hand is treated like a pseudo-population. The 
sample serves as an estimate of the population. Many 
resamples are drawn from the pseudo-population (i.e. the 
sample) with replacement and the statistic of interest is 
calculated each time. The distribution of the statistic calculated 
from resamples forms the bootstrap distribution of the statistic. 
What makes bootstrapping special is that we do not have any 
assumption about the underlying population and it applies to 
any statistic other than mean. The idea behind the bootstrap 
technique is that bootstrap distribution generated by 
resampling from the sample at hand mimics the sampling 
distribution of the statistic. Hence, we draw conclusions about 
the statistic by looking at the bootstrap distribution. 

Since the main purpose of bootstrap is to estimate standard 
errors and bias, it has found a wide range of application in 
building confidence intervals for the statistics of interest. The 
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works of Efron and Tibshirani [2], Efron [3], DiCicio and Efron 
[4] provided good examples to application of bootstrap 
procedure to confidence interval building. In his study Pawitan 
[5] showed how to construct a bootstrap likelihood from a 
single bootstrap, without any nested bootstrapping nor any 
smoothing. Hall [6] provided a theoretical comparison of 
bootstrap confidence intervals. In another study Hall [7] 
described the connection between Edgeworth expansions and 
the bootstrap. Hesterberg et al. [8] provided a complete 
overview to the bootstrap methods and permutation tests. In 
their work they posed the question: How accurate is a 
bootstrap distribution? In order to answer this question, they 
compared empirical sampling and bootstrap distributions by 
looking at their shapes. They also examined the effect of sample 
size on the variation of bootstrap estimates.  

Regarding application of the bootstrap to finite populations,  
Lo [9] proposes Bayesian analogue of finite population 
bootstrap (FPB). He suggests that finite population Bayesian 
bootstrap can be defined in terms of Polya’s urn scheme. He 
shows that FPBB and FPB present similar operational 
characteristics and for a large population size FPNN reduces to 
the Bayesian bootstrap. Booth et al. [10] present bootstrap 
applications for finite population sampling problems. They 
focus on estimating the distribution function of a Studentized 
estimate of a population mean. They show that second-order 
accurate bootstrap estimates can be generated for the 
distributions of stratified sample means, separate ratio 
estimates, and other estimates of a finite population mean. They 
also conduct Monte-Carlo simulation to present performance of 
the proposed method. Shao [11] discusses the impact of the 
bootstrap on sample surveys. In sample surveys, the original 
data is generally sampled without replacement from a finite 
population. In this paper Shao [11] explains why bootstrap is so 
important in sample surveys and presents developments about 
bootstrap applications in this field. In his study Aitkin [12] 
extends the Bayesian bootstrap analysis to regression models 
for numerically-valued response variables in stratified and 
clustered samples. He discusses disadvantages of Bayesian 
bootstrap approach and remarks that these disadvantages are 
shared with survey sampling analysis, as well. Antal and Tille 
[13] remark that when sampling design is not considered, 
classical bootstrap methods tend to produce biased variance 
estimators. In order to overcome this problem, they propose 
novel resampling methods where they select subsamples under 
a completely different sampling scheme from that of original 
sample. They show that their technique generates unbiased 
estimators of variance. 

Some other studies focused on estimating standard errors of 
the bootstrap estimations and selection of proper n and B 
figures in order to reduce variability. In his prominent study, 
Efron [14] described the jackknife-after-bootstrap procedure 
where he used Tukey’s jackknife technique to attach standard 
errors to bootstrap estimates. In his paper he also proposed 
using bootstrap-after-bootstrap to compute standard errors, 
however he ended up recommending using jackknife-after-
bootstrap due to the efficiency of the latter. Hill, Cartwright and 
Arbaugh [15] considered assessing the reliability of the 
bootstrap using jackknife-after-bootstrap procedure. They 
examined the accuracy of the jackknife-after-bootstrap using 
Monte Carlo experiments. They used jackknife-after-bootstrap 
in the context of three statistical models: the model of the mean 
of a normal population, the linear regression model and the 
seemingly unrelated regression model. They found that 

jackknife-after-bootstrap overestimates the standard error by 
a large amount when 𝐵 ≤ 200. With B = 10,000 jackknife-after-
bootstrap estimates are very much reliable. Andrews and 
Buchinsky [16] proposed a three-step method for choosing the 
number of repetitions (B) in order to have reliable bootstrap 
estimates. Reliability is defined in terms of accuracy which is 
measured by the percentage deviation of the bootstrap 
standard deviation estimate based on B bootstrap simulations 
from the corresponding quantities for which 𝐵 = ∞. Davidson 
and MacKinnon [17] pointed out that using finite number of 
bootstrap samples cause a loss of power, hence, they propose a 
pretest procedure for choosing the number of bootstrap 
samples in order to minimize experimental randomness. 
Regarding the number of bootstrap repetitions required, 
Lunneborg [18] suggested continuing drawing resamples until 
successive standard error estimates vary by less than 1%. 
Pattengale et al. [19] proposed a threshold value, which they 
call as stopping criteria, used to determine if enough bootstrap 
samples are generated.  

Nowadays computation power has improved enormously. 
Therefore, focusing on the number of bootstrap replications 
necessary for reliable bootstrap estimates might be pointless. 
As Chernick [20] emphasized, it may be silly to argue between 
100 and 800 iterations while it is easy to bootstrap 5,000 to 
10,000 iterations. Even though it is true, we still need to know 
how variability of bootstrap estimates relies on n and B. In this 
respect, Efron and Tibshirani [21] give approximate forms for 
the variance of bootstrap estimate of standard error and 
percentiles. In their study they provide theoretical closed-form 
solutions for the relationship between variance of bootstrap 
estimate of standard error and n and B. The main problem with 
this form is that unknown constants are distribution dependent 
and they are not easy to obtain. A distribution-dependent 
estimate contradicts the idea of bootstrap which is proposed 
mainly as a remedy for unknown population distributions. 

Considering this fact, the main aim of this paper is to provide an 
empirical study that examines the relationship between n and 
B and standard errors of bootstrap estimates. Additionally, we 
propose a simple methodology to build this relationship 
empirically. The paper is organized as follows: Section 2 
provides theoretical background for bootstrap and jackknife-
after-bootstrap methods. In section 3 we present an application 
to examine the representativeness of bootstrap distribution to 
sampling distribution for different population distributions. 
Sources of variation of bootstrap estimates are examined in 
Section 4. Last section concludes our study. 

2 Methods 

2.1 Bootstrap 

The bootstrap is a method to calculate standard error and bias 
of the statistic of interest where we make no assumptions about 
the population from which the sample is drawn. Rather, we 
treat the sample at hand as the pseudo-population and draw 
samples from it with replacement. In other words, the sample 
is used to estimate the population. Let’s illustrate it with an 
example. Suppose we are interested in the mean of some 
unknown population and we have a sample of size n. Say our 
sample is x = (6, 8, 1, 7, 9). We resample from this sample with 
replacement and calculate the statistic of interest. Two of our 
resamples could be x*1 = (9, 8, 1, 9, 6) and x*2 = (7, 6, 1, 9, 7) then 
the bootstrap estimates for the mean would be �̂̄�∗1 = 6.6 and 
�̂̄�∗2 = 6, respectively. We replicate this procedure B times, 



 
 
 
 

Pamukkale Univ Muh Bilim Derg, 26(1), 174-183, 2020 
L. Erişkin 

 

176 
 

where B is a large number. Calculated values form the bootstrap 
distribution of the statistic. As mentioned before, the bootstrap 
distribution mimics the sampling distribution. By using the 
bootstrap distribution, we calculate the standard error and bias 
of the statistic. Let 𝜃 be the statistic of interest (i.e. mean), the 
bootstrap estimate of standard error can be formulated as; 

𝑆�̂�𝐵(𝜃) = {
1

𝐵 − 1
∑(𝜃∗𝑏 − �̄�∗)

𝐵

𝑏=1

2

}

1
2

 (1) 

where 

�̄�∗ =
1

𝐵
∑𝜃∗𝑏
𝐵

𝑏=1

 (2) 

Based on this idea, standard errors of other statistics of 
interests can be easily calculated with this approach. 
Additionally, bootstrap confidence interval of a statistics can be 
found by; 

(𝜃 − 𝑧
(1−

𝛼
2
)
𝑆𝐸�̂� , 𝜃 − 𝑧

(
𝛼
2
)
𝑆𝐸�̂�) 

(3) 

where 𝑆𝐸�̂� is the standard error of the statistic of interest found 

by using bootstrap. 

2.2 Jackknife-After-Bootstrap 

Bootstrap estimates of standard error and bias are also 
estimates, meaning that they also have errors associated with 
them. Jackknife-after-bootstrap procedure was introduced by 
Efron [14] to calculate errors associated with the bootstrap 
estimates. Say we estimated the standard error of some statistic 
(𝜃) using the bootstrap method. Then we would like to measure 
the uncertainty of the standard error (var(𝑠�̂�𝐵)). In order to 
compute jackknife-after-bootstrap estimate of the variability of 

𝑠�̂�𝐵, we leave out one data point at a time and calculate 𝑠�̂�𝐵
(−𝑖) 

using the bootstrap method on the remaining n-1 points. We 

repeat this procedure till we have all 𝑠�̂�𝐵
(−𝑖) values [22]. The 

jackknifes-after-bootstrap estimate of variance can be 
formulated as; 

𝑣𝑎�̂�𝑗𝑎𝑐𝑘( 𝑠�̂�𝐵) =
𝑛 − 1

𝑛
∑(𝑠�̂�(−𝑖) − 𝑠�̂�)

2
𝑛

𝑖=1

 (4) 

where 

𝑠�̂� =
1

𝑛
∑𝑠�̂�(−𝑖)
𝑛

𝑖=1

 (5) 

In order to improve the efficiency of the procedure, we use the 
original bootstrap samples to apply jackknife instead of 
producing a new set of bootstrap samples where we leave out a 
data point. We find bootstrap samples which do not contain the 
point xi. These are the bootstrap samples used to calculate 

𝑠�̂�𝐵
(−𝑖). 

3 Application 

3.1 Sampling and bootstrap distributions 

The idea behind the bootstrapping lies in the assumption that 
bootstrap distribution mimics the sampling distribution of the 
statistic. In order to verify this assumption, we need to compare 

these two distributions in terms of spread, shape and center. If 
these two distributions are similar, then we can use bootstrap 
distribution as a substitute for sampling distribution to draw 
conclusions about the statistic. In our application, we will 
sample from three different population distributions. First 
population distribution is normal with mean 8 and standard 
deviation 2. Second population distribution is exponential with 
mean 5. Another population distribution is a multimodal 
distribution generated with mixture of two distributions;  
N(5, 2) and N(10, 2). Apart from these continuous distributions, 
we also consider Poisson distribution with mean rate 5. The 
probability density/mass distributions of these population 
distributions are displayed in Figures 1 to 4. 

 

Figure 1: Normal distribution used in the application. 

 

Figure 2: Exponential distribution used in the application. 

 

Figure 3: Mixture population used in the application. 

 

Figure 4: Poisson population used in the application. 
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Normal distribution has some nice properties regarding 
sampling distributions of the statistics. For example, if the 
population is normal, Central Limit Theorem holds even for 
small sample sizes. Normal population mean and median are 
the same, therefore, sampling distributions of both statistics 
are centered at the same common number. In order to see what 
happens when population is nonnormal, we also considered 
exponential population and a multimodal mixture-generated 
population. A Poisson population is included in the study so 
that we could observe performance of bootstrapping with 
respect to discrete populations. Additionally, in order not to be 
distracted by the nice properties of the mean, we also 
considered median as the statistic of interest. In order to obtain 
empirical sampling distributions, we conducted a Monte Carlo 
procedure where we drew large number (i.e. 1,000,000) of 
samples of size 50 from the populations and calculated the 
statistics of interest for each sample. The calculated statistic 
values form the sampling distributions. Table 1 summarizes the 
values of the statistics of these three distributions, while 
Figures 5 and 6 display sampling distributions of mean and 
median with respect to these three populations. 

Table 1: Means and medians of the population distributions. 

Statistic Normal Exponential Mixture Poisson 
Mean 8.000 5.000 8.000 5.000 

Median 8.000 3.466 8.650 5.000 

Even though exponential sampling distribution is somewhat 
positively skewed, we see that four sampling distributions of 

mean are close to normal regardless of the underlying 
population. This is in harmony with the Central Limit Theorem. 
Sample size in the experiment is 50; we expect four sampling 
distributions to become more normal as sample size increases. 
Three sampling distributions are centered at the population 
means, as expected. When we considered sampling 
distributions of median, we observe that only the first one of 
three continuous distributions is close to normal while others 
are skewed. Sampling distribution of the median for Poisson 
distribution is rather discrete and far from being normal. This 
stems from the fact that, median of a sample is very much 
dependent on the limited number of middle values of the 
sample and sample quantiles for discrete populations are not 
consistent for the population quantiles, in general [23]. 

In order to generate bootstrap distributions, we first drew one 
sample of size 50 from each of the population and then applied 
bootstrap procedure. In the bootstrap procedure the number of 
resamples is 1000. Table 2 gives the sample means and 
medians, while Figures 7 and 8 present histograms of the 
bootstrap distributions generated from these samples. 

Table 2: Means and medians of the samples. 

Statistic Normal Exponential Mixture Poisson 

Mean 8.426 5.435 8.280 4.960 

Median 8.427 4.772 9.155 5.000 

 

 

 

   

 

     

 

   

 

Figure 5: Sampling distributions of mean with respect to 4 populations. 
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Figure 6: Sampling distributions of median with respect to 4 populations. 

 

   

 
     

 

   

 

Figure 7: Bootstrap distributions of mean with respect to 4 samples. 
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Figure 8: Bootstrap distributions of median with respect to 4 samples. 
 

In the figures solid lines indicate population means and 
population medians while dashed lines indicate sample means 
and sample medians. We observe that bootstrap distributions 
of mean and median are centered at the sample means and 
sample medians rather than population means and population 
medians. This is the consequence of bootstrap procedure. 
Because bootstrap procedure treats the sample like the pseudo-
population. Therefore, the bootstrap distribution is centered at 
the sample statistics. As number of resamples increases and 
approaches to infinity, the bootstrap distribution center 
converges to the sample center. The bootstrap distributions of 
medians are not good in shape in terms of representability of 
the sampling distributions. This is because of the sample size. 
The bootstrap procedure for the median requires quite large 
sample sizes. Value of the median depends on the middle 
observations of the sample. When we resample with 
replacement from the same sample, we repeat the same few 
middle observations. Conversely, sampling distribution 
contains the medians of all possible samples and is not confined 
to a few values [8]. Bootstrap distribution of median for the 
Poisson sample suffers from the same problem as sampling 
distribution does. Central Limit Theorem does not hold true for 
median and bootstrap distribution does not consistently mimic 
distribution of the sample quantiles [23]. To overcome this 
problem, Jentsch and Leucht [23] propose two different 
strategies. On the other hand, bootstrap distributions of means 
are similar to sampling distributions in terms of shape and 
spread.  

In order to compare bootstrap distributions and sampling 
distributions, we employ QQ plots. If the bootstrap 
distributions and sampling distributions are similar in shape 

and spread, we expect the quantiles fall on a straight line in the 
QQ plot. Figures 9 and 10 are QQ plots of bootstrap and 
sampling distributions of the statistics. 

QQ plots for the bootstrap and sampling distributions of mean 
propose that bootstrap distribution mimics sampling 
distribution quite well for all three populations. This means 
that it is safe to use bootstrap distribution in order to draw 
conclusions about the statistic. On the other hand, when we 
consider the QQ plots for the median, we observe that only the 
QQ plot corresponding to normal population proposes the same 
inference. QQ plots corresponding to exponential and mixture 
populations are bad in shape, contradicting the theory. We 
explained the reason why we expect to have such a picture, 
previously. We need to have more observations in the sample 
in order to rely on the bootstrap distributions of the median. 

For the discrete population case, on the other hand, QQ plot for 
the Poisson bootstrap and sampling distributions presents a 
staircase pattern, as expected. Additionally, this plot proposes 
that quantiles of these two distributions do not match well 
enough. This is because bootstrap distribution inherits 
inconsistency of sampling distribution for the discrete cases. 
Interested reader may refer to Jentsch and Leucht [23] for 
details and solution methodologies in this subject.  

QQ plots for the bootstrap and sampling distributions of mean 
propose that bootstrap distribution mimics sampling 
distribution quite well for all three populations. This means 
that it is safe to use bootstrap distribution in order to draw 
conclusions about the statistic. On the other hand, when we 
considered the QQ plots for the median, we observe that only 
the QQ plot corresponding to normal population proposes the 
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same inference. QQ plots corresponding to exponential and 
mixture populations are bad in shape, contradicting the theory. 
We explained the reason why we expect to have such a picture, 
previously. We need to have more observations in the sample 
in order to rely on the bootstrap distributions of the median. 

To see if the bootstrap distribution of median gets better in 
terms of representability of the sampling distribution as sample 
size gets larger, we performed the same experiment with larger 
samples. For the reasons we explained previously, we exclude 
Poisson population from the further analysis. We replicated the 

procedure for sample sizes 100, 200 and 500. Figures 11-13 
display the results. 

We observe that QQ plots get better as sample size increases. 
When sample size 100 and 200, we cannot claim that bootstrap 
distribution mimics sampling distribution as desired. However, 
as sample size increases to 500, representation becomes quite 
good. When n = 500, it’s safe to use bootstrap. As a consequence, 
we need to be careful when applying bootstrap to statistics like 
median, which relies on one or two observations from the 
sample. 

 

   

 
     

 

   

 

Figure 9: QQ plots of the bootstrap and sampling distributions of the mean. 

 

   

 
 

 

   

 

Figure 10: QQ plots of the bootstrap and sampling distributions of the median. 
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Figure 11: QQ plots of the bootstrap and sampling distributions of the median (Sample Size 100). 

   

Figure 12: QQ Plots of the Bootstrap and Sampling Distributions of the Median (Sample Size 200). 

   

Figure 13: QQ plots of the bootstrap and sampling distributions of the median (Sample Size 500). 

 

3.2 Sources of Variation 

The sampling distribution of a statistic contains the variation in 
the statistic because samples are drawn randomly from the 
population. Since we treat bootstrap distribution as a substitute 
for the sampling distribution, this adds a second source of 
random variation. Therefore, bootstrap estimates have two 
sources of variation associated with them [21]: 

 Sampling variability: Arises since we have a sample of 
size n rather than the entire population. 

 Bootstrap resampling variability: Arises since we take 
only B bootstrap samples rather than an infinite 
number. 

Figure 14 shows the sampling and resampling components of 
variance. As a consequence, choice of n and B has impact on the 
accuracy of the bootstrap estimates. 

Efron and Tibshirani [21] gave approximate forms for the 
variance of bootstrap estimate of standard error and 

percentiles and showed that jackknife-after-bootstrap 
procedure can be used to estimate variation associated with 
bootstrap estimates provided that number of bootstrap 
replicates (B) is big enough.  

 

Figure 14: Components of Variance for the Bootstrap 
Estimates (Source: Efron and Tibshirani [21]). 
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As an example, for the bootstrap estimate of standard error, 
variance associated with this estimate has the form 

𝑣𝑎𝑟( 𝑠𝑒𝐵) =
𝑐1
𝑛2

+
𝑐2
𝑛𝐵

 (6) 

Where c1 and c2 are constants depending on the underlying 
population F. First part of the variance corresponds to sampling 
variation while the second part represents the resampling 
variation. It is clear that sampling variability is function of the 
sample size and resampling variability is function of both the 
number of bootstrap replicates and the sample size. It is 
intuitive to assert that resampling variability adds little 
variation to the bootstrap estimates because we are only 
limited with analyst’s time and power of the computer when 
selecting number of resamples. On the other hand, most of the 
time we do not have control over the sample size. This can also 
be shown empirically. Hesterberg et.al [8] drew five random 
samples from a mixture distribution and drew 1000 resamples 
from one of these samples. After drawing histograms of these 
samples and bootstraps distributions, they pointed out that 
each bootstrap distribution is centered close to mean of the 
original sample. Additionally, they are very similar to the 
sample from which they are drawn in terms of shape, center 
and spread. On the other hand, each of 5 samples vary in terms 
of center, shape and spread. This analysis shows that 
bootstrapping adds little variation to the bootstrap estimates. 

Can we visualize the variation of bootstrap estimates for a given 
sample size and number of resamples combination? Figure 15 
shows the relationship between variance of the bootstrap 
estimate of standard error of the mean and these two 
parameters. The variance figures are computed empirically 
with jackknife-after-bootstrap procedure. 

 

Figure 15: 3D plot for the jackknife-after-bootstrap variance of 
the bootstrap estimate of standard error of the mean. 

The variance of the bootstrap estimate decreases as the sample 
size and the number of resample size increases. Even though 
small sample size and small number of resample size increase 
the variance, we can assert that sample size is more critical 
between two, since achieving large number of bootstrap 
replicates is only analyst’s limitation. When we implement the 
same procedure for the median, we obtain Figure 16. 

In general, variances of the bootstrap estimate of the standard 
error of the median is larger than those of the mean for all levels 
of sample size and number of resamples. This observation is in 
harmony with the inference we made earlier about the sample 
size of the bootstrapping procedure for the median. As stated 
there, the reason for this is that median requires larger sample 
size than mean in order to achieve a good representation of the 
sampling distribution. 

 

Figure 16: 3D plot for the jackknife-after-bootstrap variance of 
the bootstrap estimate of standard error of the median. 

4 Model for the variance associated with 
bootstrap estimates 

After observing the relationship between the variance and 
sample and number of resample sizes, the question arises: 
Could we build an empirical model for this relationship? It 
seems possible to build a regression model for this relationship.  
For this purpose, we devised a 32 factorial design. We selected 
levels 20, 50 and 100 for the sample size factor and 500, 1000 
and 5000 for the number of resample size factor and replicated 
the design 5 times. We computed the variances of the standard 
error for the mean at these levels with jackknife-after-
bootstrap procedure. The reason why we chose these levels lies 
in the limitations of the jackknife-after-bootstrap procedure. 
Efron and Tibshirani [21] showed that jackknife-after-
bootstrap runs into trouble when n < 10 and B < 20. Because 
when the sample size and the number of resample size are 
below these figures, then the probability that every bootstrap 
sample contains a given point i is high. Also, they showed that 
jackknife-after-bootstrap overestimates the variance by a large 
margin when B is as small as 20, but seems to improve as B gets 
up to 200. When the number of resample size is near 500, 
estimate becomes reasonable.  

After getting responses for the design points, a regression 
analysis was performed. A quadratic model with interactions 
terms was considered for the regression analysis. In order to 
decide which predictors to include, stepwise regression was 
performed first. Then regression model was built with the 
suitable predictors. We applied log transformation to response 
variable based on Box-Cox analysis. Additionally; normality 
(with Ryan-Joiner test), homoscedasticity (with Bartlett test) 
and auto-correlation (with Durbin-Watson statistic) of 
residuals are checked for the regression analysis. Predictors 
and coefficients in the model are summarized in Table 3. 

Table 3: Regression coefficients. 

Predictor Coefficient SE Coefficient P 

Constant -1.16 0.107400 0.000 

B -2.3x10-4 0.000032 0.000 

n -3x10-2 0.003920 0.000 

n2 -2.4x10-4 0.000035 0.000 

n2B -4.6x10-7 0.000000 0.000 

nB2 9.3x10-10 0.000000 0.000 
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The regression equation to model the relationship between the 
variance associated with the bootstrap estimate of standard 
error of the mean and sample and number of resample size is: 

log(𝑣�̂�𝑟(𝑠�̂�𝐵)) = −1.16 − 2.3𝑥10−4𝐵 − 3𝑥10−2𝑛

− 2.4𝑥10−4𝑛2 − 4.6𝑥10−7𝑛2𝐵
+ 9.3𝑥10−10𝑛𝐵2 

(7) 

This model is obtained empirically, rather than theoretically as 
done by Efron and Tibshirani [21]. It may not be easy to 
determine values of c1 and c2 for different populations 
immediately as shown in Equation (6). On the other hand, it is 
possible to model the relationship between the variance of the 
bootstrap estimates and sample and number of resample sizes 
for other statistics in the same fashion for all kinds of 
population distributions. Consequently, we can use this model 
to decide sample size and number bootstrap repetitions in 
order to obtain bootstrap estimates with acceptable variance. 

5 Conclusion and further research 

Even though bootstrap methods are very popular and find 
many application areas, their limitations are rarely considered. 
In this paper, we examined the variation associated with 
bootstrap estimates empirically. We need to be aware that 
bootstrap estimates have two sources of variance. One of them 
is the sampling variability, decreases as sample size increases, 
and resampling variability, decreases as number of resamples 
increases. Since number of bootstrap resamples is limited with 
time of the analyst and power of the computer, sample size 
needs more attention. 

The relationship between variance of bootstrap estimates and 
n and B is examined theoretically by Efron and Tibshirani [21], 
however, it may not be easy to find closed form formulas for 
this relationship all the time. Additionally, constants in this 
formula are distribution specific, hence, depends on the 
underlying distribution from which the random sample is 
drawn. However, we almost never know the true underlying 
distribution of the sample. Consequently, distribution free 
techniques to build this relationship is important, which 
constitutes the main contribution of this study. In this respect, 
we propose a simple and empirical way to model this 
relationship by using jackknife-after-bootstrap procedure. 

In this paper two statistics are considered: mean and median. 
An analysis similar to this can be performed for different 
statistics of interest. Because different statistics have different 
limitations in terms sample size and number of resamples. 
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