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 Recent developments in mobile device technology and artificial intelligent systems took the 
attention of many researchers. Historical sites and landmarks are the indispensable heritage 
of cities. Historic landmark recognition, including detailed attribute information, can connect 
people directly with the history of the cities, although they may not be familiar with the 
impressive historical monument. This can be achieved by integrating mobile and deep 
learning technologies. Therefore, we focused on establishing a deep learning (DL) based 
mobile historic landmark recognition system in this study. The VGG (16, 19), ResNet (50, 101, 
152), DenseNet (121, 169, 201) DL architectures were trained by end-to-end learning 
techniques for the recognition of ten historic landmarks from the metropolitan city of Istanbul, 
Turkey. The dataset was prepared by collecting images of ten historical buildings from the 
image hosting services. The developed prototype automatically and instantly recognizes these 
historic landmarks from scene images and immediately provides related historic information 
as well as route planning. The experimental results indicate that DenseNet-169 architecture 
is very effective for our dataset with 96.3% accuracy. This study has shown that deep learning 
offers a promising alternative means of recognizing historic landmarks.   

 
 
 

1. INTRODUCTION 
 
Istanbul is one of the most significant metropolitan 

cities in the world. This city, which hosts the unique signs 
of European and Asian communities through Byzantine 
and Ottoman cultural heritage, has been named as the 
2010 European Capital of Culture due to its unique 
historic areas that attract many visitors (UNESCO, 2006). 

Tourism is the name given to trips to an unknown 
place (Brown, 2007; Mulazimoglu and Basaraner, 2019). 
Visitors aspire to discover and witness the varied life of 
the city (Richards, 2018). In this respect, landmarks, 
known as recognizable natural or artificial features, often 

attract people to visit and create memories to share with 
their social group. Sometimes during a trip, unknown 
historical objects can attract attention (Cheng and Shen, 
2016).  However, they can only interact visually with 
cultural objects without detailed information. This 
situation results in a limited awareness of cultural 
heritage. To improve visitors’ experience, rapid, 
accurate, significant, and real-time information is 
needed. 

The growing use of social networks has provided 
large amounts of data relating to every field. This has 
brought new opportunities for concept-based image 
recognition (Simonyan and Zisserman, 2014). People 
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have started voluntarily to share their images using 
different social media applications such as Flickr, 
Facebook, and Instagram (Weyand and Leibe, 2015) and 
internet search engines. A variety of studies and 
applications have been carried out, investigating location 
estimation (Hays and Efros, 2008), scene recognition 
(Zhou et al., 2018), face recognition (Parkhi et al., 2015) 
and landmark recognition (Cheng and Shen, 2016), using 
images taken from these kinds of a large database. 

The enhancement and promotion of cultural 
heritage using information and communication 
technologies are an essential research issue (Amato et al., 
2017; Şasi and Yakar, 2018). Although human-computer 
interaction and mobile digital technology have the 
potential to provide to access cultural heritage 
information (Doğan and Yakar, 2018; McGookin et al., 
2019), existing frameworks may not be capable of 
presenting smart and detailed data. The state-of-art DL 
techniques brought new opportunities to overcome this 
problem. DL is based on multi-layer Artificial Neural 
Network (ANN) and a subset of machine learning. It has 
been confirmed in many studies such as computer vision, 
image classification, robotics, bioinformatics, biomedical, 
geomatics (Zhang et al., 2018) that DL has become a 
handy tool for image and information analysis, primarily 
using open databases and internet resources (Tzelepi 
and Tefas, 2018). 

Jiang et al. (2017) developed a real-time internet 
cross-media retrieval system using DL. Shukla et al. 
(2017) proposed a deep convolutional neural networks 
model for the recognition of 117 Indian monuments. 
Termritthikun et al. (2018) proposed a DL network 
named as NU-LiteNet for mobile landmark recognition. 

Huang et al. (2018) proposed DL as a tool to solve multi-
concept-based image retrieval problems using MIR Flickr 
2011 and NUS-WID dataset. F. Huang et al. (2018) 
combined content and network for multi-view learning 
and proposed a deep multi-view embedding model-
based image recognition system. Xu et al. (2019) used the 
same dataset and developed a unimodal semantic image 
retrieval system using DL techniques. 

As can be seen from the literature review, there is 
limited study concerning DL for mobile historic 
landmark recognition. Therefore, the objective of this 
study is to test the efficiency of different DL architectures 
for mobile historic landmark recognition. For this 
purpose, the Visual Geometry Group (VGG16, 19) (URL1), 
Deep Residual Network (ResNet-50, 101, 152) (URL2), 
and Densely Connected Convolutional Network 
(DenseNet-121, 169, 201) (URL3) architectures were 
exploited to recognize ten selected historic landmarks in 
Istanbul, Turkey. All utilized DL architectures have been 
trained and tested with our generated dataset. 
 

2. STUDY AREA AND DATASET 
 

The generated dataset consists of the most popular 
and essential ten historic landmarks within the 
boundaries of Istanbul. These are the Maiden’s Tower, 
the Sultan Ahmet Mosque (Blue Mosque), the Galata 
Tower, Hagia Sophia, the Ortaköy Mosque, the Topkapi 
Palace, the Valens Aqueduct, the Dolmabahce Palace, the 
Obelisk of Theodosius, and the Dolmabahce Clock Tower 
(Table 1). The distribution of landmarks can be seen in 
Figure 1.

 

 
Figure 1. Distribution of landmarks 
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Table 1. Samples of the selected historical landmarks 
Landmarks Construction Name Description 

1 

 

Stone (concrete) tower, 

masonry cupola 
Maiden’s Tower 

It is built up on the rock, 200 meters from the coast of 

Ü sku dar, Istanbul, on the Bosphorus. It was built around 

419 BC (IPDCT, 2019a). 

2 

 
 

Mosque (Islamic, Late 

Classical Ottoman) 
Blue Mosque 

This unique mosque in Istanbul has six minarets and eight 

domes. It was built by Sedefkar Mehmet Aga between 

1609–1616 

(IPDCT, 2019b). 

3 

 

 

Stone tower 

 

Galata Tower It was built in the 14th century by the Genoese (IPDCT, 

2019c). 

4 

 

Mosque (museum) Hagia Sophia 
It was built between 537 and 537 AD and was famous in 

particular for its massive dome (IPDCT, 2019d). 

5 

 

Mosque (Baroque Revival) Ortako y Mosque 
It was built in 1853 by architect Karabet Balyan and was 

then repaired between 1960 and 1972 (IPDCT, 2019e). 

6 

 

Palace (Various low 

buildings, surrounding 

courtyards, pavilions and 

gardens) 

Topkapi Palace 

It was built between 1466 and 1478 by the sultan Mehmet 

II. The palace was the political centre of the Ottoman 

Empire between the 15th and 19th centuries (IPDCT, 

2019f). 

7 

 

Arch bridge (stone, brick) Valens Aqueduct 

It is part of Istanbul’s ancient water supply system and 

was built in the late 4th century AD during the reign of 

Roman Emperor Valens (Yorulmaz and Çelik, 2015). 

8 

 

Palace (Baroque, Rococo, 

Neoclassical) 

Dolmabahce 

Palace 

It was built by order of Sultan Abdulmecid I between 1843 

and 1856 (IPDCT, 2019g). 

9 

 

Column (granite) 
Obelisk of 

Theodosius 

The obelisk was built by Pharaoh Thutmose III (1479–

1425 BC) during the 18th dynasty 

(IPDCT, 2019h). 

10 

 

Clock tower (Ottoman Neo-

Baroque) 

Dolmabahce Clock 

Tower 

Built in 1890–1895, by palace architect Sarkis Balyan II. It 

was built for Sultan Abdulhamid between 1842–1918 

(IPDCT, 2019i). 

 
Two different datasets were prepared to train all the 

selected DL architectures from the Bing, Foursquare, and 
Yandex web platforms. The first one (Istanbul-2500) 
consisted of 2500 images and the second one (Istanbul-
5000) 5000 images of all selected historic landmarks. In 
addition to the online image resources, 310 new images 
were taken in the field for the Istanbul-5000 dataset. The 
images which have the same width and height were 
selected to avoid possible image deformations and 
resized to 224 x 224 pixels as input dimensions of used 
DL architectures. 
 
3. METHODOLOGY 
 

Due to their proven success in the ImageNet Large 
Scale Visual Recognition Challenge (ILSVRC) (Deng et al., 
2012), the VGG (16 and 19) (Simonyan and Zisserman, 
2014), ResNet (50, 101 and 152) (He et al., 2016a), and 
DenseNet (121, 169 and 201) (Huang et al., 2017) DL 
architectures were utilized for this study. These DL 
architectures have also been used in many other image 

classification studies (Nawaz et al., 2018; Nibali et al., 
2017; Rothe et al., 2018). All the used architectures were 
tested for recognition of selected historic landmarks. Our 
mobile application was integrated with the DL 
architecture that gave the best accuracy. A flowchart of 
the study is given in Figure 2. 
 

 
Figure 2. The flowchart of the study 
 
3.1. Implementation of Different Deep Learning 

Architectures 
 
The details of all the deep CNN architectures 

employed for historical object recognition using the 
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Istanbul-2500 and Istanbul-5000 datasets are given 
below: 

 
3.1.1. VGGNet 
 

The VGG neural networks were developed by the 
Visual Geometry Group. There are four different versions 
of the VGG neural networks, which include different 
weight layers of 11, 13, 16, and 19, respectively 
(Simonyan and Zisserman, 2014). In this study, the 
VGG16 and VGG19 versions were employed. The VGG 
neural networks consist of convolution, pooling, and 
fully-connected layer and softmax layers. The filter 
kernel size in the convolution layers is 3 x 3. The rectified 
linear unit (ReLU) activation function is applied for the 
nonlinearity process after each convolution layer. After 
each convolution layer, there are a max-pooling layer 
with 2 x 2 window sizes (Patterson and Gibson, 2017). In 
the pooling layers, the shifting interval of the filter is 
defined by a stride parameter. The stride parameter for 
VGG neural networks is defined as two. Three fully-
connected layers and Softmax classifier layers are used 
in the last part of the architecture. The first two fully-
connected layers have 4096 channels. Dropout 
regularization is applied in these layers to avoid 
overfitting problems. A dropout ratio of 0.5 is selected. 
The amount of the channels in the last fully-connected 
layer is equal to the count of the classes (Simonyan and 
Zisserman, 2014). The structures of the VGG 
architectures used in this study are given in Figure 3. 
 

 
Figure 3. VGG16 and VGG19 layers (Simonyan and 
Zisserman, 2014) 

 
 
3.1.2. ResNet 
 

ResNet was developed by the Microsoft research 
team to reduce the training difficulty of deeper neural 
networks. The main idea of ResNets is to learn the 
additive residual function using an identity mapping by 
using short connections (He et al., 2016b). It has versions 
consisting of 18, 34, 50, 101, and 152 weight layers (He 
et al., 2016a). Instead of learning non-discriminatory 
functions in ResNet architectures, residual functions are 
adopted using input layers. Unlike VGG, ResNet 
architectures have shortcut connections which are used 
in feed-forward neural networks. Thus, shortcut links do 

not contain extra parameters and do not cause 
computational complexity. In this way, relevant 
information from the previous layer can be transferred 
to the next layers (He et al., 2016b). 

In contrast to VGG architectures, ResNet 
architectures contain a global average pooling layer and 
a fully connected layer at the end of the network. Without 
a dropout operation, the average value in each property 
map is transferred to the next layer in the global average 
pooling process (Lin et al., 2013). The parameters of the 
ResNet layers used in this study are given in Figure 4.
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Figure 4. ResNet50, ResNet101 and ResNet152 layers (He et al., 2016a) 
 
3.1.3. DenseNet 
 

DenseNet is well known CNN architecture. 
Individual layers are connected with every layer behind 
it. Thus, all layers are used for a decision instead of the 
single final layer by CNN. DenseNet has been developed 
by the inspiration of ResNet18 architecture, which is one 
of the best deep learning architecture and used in many 
different image classification related studies. Compared 
to ResNet architecture, it has been seen that if shorter 
connections between layers close to the input and layers 
close to the output, the training accuracy can be obtained 
more accurate. DenseNet architecture is based on the 
feed-forwarded connection of each layer to every other 
layer to extend the shorter connections. By DenseNet, 
feature propagation is reinforced, the amount of 
parameters is diminished (Gunawan et al., 2018). 

DenseNet also has different versions, consisting of 
121, 169, 201, and 264 weight layers. Similarly to 
ResNets, DenseNets use a block concept, too. Unlike 
ResNets, the principle of intense connections is used in 
the blocks, according to which each layer in a block has a 
connection with the previous layers. These connections 
are provided by transferring feature maps. There are 
convolution and pooling layers between the blocks. In 
DenseNet architectures, except for the first convolution 
layer, dropout is applied with a 0.2 dropout rate after 
each convolution layer. In addition to this, the ReLU 
activation function is used following the convolution 
layers (Huang et al., 2017). The parameters and structure 
of DenseNet architectures can be seen in Figure 5.
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Figure 5. DenseNet121, DenseNet169 and DenseNet201 layers (Huang et al., 2017)
 

Table 2. Used hyperparameters 
 

 
 

 
 
 
 
 
 
 

Used hyperparameters are given in Table 2. The 
base (initial) learning rate affects the optimization 
parameters in order to minimize CNN estimation errors. 
ρ is a constant, which controls the decay of parameter 
updates (Patterson and Gibson, 2017). Epsilon is a 
floating-point number and very close to zero. It is used to 
prohibit mistakes similar to dividing by zero. Decay is the 

rate of initial learning (Keras, 2019). Epoch is the number 
of training iterations (Patterson and Gibson, 2017). The 
mini-batch size is the number of records that are passed 
into a defined learning algorithm at the same time (Soon 
et al., 2018). Components of used hardware and software 
specifications can be seen in Table 3.

Deep Learning 
Models 

Base Learning  
Rate 

Rho Epsilon Decay Epoch Mini-Batch 
Size 

VGG16 
0.05 

 
 
 

0.95 

 
 
 

1e-07 

 
 
 

0 

 
 
 

120 

 
 
 

16 

VGG19 
ResNet50  

 
1 

 

ResNet101 
ResNet152 

DenseNet121 
DenseNet169 
DenseNet201 
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Table 3. Specifications of hardware and software used 
Hardware 

Computer Desktop PC MacBook Pro Retina (Mid 2012) 

CPU Intel® Core™ i7-8700K 3.7GHz Intel® Core™ I7-3615QM 2.3GHz 

Display Card NVIDIA GeForce GTX1080Ti 11 GB NVIDIA GeForce GT 650M 1 GB 

Memory 32 GB 8 GB 

Software 

Library Tensorflow Keras CoreML 

Version 1.5.0 2.1.3 2.0 

 
3.2. Integration of the Mobile Application 

 
The iOS platform, one of the most popular mobile 

application platforms in the world, is continuously being 
updated for iPhone and iPad devices. The CoreML 
framework structure developed by Apple for machine-
learning applications was announced to developers in 
2017 (CoreML Framework, 2019). Also, the CoreML tools 
that work with Python were used to transfer other 
machine and DL frameworks (i.e., Keras, Tensorflow, 
IBMWatson) to mobile applications (CoreML 
Documentation, 2019). The Vision Framework is 
integrated with the CoreML library and is used to define 
images via a mobile application (Maskrey & Wang, 2018). 
The free Mapkit Framework library was developed by 
Apple to create map-based mobile applications (MapKit 
Framework, 2019). It has two modes, namely standard, 
and satellite. The Core Location Framework (Core 

Location Framework, 2019) works by being integrated 
with the GNSS receiver on a mobile device. The device’s 
location can be seen on the map when it is used with 
MapKit. The mobile phone integration flowchart is given 
in Figure 6. The application for mobile phone integration 
was developed by Xcode 10 IDE (Integrated 
Development Environment) using the Swift 4.2 
environment. The developed application only works with 
iPhone instruments and supports iOS Versions 10.0–
13.0. In addition to the integration of the Vision, Core 
Location and MapKit frameworks to allow the use of 
trained deep CNN models offline, the mlmodel was 
created for mobile phones by exploiting the CoreML 
framework. However, for route planning and location 
definition, the navigation services in the application need 
access to a network (3G/4G) or WiFi connection.

 

 
Figure 6. Mobile integration flowchart
 
4. RESULT AND DISCUSSION 
 

In this study, we investigated the performance of 8 
deep CNN architectures (VGG16, VGG19, ResNet50, 
ResNet101, ResNet152, DenseNet121, DenseNet169 

and DenseNet201) for mobile historic landmark 
recognition. Python’s Keras library (Chollet, 2015) was 
used to implement all of the selected deep CNN 
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architectures. 70% of the dataset was used for training, 
10% for validation, and 20% for testing. The highest test 
accuracy was achieved by the DenseNet169 architecture 
for the Istanbul-5000 dataset (96.3%). 

The robustness of the optimization algorithms is 
still controversial, and there is no consensus regarding 
the optimal optimization algorithms among experts 
(Schaul et al., 2014). Therefore, training of the deep 
CNNs was carried out using the Adadelta optimization 
algorithm. This method uses only first-order 
information during dynamical adaption and minimal 
computational cost. It is robust to noisy gradient 

information and accommodates a selection of 
hyperparameters (Zeiler, 2012). 

The training/validation accuracy for each epoch 
was compared to evaluate the training. Therefore, the 
training accuracy of each deep CNN architecture and 
dataset were analysed separately. As can be seen in 
Figure 7, the test accuracy for VGG16 and VGG19 with 
two datasets reached a maximum of around 80%. This 
shows that the VGG16 and VGG19 architectures are 
unable to produce a comprehensive solution for this 
study.

 
 

Figure 7. VGG16 and VGG19 training results for the Istanbul-2500 and Istanbul-5000 datasets 
 

The training results for the ResNet architectures 
(50, 101, and 152) were much noisier than those for the 
DenseNet models (Figure 8 and Figure 9). It has been 
observed that, in the epochs where the accuracy of 
training increased, the test accuracy showed opposite 
directions for all ResNet architectures on both datasets. 
However, in general, in the epochs where training was 
completed, training and test accuracies converged 
(Figure 8). As a result, the calculated accuracies for the 
ResNet architectures were similar to those for the VGG 
architectures. 

The evaluation of the training/test accuracies for the 
DenseNet architectures (121, 169, and 201) for the 
Istanbul-2500 and Istanbul-5000 datasets are given in 
Figure 9. A more stable training/test accuracy was 
observed for DenseNet-169 for the Istanbul-5000 
dataset (Figure 9e) than for all the other DL models used. 
After the 100th epoch for both the DenseNet169 and 
DenseNet201 architectures and the Istanbul-5000 
dataset, the large fluctuations stabilized, and the test 
accuracies converged to the training accuracy. It should 
be mentioned that the model architecture and the dataset 
size are compatible.
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Figure 8. ResNet50, ResNet101 and ResNet152 training results for the Istanbul-2500 and Istanbul-5000 datasets 
 

 
Figure 9. DenseNet121, DenseNet169 and DenseNet201 training results for the Istanbul-2500 and Istanbul-5000 
datasets 

 
In this study, precision, recall, and F1-Score metrics 

were used to analyze the results (Table 4). For the 
Istanbul-2500 dataset, the DenseNet architecture, 
which was able to evaluate feature maps from more 
layers, achieved a high level of success in all evaluation 
criteria for test accuracy, precision, recall, and F1-Score. 

Except for ResNet-152, the mean accuracy results of the 
ResNets were higher than for VGG-16 and VGG-19. 
However, as with the VGG16 and VGG19 architectures, 
the accuracy results for the ResNets were found to be 
unsatisfactory for this study.
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Table 4. Accuracy assessment results for the Istanbul-2500 and the Istanbul-5000 datasets 

 
For both the Istanbul-2500 and Istanbul-5000 

datasets, the superiority of the DenseNet-based 
architectures is conspicuous. The highest accuracy was 
obtained with the DenseNet-169 variant for all metrics. 
The test accuracy, average precision, average call, and 
F1-score results were calculated as 96.3%, 96.35%, 
96.30%, and 96.3%, respectively. The confusion matrix 
for the DenseNet-169 results has been given in Table 5. 

According to our results, the DenseNet-169 architecture 
was more successful than the other implemented DL 
architectures. Although the layer number of DenseNet-
201 is higher than DenseNet-169, a lower accuracy was 
achieved compared to DenseNet-169. The reason for this 
situation might be related to the number of training 
images in the dataset.

 
Table 5. Confusion matrix for landmarks obtained from the DenseNet169 network 

Landmarks 1 2 3 4 5 6 7 8 9 10 

1 0.98 0 0.01 0 0 0 0 0 0 0.01 

2 0.01 0.97 0 0 0 0 0.01 0 0 0.01 

3 0.03 0.01 0.96 0 0 0 0 0 0 0 

4 0 0.03 0.01 0.96 0 0 0 0 0 0 

5 0 0.01 0.01 0 0.97 0 0 0.01 0 0 

6 0 0 0 0.01 0 0.98 0 0 0 0.01 

7 0 0 0 0 0 0 0.98 0 0.01 0.01 

8 0.02 0 0.01 0.01 0.01 0 0 0.95 0 0 

9 0 0 0.01 0 0 0 0.01 0 0.97 0.01 

10 0 0.02 0.02 0 0 0 0.03 0.01 0.01 0.91 

According to Table 5, the lowest accuracy was 
calculated for the Dolmabahce Clock Tower (Landmark 
10) at 91%. Although the similarity between the 
Maiden’s Tower (Landmark 1) and the Galata Tower 
(Landmark 3) is very high, there were no mix-ups in their 
recognition, as demonstrated by their results (which 
were 98% and 96%, respectively). Similarly, encouraging 
results were obtained for the Blue Mosque (Landmark 2), 

Hagia Sophia (Landmark 4), and the Ortaköy Mosque 
(Landmark 5).  

The training times for the eight DL architectures are 
given in Table 6. It can be seen that the training time of 
the ResNet-152 model for the Istanbul-5000 dataset was 
the longest. In contrast, ResNet-50 required minimum 
training time. The training time of DenseNet-169, which 
provided the best accuracy, was the third shortest of all 
the models.

Table 6. Training times of deep learning models 
Istanbul-2500 Istanbul-5000 

ResNet50 0 h 38 m 54 s ResNet50 1 h 18 m 43 s 

DenseNet121 0 h 44 m 39 s DenseNet121 1 h 29 m 45 s 

DenseNet169 0 h 57 m 16 s DenseNet169 1 h 53 m 10 s 

VGG16 0 h 58 m 36 s VGG16 1 h 57 m 31 s 

DenseNet201 1 h 10 m 11s VGG19 2 h 13 m 18 s 

ResNet152 1 h 36 m 59 s ResNet101 2 h 13 m 54 s 

VGG19 1 h 6 m 59 s DenseNet201 2 h 19 m 19 s 

ResNet101 1 h 7 m 3 s ResNet152 3 h 13 m 15 s 

Deep Learning 
Architectures 

Test Accuracy 
(%) 

Average Precision (%) Average Recall 
(%) 

Average F1-Score (%) 

Istanbul-
2500 

Istanbul-
5000 

Istanbul-
2500 

Istanbul-
5000 

Istanbul-
2500 

Istanbul-
5000 

Istanbul-
2500 

Istanbul-
5000 

VGG16 81 83.1 81.61 83.23 81 83.1 81.07 83.11 

VGG19 82 83.6 82.57 83.76 82 83.6 82.07 83.61 
ResNet50 90.2 93.2 91.2 93.43 90.2 93.2 90.29 93.22 

ResNet101 91.6 92.4 92.32 92.46 91.6 92.4 91.68 92.41 
ResNet152 90.6 81.4 91.17 85.21 90.6 81.4 90.68 81.37 

DenseNet121 93.6 96.1 93.74 96.12 96.6 96.1 93.62 96.1 

DenseNet169 91.8 96.3 92.23 96.35 91.8 96.3 91.88 96.3 

DenseNet201 93.6 94.4 93.87 94.71 93.6 94.4 93.92 94.41 
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The Apple iOS mobile application was developed by 
integrating the weight file of the DenseNet169 
architecture into the CoreML (.mlmodel), which can also 
work offline mode. The application uses either freshly 
taken images useful pre-existing photos on the phone. 
The system lists the three most probable of the ten 

included historical buildings after recognition, as well as 
their probabilities. The most probable structure can be 
selected by the user, and the system provides the 
location and route plan on the screen using GPS 
information from the phone (Figure 10).

 
 

 
 

Figure 10. DL-integrated iOS-based mobile application 
 
5. CONCLUSION 
 

In recent years, DL architectures have been 
employed for different image vision and recognition 
studies. While some researchers have used existing DL 
architectures, some have developed DL architectures 
focusing on specific problems. 

Historic landmarks, along with attribute 
information, are a challenging problem. It is possible to 
create smart systems using crowdsourcing data thanks 
to DL techniques. In this study, we investigated the 
efficiency of the DL technique for mobile historic 
landmark recognition. For this purpose, we explored 
eight different deep learning approaches to recognize 
ten historic landmarks of Istanbul. The highest F1-
scores calculated for the DenseNets. The reasons for this 
could be related to the high linear and textural 
complexity of the selected historic objects and the 
number of classes. Our results show that deep learning 
offers a promising alternative means of recognizing 
historic landmarks. 

The ten selected historic landmarks are unique 
monuments in Istanbul, and each has different textures 
and structures. Thus, it was possible to collect different 
characteristic images of the selected landmarks to 
generate training and test datasets. Only daylight 
images were included in this study. The developed 
framework can be extended for other historical 
landmarks in different cities around the world by 
collecting a more massive amount of data and working 
with more suitable computer configurations. 

The proposed prototype can be used efficiently in 
Istanbul, which has an enormous amount of historical 
monuments. This system provides not only historic 

landmark recognition but also attribute information and 
route planning. The developed mobile historic landmark 
recognition system can be implemented for other cities. 
As a future study, we plan to implement semantic 
segmentation architectures before the object 
recognition process as a tool for background 
elimination. Segmentation would prevent the learning 
of other objects that do not express the historic 
structure. Additionally, we plan to increase the number 
of recognizable historical buildings and to design our 
own deep learning architecture for historic landmark 
recognition purposes. 
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