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Combined Iodine, Iron and Zinc Biofortification of Tomato Fruit  

Özge ŞAHİN1* 

ABSTRACT: Deficiencies of zinc (Zn), iron (Fe) and iodine (I) are major malnutritional health problem 

in the devoloping countries. Biofortification of vegetables with I, Fe and Zn can become an alternative 

strategy of introducing these elements for human dietary intake. The purpose of this study was to 

determine the effect of combined I (KIO3), Fe (FeSO4.7H2O) and Zn (ZnSO4.7H2O) supply on I, Fe and 

Zn concentrations of tomato plants, which is stem and leaf, and their fruits (Lycopersicon esculentum L. 

cv. Swanson). Tomato cultivar was grown in glasshouse conditions with four replications in 10 kg soil 

and 5% peat mixture. The treatments as contain: contol, each element applied at 10, 20 and 40 mg I-Fe-

Zn kg-1, respectively. Concentrations of I, Fe and Zn and essential elements (P, K, Ca, Mg, S, Cu, Mn, 

Mo, Cl, Si and Ni) as well as non-essential elements (Al, Co, Ti, Br, Rb, Sr, Ba, Cr, Sn, Sb, Te, Ge, Cs, 

Ce, Ga, Ta, Hf) were determined by Polarized Energy Dispersive X-ray Fluorensence (PEDXRF). Effect 

of combined I-Fe-Zn treatments on fresh and dry weights of plant and fruit were found statistically 

important. Iron and Zn concentrations of fruits and plants were increased by combined I-Fe-Zn treatment 

except for Fe concentration in plant. Application of I-Fe-Zn were not significant effect on essential 

element concentrations in both plants and fruits, out of Ca, Na and Si concentrations in fruit. No 

influence of I-Fe-Zn treatment on the measured non-essential elements concentrations with the exception 

of plant Br concentration and fruit Sr concentration. This study revealed that combined I-Fe-Zn treatment 

can be used effectively for I, Fe and Zn biofortication of tomato fruits for the dietary intake for human. 
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INTRODUCTION  

Micronutrient malnutrition is an inadequate daily diet of iron (Fe), zinc (Zn) and iodine (I) (Stein, 

2010; Clemens, 2014) and deficienciey of these nutrition is a reason of serious health problem on world 

population especially in devolopping countries (Welch et al., 2013; Cakmak and Kutman, 2018; Zou et 

al., 2019). There are some methods to combat nutrient deficiency such as biofortification, specific plants, 

transgenic plants or conventional breeding and etc. (Dimkpa and Bindraban, 2016; Kumar et al., 2019) 

but biofortification is the more impactful, sustainable, low-cost and easier method to enrich the 

micronutrient content of crops than the other methods for developing countries (Bouis et al., 2011; Diaz-

Gomez et al., 2017; Sazawal et al., 2018).  

Iodine, Fe and Zn are essential micronutrient for human health and unfortunately, deficiencies are 

common in both developing and developed countries. Iodine necessity of people is about 150 µg day-1 

which is especially need for activity of thyroid hormones, besides infant mortalities, mental retardation 

(Lin et al., 2004; Smolen and Sady, 2012). Anemia is the one of the common health problem by the 

reason of Fe deficiency, especially about 40-45% of prescholl-age children are anemic, which more than 

half of the Fe in the human body is bound to hemoglabine (Grillet et al., 2014). The recommended human 

dietary of Fe varies between 8-18 mg day-1 depending on the age, body weight, gender and pregnancy 

(Anonymous, 2009). Zinc is structural role on thousands of proteins for microorganisms, plants, animals 

and humans. People daily Zn requirement is 1.5-2.5 mg day-1 and due to the deficiency of Zn may occur 

retarded growth, skeletal abnormalities, hypogonadism, diarrhea, immune dysfunction, delayed wound 

healing etc. (Salgueiro et al., 2000; Anonymous, 2009; Anonymous, 2017). 

Deficiency of reasons of I, Zn and Fe in soil and plant are soil texture, pH, tillage, water 

management, nutrient interactions, fertilization, type of nutriets and plant cultivars (Hetzel and Pandav, 

1994; Lin et al., 2004, Smolen and Sady, 2012; Prasad et al., 2014; Patel et al., 2018; Gonzali et al., 

2017; Lyons, 2018). In addition, main important reason of deficieny of I, Fe and Zn concentration is 

phytic acid. Phytic acid is a compound, which found especially in cereals and therefore has an important 

influence in daily human food consumption. Unfortunately, bioavailability of some element such as Zn, 

Fe are relationship with phytic acid. Because, phytic acid obstructed the availability of these element in 

cereals which there are many studies about it (Cakmak et al., 2010; White and Broadley, 2011; Sperotto 

et al., 2012; Shahzad et al., 2014; Guo et al., 2016; Maqbool and Beshir, 2018; Cakmak and Kutman, 

2018). While vegetables have low phytic acid and high ascorbate content as well as phenolics and 

carotenoids that it is increased availability of these elements (Gillooly et al., 1983; Siegenberg et al., 

1991; Garcia-Alonso et al., 2004; La Frano et al., 2014; Krzepilko et al., 2015; Woch and Hawrylak-

Nowak, 2019; Giordano et al., 2019). In these way biofortification of vegetable is an alternative to 

suppress on the phytic acid metabolism (Majumber et al., 2019). Besides, vegetables such as spinach, 

lettuce, tomato etc. are short-term growing than the cereals which means that people can uptake nutrient 

is more quickly and easily. At the same time inceases of concentrations of I, Fe and Zn not only effect 

on the concentrations of deficit nutrients but also increase the antioxidant compound of plants and so 

increases of these nutrients will have a positive effect on human health (Blasco et al., 2008; Przybysz et 

al., 2016; Incrocci et al., 2019). 

Among the vegetables, tomato is the most consumed and traded vegetables in the world and it has 

important nutrients and antioxidants which plays an important role in human diet, especially for 

vegetarian diet. Additionally, tomato is not only used as a fresh but also it uses as a souce, paste, dried, 

peeled etc. There is some study about Zn and Fe biofortification on most important cereal like maize, 

rice or wheat etc. (Cakmak et al., 2010; Sperotto et al., 2012; White and Broadley, 2011; Guo et al., 

https://www.frontiersin.org/articles/10.3389/fpls.2018.00730/full#B37
https://www.frontiersin.org/articles/10.3389/fpls.2018.00730/full#B37
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2016; Maqbool and Beshir, 2018; Cakmak and Kutman, 2018). Unfortunately, there is not any study on 

the combined I, Fe and Zn biofortification of edible plants (Kiferli et al., 2013; La Frano et al., 2014; 

Krzepilko et al., 2015; 2016; Giordano et al., 2019).  

The aim of this study is to find out I, Fe and Zn biofortification with the supply of those elements 

and also determine the variations of essential (K, P, Ca, Mg, S, Cu, Mn, Mo, Cl, Si and Ni) and some 

non-essential (Co, Ti, Br, Rb, Sr, Ba, Cr, Sn, Sb, Te, Ge, Cs, La, Ce, Ga, Ta, Hf,) elements concentrations 

of tomato plants and fruits. This is the first study about combine I, Fe and Zn biofortification on 

vegetables and I expect this study to lead the new studies with other vegetables. 

MATERIALS AND METHODS 

Plant Growth Conditions and Treatments 

Tomato plants (Lycopersicon esculentum Mill. cv. Swanson) were grown from May 23 to August 

16, 2018 in a glasshouse condition at the Department of Soil Science and Plant Nutrition, Ankara 

University. The experiment was carried out in plastic pots (30cm×24cm×27cm) holding 10,000 g air-

dried soil and 5% peat of total soil weight. The soil was taken from the 0-20 cm of experimental fields 

of the Agricultural Faculty, Ankara University and properties of the soil were determined by the Page 

(1982) (Table 1). For each element from I (KIO3), Fe (FeSO4.7H2O) and Zn (ZnSO4.7H2O) were applied 

at the rates of 0, 10, 20 and 40 mg kg-1 of soil after the seedling transplantation, respectively. For the 

basal fertilization, 400 mg N kg-1 soil from KNO3 and 100 mg N kg-1 from CaNO3, 100 mg P kg-1 from 

(NH4)H2PO4
, which total amount of N, P, K and Ca was 545, 100, 1110, 170 mg kg-1 respectively, were 

applied during the plant growth period. The experiment was designed according to a randomized block 

design with four replications-one plant per one replicate in each treatment. Plants were irrigated with tap 

water until reached the 70% of field capacity. Plants were cultivated until the bud of the inflorescences 

in the four cluster was formed. Ripening fruits and leaves were collected for each cluster, weighed and 

dried during the experiment. Plants were harvested and separated into leaf and stem (plant) and 

unripened fruits. After determining of fresh weight, the plants and fruits were washed once with tap 

water and twice in deionized water. Four cluster of plants and fruits were combined with each other, 

seperately. Unripened fruits were omitted after weighing while concentrations of elements were 

determined in only ripening fruits. Plant and fruit samples, which are expressed as homogenized leaf 

and stem and fruit samples, were dried in a drying oven at 65°C and then dry weight recorded. All 

samples were grounded. Before the determination of elemental concentrations by PEDXRF elemental 

analysis, samples were pelleted with press machine. 

Determination of Mineral Element Concentraions of Soil, Plant and Fruit  

Homogenied plants and fruit samples were sieved (200 µm) to determine of the essential and non-

essential element concentraitions by PEDXRF (Spectro XLAB2000) as reported by Gunes et al., (2009) 

at the Earth Sciences Application and Research Centre (YEBIM) of Ankara University.  

Statistical Analysis  

Analysis of variance was performed on the data with one-way ANOVA using MINITAB 17 and 

significant differences among treatment means were calculated by LSD test (LSD; P < 0.05) and 

compared by descriptive statistics [±standart error (SE)]. 

 

 

 

 

https://onlinelibrary.wiley.com/doi/full/10.1111/sum.12205#sum12205-bib-0021
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Table 1. Some physical and chemical properties of soil 
Properties Method Amount/ Quantification 

Texture - Loamy 

CaCO3 Scheibler 59.60 g kg-1 

pH 1/2.5 water 7.80 

EC 1/2.5 water 0.35 dS m-1 

Organic Matter Walkley Black 18.20 g kg-1 

N Kjeldahl 3.52 g kg-1 

Concentration of elements (NH4OAc-extractable, g kg-1) 

K  0.79 Mg 1.86 

Ca  5.10 Na 0.25 

Concentration of elements (DTPA-extractable, mg kg-1) 

Fe  8.73 Cu 2.06 

Zn  4.02 Mn 22.6 

Total concentrations of elements (XRF, g kg-1) 

P  0.97 Na 0.37 

K  13.9 Cl 0.05 

Ca  47.7 Si 155 

Mg  9.23 Al 42.68 

S  1.01 - - 

Total concentrations of elements (mg kg-1) 

I  2.30    Ba      452 

Fe  32570 Sb 1.60 

Zn  123 Sn 7.20 

Cu  41.20 Rb 58.04 

Mn  703 Cr 72.12 

Mo  2.70 Ga 13.60 

Se  0.30 Ge 1.00 

Cd  0.80 Cs 3.80 

Co  37.50 Ta 4.20 

Br  3.90 Te 1.20 

Ti  3288 Ce 60.30 

Ni  54.70 Hf 4.00 

Sr  256 - - 

RESULTS AND DISCUSSION 

Dry and Fresh Weight of Plant and Fruit 

Plant and fruit weight of the tomatoes was presented in Table 2. Biofortification with I-Fe-Zn had 

positive effect on plant and fruit weight. Effect of combined I-Fe-Zn treatments on dry and fresh weight 

of plant and fruit were statistically important. The highest fresh and dry weight of plant were determined 

by 10 mg I-Fe-Zn kg-1 of soil, respectively 472, 79.50. There was a relationship between the levels of I-

Fe-Zn and fruit weight. Fruit fresh weight increased by the combined I-Fe-Zn treatments and the highest 

fruit weight were determined by the highest level of combined I-Fe-Zn treatment (40 mg I-Fe-Zn kg-1 of 

soil). Especially, fruit weights were increased by the combined I-Fe-Zn treatments, respectively 16%, 

47%, 74% when compared the control treatment. This result is accordance with the study of Weng et al. 

(2013) who explained that I had positive effect on biomass of 10 different vegetables cultivars. Weng et 

al. (2008) in their study showed that I treatmant is effective on growth rate of spinach. Blasco et al., 

(2008), concentration of I and antioxidant compounds of lettuce were increased due to the treatment of 

I. Gioia et al. (2019) suggested that growth rate with Fe and Zn concentrations of microgreen plants were 

increased by the Fe and Zn treatments.  
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Table 2. Effect of combined iodine, iron and zinc treatment on plant fresh and dry weight, and fruit weight 

Treatments 

     Plant                                                  Fruit 

Fresh weight 

g plant-1 

Dry weight 

g plant-1 

Fresh weight 

g fruit-1 

Control 254±11.41 c 53.22±4.22 c 522±22.62 d 

10 I-Fe-Zn 472±12.48 a 79.50±4.52 a 607±19.00 c 

20 I-Fe-Zn 360±8.34 b 63.92±1.75 b 766±16.50 b 

40 I-Fe-Zn 372±9.55 b 64.28±0.48 b 906±5.87 a 

F 71.27 11.68 98.26 

LSD 32.50** 9.74** 26.63** 

 ** P < 0.01. 

Concentrations of the Elements 

Plant I concentrations were increased by the combined treatment of I, Fe and Zn. The highest 

concentrations of I and Zn in the plants were determined by the 40 mg kg-1 of soil. However, 

concentration of Fe in plant were not change statististically important. The highest concentrations of I, 

Fe and Zn in the fruits were determined by highest combine I-Fe-Zn treatment (40 mg kg-1) as 19.9, 39.7 

and 39.6 mg kg-1 in fruit, respectively (Table 3). Iodine concentrations of plants and fruits were increased 

due to the increases treatment levels that the highest I concentration were determined by the highest 

combine treatment, but there was no statistically important difference between the other treatment.  Zinc 

and Fe concentrations of fruits were increased by the the treatments. Some studies demonstrated that 

some vegetables and fruits such as spinach (Zhu et al., 2003; Weng et al., 2003; Dai et al., 2006; 

Humphrey et al., 2019), lettuce (Blasco et al., 2008; Voogt et al., 2010), radish and Chinese cabbage 

(Weng et al., 2003), strawberry (Li et al., 2017a), pepper (Li et al., 2017b) can store I by levels of I 

treatment. According LandiNİ et al., (2011) fresh weight and I concentration of tomato (Solanum 

lycopersicum L.) were increased by I treatment (5, 10 and 20 mM) and as a result, 5 mM I treatment was 

enough to uptake a daily human I requirement. Hong et al. (2008) reported that higher than 50 mg I kg-

1 of soil treatment was shown chlorosis effect on tomato. In the other study by Weng et al. (2013) 

reported that biofortification of I can be changed due to the different genotypes within the same type of 

vegetables and levels of treatments. All of these studies results like our results. Iron and Zn concentration 

of tomato fruits were increased by the I, Fe and Zn treatments. Especially, effect of the highest combined 

I, Fe and Zn treatment on Fe and Zn concentraions of fruits were remarkable than the other treatment. 

Researches conducted by Cakmak (2008), Prasad et al. (2014), White and Broadley (2009, 2011), 

Shahzad et al. (2014), Zaman et al. (2018), Patel et al. (2018), Giardono et al. (2019) shows that 

combined or separately application of Zn and Fe was reason of the increases of Fe and Zn concentrations 

as in this research. 

Table 3. Effect of combined iodine, iron and zinc treatment on plant and fruit I, Fe and Zn concentrations  

Treatments 
Plant (mg kg-1 DW) 

I  Fe  Zn  

Control 2.50±0.24 c 210±26.20 16.90±1.30 d 

10 I-Fe-Zn 68.50±13.0 bc 188±11.10 30.80±0.85 c 

20 I-Fe-Zn 162±27.02 b 221±20.10 40.90±1.94 b 

40 I-Fe-Zn 308±60.62 a 197±15.50 55.30±4.48 a 

F 15.4 0.57 26.2 
LSD 104** ns 7.89** 

 Fruit (mg kg-1 DW) 

Control 2.73±0.30 b 28.75±1.11 c 21.05±1.34 c 

10 I-Fe-Zn 2.74±0.29 b 30.83±1.57 bc 28.52±1.28 b 

20 I-Fe-Zn 5.24±1.77 b 32.39±0.91 b 29.70±0.94 b 

40 I-Fe-Zn 19.85±2.71 a 39.64±1.03 a 39.58±1.54 a 

F 25.37 16.10 35.54 
LSD 5.03** 3.64** 3.99** 

 ns, non-significant; ** P < 0.01. 
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Treatments of combined I-Fe-Zn had no statistically important effect on the concentrations of P, 

K, Mg, Na, S, Ca, Si and Al of plants. On the other hand, effect of treatments (40 mg I-Fe-Zn kg-1 of 

soil) on Ca, Na and Si concentrations of fruit were statistically important while P, K, S and Mg of fruit 

were not statistically important (Table 4). Essential and non-essential elements concentrations of plant 

and fruit were not signifcantly changed by combined I, Fe and Zn treatments. In the study conducted by 

Smolen and Sandy (2012) effect of I treatment on P, K, Mg, S, B, Cu, Mn, Mo and Cd concentrations in 

spinach were not signinificant. On the contrary, concentrations of N, Ca, Na, Fe and Zn of plant were 

significantly increased by I treatment. Islam et al. (2018) were examined the effect of Fe and I treatment 

on cherry tomato genotypes. For this purpose, 1 mg Fe L-1 and 1 I L-1 were applied, seperately. 

Treatments of these elements were not significant effect on Fe, Mn, Cu and Zn concentrations. In an 

another study by Krezpilko et al. (2016), 0.5 µM KI L-1 treatment was sufficient to enrich seedlings with 

I and K; however, effect of this treatment was not significant effect on Ca, Zn, Fe and Cu concentration. 

Krzepiłko et al. (2015) who reported I positive affected the uptake of Mg, Na, Ca and Fe but negative 

affected Cr uptake in the spinach plant. Smolen and Sady (2011), I treatment was increased the 

concentrations of Na, Fe, Zn and Al and reduced concentrations of P, S, Cu and Ba concentrations. All 

of these results show that levels of mineral element concentrations can be change due to the level of I, 

and Zn treatment and plant genotypes. All of these results of different researcher were showed that 

concentrations of some essential and non-essential element can change by the levels of treatments and 

plant cultivars. 

Table 4. Effect of combined iodine, iron and zinc treatment on plant and fruit P, K, S, Ca, Mg, Na, Si and Al concentrations  

Treatments 
Plant (g kg-1 DW) 

P  K  S  Ca  Mg  Na  Si  Al  

Control 1.85±0.16 27.80±1.43 7.20±0.97 34.7±5.62 5.90±1.27 3.60±0.88 2.20±0.17 0.58±0.06 

10 I-Fe-Zn 2.16±0.11 28.83±1.74 8.35±0.60 36.9±3.09 6.52±0.63 3.98±0.67 2.08±0.13 0.48±0.02 

20 I-Fe-Zn 2.05±0.27 27.98±1.51 8.48±0.54 39.2±1.60 6.45±0.34 3.40±0.65 2.09±0.11 0.53±0.02 

40 I-Fe-Zn 2.02±0.05 24.59±0.32 8.77±0.51 41.4±1.78 6.80±0.38 3.60±0.31 2.17±0.11 0.48±0.02 

F 0.60 1.86 1.04 0.71 0.25 0.39 0.20 1.84 

LSD ns ns ns ns ns ns ns ns 

 Fruit (g kg-1 DW) 

Control 3.24±0.17 39.29±1.68 1.61±0.09 0.76±0.05 b 1.17±0.11 0.25±0.00 b 0.69±0.02 b 0.32±0.02 

10 I-Fe-Zn 3.52±0.15 42.77±2.13 1.79±0.12 0.68± 0.02 b 1.18±0.17 0.24±0.00 b 0.68± 0.01 b 0.32±0.00 

20 I-Fe-Zn 3.33±0.12 43.39±2.47 1.75±0.07 0.81±0.06 b 1.01±0.08 0.32±0.06 b 0.79±0.03 a  0.37±0.01 

40 I-Fe-Zn 3.89±0.32 49.88±4.21 2.10±0.16 1.08±0.11 a 1.29±0.14 0.97±0.38 a 0.75±0.02 a 0.32±0.02 

F 1.94 2.50 3.22 6.23 0.83 3.29 5.81 2.43 

LSD ns ns ns 0.21** ns 0.60* 0.06** ns 

ns non-significant; * P < 0.05; ** P < 0.01 

Levels of treatment had no statistically significant effect on the Cu, Mn, Mo, Cl, Al, Ni, Co and 

Ce concentrations of the plant and fruit (Table 5). 

Table 5. Effect of combined iodine, iron and zinc treatment on plant and fruit Cu, Mn, Mo, Cl, Al, Ni, Co and Ce 

concentrations 

Treatments 
Plant (g kg-1 DW) 

Cu  Mn  Mo  Cl  Ni  Co  Ce  

Control 7.08±0.69 55.0±6.50 1.43±0.09 16.3±3.17 3.48±0.77 1.93±0.47 14.55±1.27 

10 I-Fe-Zn 7.58±0.21 58.1±6.15 2.58±0.32 17.4±0.60 3.95±0.45 1.93±0.40 15.00±2.00 

20 I-Fe-Zn 6.73±0.98 54.3±3.78 2.25±0.66 16.9±1.06 3.75±0.47 2.70±0.34 14.57±1.57 

40 I-Fe-Zn 6.10±0.57 51.5±1.94 1.93±0.27 16.7±0.65 3.33±0.36 2.35±0.79 15.88±1.07 

F 0.85 0.30 1.55 0.08 0.27 0.50 0.17 

LSD ns ns ns ns ns ns ns 

                                         Fruit (g kg-1 DW) 

Control 7.15±0.58 11.20±0.35 1.43±0.08 4.16±0.25 1.58±0.15 0.73±0.06 16.25±2.16 

10 I-Fe-Zn 7.80±0.65 12.40±0.84 1.75±0.10 4.95±1.16 2.50±0.35 0.95±0.25 14.57±1.92 

20 I-Fe-Zn 7.60±0.22 14.15±1.54 2.45±0.56 4.28±0.41 2.10±0.24 0.88±0.28 18.32±1.93 

40 I-Fe-Zn 9.10±0.88 19.57±3.98 1.68±0.37 5.09±0.54 3.65±1.48 1.92±1.04 16.40±1.51 

F 1.79 2.88 1.67 0.47 1.29 0.97 0.66 
LSD ns ns ns ns ns ns ns 

ns, non-significant.  
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Biofortification treatments at all levels had no significant effect on Cr, Ti, Ga, Rb and Ba 

concentrations both plant and fruits out of the Br concentration of plant. Compared to the control, Br 

concentration in the plants and Sr concentration of fruits significantly increased; however, there were no 

effect on the other elements (Table 6). 

Table 6. Effect of combined iodine, iron and zinc treatment on plant and fruit Cr, Ti, Ga, Br, Rb, Ba and Sr concentrations 

Treatments 
Plant (mg kg-1 DW) 

Cr  Ti  Ga  Br  Rb  Ba  Sr  

Control 4.43±0.96 49.95±6.58 0.50±0.12 20.68±3.29 b 3.03±0.29 50.28±5.51 222±31.70 

10 I-Fe-Zn 5.63±1.50 52.17±3.68 0.48±0.12 27.23± 1.07 a 3.45±0.19 51.65±2.36 227±19.30 

20 1 I-Fe-Zn 5.67±1.42 59.55±6.77 0.78±0.30 28.80±0.74 a 3.35±0.16 52.40±3.23 244±7.92 

40 I-Fe-Zn 4.33±0.51 67.05±6.48 0.55±0.13 28.72±1.82 a 2.93±0.17 53.95±0.44 260±9.83 

F 0.40 1.66 0.56 3.75 1.51 0.20 0.79 

LSD ns ns ns 6.13* ns ns ns 

 Fruit (mg kg-1 DW) 

Control 2.53±0.09 3.58±1.22 0.30±0.07 4.38±0.86 4.38±0.34 12.40±2.16 5.53±0.90 b 

10 I-Fe-Zn 3.30±0.80 3.35±1.04 0.45±0.10 4.45±0.16 4.80±0.15 6.63±0.43 4.20±0.25 b 

20 I-Fe-Zn 2.75±0.10 1.73±0.13 0.23±0.03 5.30±0.72 4.85±0.23 9.35±1.90 5.15±0.48 b 

40 I-Fe-Zn 3.20±0.27 1.87±0.09 0.38±0.11 6.30±0.62 5.93±0.58 11.10±2.94 7.70±0.84 a 

F 0.74 1.44 1.30 1.94 3.29 1.45 4.81* 
LSD ns ns ns ns ns ns 2.08 

ns non-significant; *P < 0.05  

Levels of combined I-Fe-Zn treatments had no statistically significant effects on the concentrations 

of Sn, Cs, Ge, Sb, Ta, Te and Hf both plant and fruits (Table 7). 

Table 7. Effect of combined iodine, iron and zinc treatment on plant and fruit Sn, Cs, Ge, Sb, Ta, Te and Hf concentrations 

Treatments 
Plant (mg kg-1 DW) 

Sn Cs  Ge  Sb  Ta  Te  Hf  

Control 0.95±0.16 5.70±0.82 0.23±0.03 0.88±0.03 1.20±0.21 1.08±0.16 1.35±0.16 

10 I-Fe-Zn 0.85±0.03 5.63±1.26 0.20±0.01 0.95±0.03 1.45±0.06 1.48±0.11 1.40±0.39 

20 I-Fe-Zn 0.90±0.00 4.23±0.31 0.20±0.01 0.95±0.12 1.05±0.25 1.40±0.04 1.58±0.19 
40 I-Fe-Zn 0.95±0.03 4.23±0.06 0.20±0.01 0.95±0.09 1.35±0.27 1.53±0.33 1.33±0.18 

F 0.35 1.17 1.00 0.24 0.65 1.10 0.21 

LSD n.s n.s n.s n.s n.s n.s n.s 

                                 Fruit (mg kg-1 DW) 

Control 1.05±0.32 5.53±0.83 0.15±0.03 0.85±0.03 1.15±0.03 1.53±0.26 1.00±0.11 
10 I-Fe-Zn 0.93±0.13 4.15±0.03 0.40±0.20 0.88±0.03 1.20±0.04 1.23±0.19 1.63±0.23 

20 I-Fe-Zn 0.83±0.03 5.95±1.18 0.15±0.03 0.85±0.03 1.05±0.16 1.28±0.03 1.10±0.15 

40 I-Fe-Zn 0.85±0.05 4.20±0.01 0.23±0.03 0.90±0.06 2.78±1.85 1.25±0.03 3.72±2.33 

F 0.34 1.64 1.32 0.41 0.78 0.74 1.17 

LSD ns ns ns ns ns ns ns 

ns, non-significant  

CONCLUSION 

Especially in developing countries, people needs daily intake such as Fe, Zn and I which essential 

for people. This study is the first proof to determine the effect of combined I-Fe-Zn treatments on 

concentrations of I, Fe and Zn with yield and it shows that biofortification was an important way to 

eliminate of these three elements deficiency in plants. 
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