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ABSTRACT

We introduce a pseudo Cauchy Riemann(PCR)-structure defined by a real tensor field J̄ of type
(1, 1) of a real semi-Riemannian manifold (M̄, ḡ) such that J̄2 = λ2I , where λ is a function on M̄ .
We prove that, contrary to the even dimensional CR-manifolds, a PCR-manifold is not necessarily
of even dimension if λ is every where non-zero real function on M̄ , supported by two odd
dimensional examples and one physical model. The metric of PCR-manifold is not severely
restricted. Then, we define a pseudo framed(PF)-manifold (M, g) by a real tensor field f such that
f3 = λ2f , where T (M) splits into a direct sum of two subbundles, namely im(f) (with a PCR-
structure) and ker(f), supported by some mathematical and physical examples. Finally, we study
a revised version of a contact manifold, called contact PF-manifold, which is a particular case of a
PF-manifold where dim(ker(f)) = 1. Contrary to the odd dimensional contact manifolds, there do
exist even dimensional contact PF-manifolds. We also propose several open problems.
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1. Introduction

Recall that Kähler’s [13] 1933 work on the complex manifold theory developed into what is well-known
as Kählerian geometry and their submanifolds. Cauchy Riemann(CR)[2], framed[20] manifolds and their
submanifolds are interesting topics of Riemannian geometry with roots in complex manifold theory. Although
the use of complex manifold theory has so far been very effective approach, a critical examination of the
modern development indicates that the metric (say ḡ) of the underlined even dimensional (say 2n) real
manifold is severely restricted by the root definition of Cauchy Riemann(CR) equations satisfying J2 = −I
where J is a real linear operator. To explain this notice that the eigenvalues of J are i =

√
−1 and −i each

one of multiplicity n. What we have then is 2n linearly independent null vectors in complex conjugate pair.
None of these null vectors can be real because the eigenvalues are not real. As J is real, the only possible
signatures of the metric ḡ are either (0, 2n) or of type (2p, 2q) with p+ q = n for positive definite or indefinite ḡ,
respectively. Thus, this classical definition of CR-equations with real J and an indefinite metric of an arbitrary
signature is inappropriate for the geometry of real semi-Riemannian manifolds (M̄, ḡ) and their submanifolds.
In 1976, Flaherty [11] was the first who noticed that for a real J the Lorentz metric is not compatible with the
CR-equations. Since there do exist complex Lorentz transformations satisfying the CR-equations, he replaced
the real J by a complex valued endomorphism J = iJ retaining the classical CR-equations J 2 = −I where
(ḡ,J ) satisfies the condition of an almost Hermitian structure of M̄ . See details in [11]. Although Flaherty’s
modification has been useful in bringing the rich geometry of Hermitian and Kählerian geometry as applied to
spacetime geometry needed by physicists, in general, there is a need to revise CR-equations compatible with
a vide variety of non-degenerate and degenerate metrics such that the known results of classical CR-geometry
are retained as special sub-cases.
Since CR-manifolds are even dimensional, to accommodate odd dimensional manifolds, in 1963, Yano[20]
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introduced f-structure (also called framed structure) defined by a (1, 1) tensor field f satisfying f3 + f = 0
whose particular case is contact [3] structure of odd dimensional manifolds. However, for the metric framed
manifolds (cf. Blair [4]), unfortunately, in this case also the existence of a semi-Riemannian metric has
restrictions similar to the case of CR-manifolds. Therefore, there is also a need to revise framed and contact
structures compatible with a variety of non-degenerate and degenerate metrics.
In this paper we suggest revised definitions, namely, pseudo Cauchy Riemann equations, briefly denoted
by PCR-equations pseudo framed and contact pseudo framed structures, briefly denoted by PF and CPF-
structures(see definitions (2.1)and (3.1), respectively, so that the semi-Riemannian metric of these revised
structures is not severely restricted. We justify the existence of these three structures by means of several
examples and physical models. The paper is organized as follows. In Section 2 we start with definition of a PCR-
structure, explain how it is compatible with a variety of associated semi-Riemannian metrics while retaining
all the known results of classical CR-structures. We have proved that PCR-manifolds are not necessarily even-
dimensional if λ is every where non-zero real function, supported by two odd dimensional examples and a
physical model of 5D Friedmann-Robertson-Walker (FRW) spacetime. We also constructed two examples of
even dimensional lightlike and non-degenerate PCR-manifolds. Then, in Section 3 we state revised PF and
a revised version of a contact manifold, called CPF-manifold, which admits a contact PCR-distribution and
explain the need for revising them. We construct a mathematical model of relating PF and PCR-manifolds and a
physical model each of globally hyperbolic PF-manifolds and a globally null CPF-spacetime. We highlight that,
contrary to the classical contact manifolds, revised contact PF-manifolds are not necessarily of odd dimension,
supported by an even dimension example, with physical applications. This paper is expected to generate
considerable further study on PCR, PF, CPF-manifolds and their submanifolds with applications.

2. Pseudo Cauchy Riemann manifolds

Let M̄ be an m-dimensional real differential manifold. We say that a pseudo Cauchy Riemann structure on M̄ is
a real tensor field J̄ of type (1, 1) at every point of M̄ satisfying

J̄2 = λ2I, (2.1)

where λ is a function on M̄ . Two sub-structures defined by (2.1) are:

(a) CR-structure [2] if λ2 = −1, rank of J̄ = m and m is even.
(b) Almost tangent structure [10] if λ = 0, rank of J̄ = m/2 and m is even.

In this paper, we assume that λ is nonzero. For those interested in the subcase λ = 0 ((b) almost tangent
structures) we recommend [10]. Also, it is important to mention that in 1956 Legrand [14] introduced the notion
of π-structure defined by our equation (2.1) and he assumed that λ is a nonzero complex constant whereas we
assume in this paper that λ is a nonzero real function. Suppose M̄ admits a real r-dimensional distribution D.
Following are three mutually exclusive cases of the causal character (see O’Neill [17]) of D.
(a) D is spacelike. (b) D is timelike. (c) D is lightlike.
If (a) or (b) holds, then, following the terminology of Newlander and Nirenberg [16] we say that a manifold M̄
with a PCR-structure (J̄ , λ) admits a realizable PCR-structure if the distribution D is invariant (J̄D = D) with
respect to J̄ and it is involutive, that is, [X̄, Ȳ ] ∈ D for every X̄, Ȳ ∈ D. Then, (M̄, J̄ , λ) is called a PCR-manifold
satisfying

TM̄ = D ⊕D⊥, D ∩D⊥ = {0}, dim(D⊥) = m− r.
Note that there do exist non-realizable CR-structures for which see Penrose [18]. For the case (c) D lightlike
implies that D⊥ is not orthogonal to D since D = D⊥ so D +D⊥ 6= TM̄ . Therefore, for lightlike D we consider
D̃, the complementary distribution of D in TM̄ and

TM̄ = D ⊕orth D̃, D ∩ D̃ = {0}.

Now we recall the following brief information (see details in [8][pages 30-40]) to recover a realizable PCR-
structure for the lightlike case.
Assume that ḡ is degenerate on TM̄ , that is, there exists a vector field ξ 6= 0 of Γ(TM̄) such that ḡ(ξ, X̄) =
0, ∀ X̄ ∈ Γ(TM̄). The radical distribution of TM̄ , with respect to ḡ, is defined by

RadTM̄ =
{
ξ ∈ Rad(TM̄) ; ḡ(ξ, X̄) = 0 ,∀X̄ ∈ Γ((TM̄)

}
.

T M̄ = Rad(TM̄)⊕orth S(TM̄),
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where S(TM̄) is a non-degenerate complementary (but not orthogonal) screen distribution of Rad(TM̄) in
TM̄ . Suppose dim(Rad(TM̄)) = r ≥ 1. Then, dim(S(TM̄)) = m− r and ḡ has a constant rank m− r. In this case
(M̄, ḡ) is called an r-lightlike manifold. Set lightlike D = Rad(TM̄). If D is invariant (J̄D = D) with respect to
J̄ which satisfies the structure equation (2.1) and [X̄, Ȳ ] ∈ D,∀X̄, Ȳ ∈ D, then, we recover a realizable lightlike
PCR-structure with M̄ an r-lightlike PCR-manifold. In this paper we only consider realizable PCR-structures
for all the three cases. Now we highlight that contrary to the case of even dimensional CR manifolds following
holds for a PCR-manifold:

Theorem 2.1. A PCR-manifold M̄ with a PCR-structure (J̄ , λ) is not necessarily even-dimensional if λ is every where
non-zero real function on M̄ .

Proof. Let dim(M̄) = m and let (e1, · · · , em) be a basis for TpM̄ at a point p of M̄ . Then, since J̄ is linear, it is
determined by m2 quantities J̄ji where J̄(ei) = J̄ji ej (sum over j). Operating both sides with J̄ and using (2.1)
we get

λ2ei = J̄2(ei) = J̄ji J̄
k
j ek ⇒ J̄ji J̄

k
j = λ2δki .

A matrix equation of this can be written as follows

det(J̄2) = (detJ̄)2 = λ2det(Im) = (λ2)m ≥ 0,

where Im is the m×m unit matrix. Since λ is non-zero real function, above implies that m is not necessarily
even-dimensional, which completes the proof.

Suppose M̄ admits a semi-Riemannian metric ḡ. We know that the CR-structure tensor J̄ is compatible with
the metric tensor ḡ of a CR-manifold if ḡ(J̄X̄, J̄ Ȳ ) = ḡ(X̄, Ȳ ), that is, ḡ compatible with J̄ is isometric. To revise
this relation we say that (M̄, ḡ, J̄ , λ) is an almost metric PCR-manifold if for a non-zero function µ

ḡ(J̄X̄, J̄ Ȳ ) = µḡ(X̄, Ȳ ), ∀X̄, Ȳ ∈ Γ(TM̄), (2.2)

that is, ḡ compatible with J̄ is conformal or homothetic (in particular, isometric) if µ is constant (in
particular, µ = 1), respectively. Following are two examples of odd dimensional PCR-manifolds, in support
of Theorem 2.1.

Example 2.1. Let {ξ1, ξ2, ξ3, ξ4, ξ5} be a basis for TpM̄ at a point p of a 5-dimensional semi-Riemannian manifold
(M̄, ḡ) endowed with a real tensor field J̄ of type (1, 1) and two real non-zero functions λ and µ on M̄ . Suppose

J̄ξ1 = λξ1, J̄ξ2 = λξ3, J̄ξ3 = λξ2, J̄ξ4 = ξ5, J̄ξ5 = λ2ξ4. (2.3)

Then, J̄2ξa = λ2ξa,∀a = 1, 2, 3, 4, 5 holds. Suppose ḡ(ξ1, ξ1) = εσ2
1 , ḡ(ξa, ξa) = σ2

a for each a = 2, 3, 4, 5 where
each σa is a real function on M̄ . Using the metric compatible equation (2.2) we get

ḡ(J̄ξ1, J̄ξ1) = εµσ2
1 = ελ2σ2

1 =⇒ µ = λ2,

ḡ(J̄ξ2, J̄ξ2) = λ2σ2
2 = λ2σ2

3 , ḡ(J̄ξ3, J̄ξ3) = λ2σ2
3 = λ2σ2

2 .

Cancelling λ2 we get σ2
3 = σ2

2 . Now, for the two vectors (ξ4, ξ5) we have

ḡ(J̄ξ4, J̄ξ4) = λ2σ2
4 = σ2

5 , ḡ(J̄ξ5, J̄ξ5) = λ2σ2
5 = λ4σ2

4 .

Cancelling λ2 from the second equation we get σ2
5 = λ2σ2

4 . Therefore, using this data and taking X̄ = Σaη
a(X̄)ξa

we have

ḡ(X̄, Ȳ ) = εσ2
1η

1(X̄)η1(Ȳ ) + σ2
2

(
η2(X̄)η2(Ȳ ) + η3(X̄)η3(Ȳ )

)
+ σ2

4

(
η4(X̄)η4(Ȳ ) + λ2η5(X̄)η5(Ȳ )

)
,

J̄X̄ = λη1(X̄)ξ1 + λη2(X̄)ξ3 + λη3(X̄)ξ2

+ η4(X̄)ξ5 + λ2η5(X̄)ξ4,

J̄2X̄ = λ2X̄, ḡ(J̄X̄, J̄ Ȳ ) = λ2ḡ(X̄, Ȳ ), ∀X̄, Ȳ ∈ Γ(TM̄).

Thus, (M̄, ḡ, J̄ , λ) is an almost metric (Riemannian or Lorentzian according as ε is 1 or −1, respectively) PCR-
manifold.
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Physical Model 1. In 1944, Walker [19] introduced a spacially homogeneous 4D spacetime, called Robertson-
Walker(RW) spacetime, with metric

ds2 = −dt2 + S2(t)dΣ2,

where dΣ2 is the metric of a 3D spacelike hypersurface Σ with spherical symmetry and constant curvature
c = 1,−1 or 0. With respect to a local spherical coordinate system (r, θ, φ), this 3D metric is given by

dΣ2 = dr2 + f2(r)(dθ2 + sin2 θdφ2),

where f(r) = sin r, sinh r or r according as c = 1,−1 or 0. Specially homogeneous property means that any point
on one of these hypersurfaces is equivalent to any other point on the same hypersurface. To relate above metric
with the metric of our Example 2.1 of a 5D Lorentzian PCR-manifold we first recall a 2011 paper of Middleton
and Stanley [15] on“Anisotropic evolution of 5D Friedmann-Robertson-Walker(FRW) spacetime" with their
choice of following metric

ds2 = −ds2 + S2(t)[dr2 + r2(dθ2 + sin2 θdφ2)] + α2(t)dw2, (2.4)

with respect to a coordinate system (t, r, θ, φ, w), where there is an extra dimension with a scalar factor α(t) of
extra 5th dimension which evolves at a different rate, in general, than the 3D scalar factor. This spacetime has a
flat (c = 0), homogeneous and isotropic 3D space and a flat extra dimension with coordinate w. These authors
were able to write the FRW field equations exclusively in terms of the 3D scalar factor S(t) which produced
a set of 4D FRW field equations. Details on this paper (with some side references) are available in [15]. For
a relation of Example 2.1 with above physical FRW-spacetime we first transform the metric equation of this
example into following form

ds2 = −dt2 + S2(t)[dx2 + dy2 + dz2] + α2(t)dw2,

with respect to a local coordinates system (t, x, y, z, w), where we set

εσ2
1 = −1, σ2

2 = σ2
4 = S2(t), σ2

2λ
2 = α2(t).

A further transformation of 3D part into spherical symmetric coordinates establishes that our Example 2.1
is, in particular, a physical model of a 5D Friedmann-Robertson-Walker(FRW) spacetime admitting a metric
given by (2.4).

Let an almost metric PCR-manifold M̄ admit a 2-form Ω defined by

Ω(X̄, Ȳ ) = ḡ(X̄, J̄ Ȳ ), ∀X̄, Ȳ ∈ Γ(TM̄). (2.5)

Proposition 2.1. Suppose an almost metric PCR-manifold M̄ admits a 2-form Ω defined by the equation (2.5). Then, the
function (see equation (2.2)) µ = −λ2.

Proof. Ω(X̄, Ȳ ) + Ω(Ȳ , X̄) = 0 implies that ḡ(X̄, J̄ Ȳ ) + ḡ(Ȳ , J̄X̄) = 0. Operating J̄ to X̄ on both sides and using
(2.5) we get µ = −λ2.

Since Example 2.1 holds for µ = λ2 we now construct following examples to support the condition µ = −λ2

if M̄ admits a 2-form Ω.

Example 2.2. Let {ξ1, ξ2, ξ3, ξ4} be a basis for TpM̄ at a point p of a 4-dimensional semi-Riemannian manifold
(M̄, ḡ) with (J̄ , λ) as defined in Example 2.1. Take J̄ξ1 = ξ2, J̄ξ2 = λ2ξ1, J̄ξ3 = ξ4, J̄ξ4 = λ2ξ3. Then,
J̄2ξa = λ2ξa,∀a = 1, 2, 3, 4 holds. Suppose ḡ(ξa, ξa) = σ2

a for each a = 1, 2, 3, 4, where each σa is a real function
on M̄ . Assume M̄ admits a 2-form Ω defined by (2.5). Then, as per Proposition 2.1 µ = −λ2. Using this,(2.2) and
as in previous example we get σ2

2 = −λ2σ2
1 and σ2

4 = −λ2σ2
3 . Taking X̄ = Σaη

a(X̄)ξa we have

ḡ(X̄, Ȳ ) = σ2
1

(
η1(X̄)η1(Ȳ )− λ2η2(X̄)η2(Ȳ )

)
+ σ2

3

(
η3(X̄)η3(Ȳ )− λ2η4(X̄)η4(Ȳ )

)
J̄X̄ = η1(X̄)ξ2 + λ2η2(X̄)ξ1 + η3(X̄)ξ4 + λ2η4(X̄)ξ3,

J̄2X̄ = λ2X̄, ḡ(J̄X̄, J̄ Ȳ ) = −λ2ḡ(X̄, Ȳ ),∀X̄, Ȳ ∈ Γ(TM̄).

Therefore, (M̄, ḡ, J̄ , λ) is a non-degenerate almost metric PCR-manifold which admits a 2-form Ω defined by
(2.5).
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NOTE 1. It follows from above example that even dimensional PCR-manifolds, which admit a 2-form Ω and
a real λ, do not admit a Riemannian metric. Perhaps we need a relation J̄ξa other than (2.3) for the Riemannian
metric, which we do not know. Therefore, this case is left as an unsolved problem.

Example 2.3. Suppose {ξ1, ξ2, ξ3, ξ4, ξ5} is a basis for TpM̄ at a point p of a 5-dimensional manifold (M̄, ḡ) with
a pair (J̄ , λ) as defined in Example 2.1 and

J̄ξ1 = λξ1, J̄ξ2 = ξ3, J̄ξ3 = λ2ξ2, J̄ξ4 = ξ5, J̄ξ5 = λ2ξ4.

Then, J̄2ξa = λ2ξa,∀a = 1, 2, 3, 4, 5 holds. Assume M̄ admits a 2-form Ω defined by (2.5). Then, as per
Proposition 2.1, µ = −λ2. Using this and the metric compatible equation (2.2) we get ḡ(J̄ξ1, J̄ξ1) =
−λ2ḡ(ξ1, ξ1) = λ2ḡ(ξ1, ξ1). This implies that ḡ(ξ1, ξ1) = 0 so ξ1 is a null vector. Now let ḡ(ξa, ξa) = σ2

a for each
a = 2, 3, 4, 5 where each σa is a real function on M̄ . Then following as in Example 2.1 and taking X̄ = Σaη

a(X̄)ξa
we get

ḡ(X̄, Ȳ ) = σ2
2

(
η2(X̄)η2(Ȳ )− λ2η3(X̄)η3(Ȳ )

)
+ σ2

4

(
η4(X̄)η4(Ȳ )− λ2η5(X̄)η5(Ȳ )

)
,

ḡ(X̄, ξ1) = 0, ḡ(J̄X̄, J̄ Ȳ ) = −λ2ḡ(X̄, Ȳ ), ∀X̄, Ȳ ∈ Γ(TM̄).

Thus, as explained above (M̄, ḡ, J̄ , λ) is a 1-lightlike almost metric PCR-manifold which admits a 1-dimensional
radical distribution RadTM̄ = {ξ1} and 4-dimensional screen distribution S(TM̄) = {ξ2, ξ3, ξ4, ξ5} such that

TM̄ = Rad(TM̄)⊕orth S(TM̄), rank(ḡ) = 4,

J̄X̄ = λη1(X̄)ξ1 + η2(X̄)ξ3 + λ2η3(X̄)ξ2

+ η4(X̄)ξ5 + λ2η5(X̄)ξ4

J̄2 = λ2I. J̄RadTM̄ = RadTM̄, [X̄, Ȳ ] ∈ RadTM̄, ∀X̄, Ȳ ∈ RadTM̄.

Above odd dimensional example of lightlike case raises the following question? Are there any even
dimensional lightlike PCR-manifolds which admit a 2-form Ω. The answer is “YES" and we give following
example.

Example 2.4. Let {ξ1, ξ2, ξ3, ξ4} be a basis for TpM̄ at a point p of a 4-dimensional manifold (M̄, ḡ) with (J̄ , λ) as
defined in Example 2.1. Take J̄ξ1 = λξ1, J̄ξ2 = λξ2, J̄ξ3 = ξ4, J̄ξ4 = λ2ξ3. Then, J̄2ξa = λ2ξa,∀a = 1, 2, 3, 4
holds. Assume M̄ admits a 2-form Ω defined by (2.5) which implies µ = −λ2. Using this and the metric
compatible equation (2.2) we get ḡ(J̄ξ1, J̄ξ1) = −λ2ḡ(ξ1, ξ1) = λ2ḡ(ξ1, ξ1). This implies that ḡ(ξ1, ξ1) = 0 so ξ1
is a null vector. Similarly, one can show that ξ2 is also null. Now let ḡ(ξa, ξa) = σ2

a for each a = 3, 4 where each
σa is a real function on M̄ . Proceeding as in Example 2.2 and taking X̄ = Σaη

a(X̄)ξa we get

ḡ(X̄, Ȳ ) = σ2
3

(
η3(X̄)η3(Ȳ )− λ2η4(X̄)η4(Ȳ )

)
ḡ(X̄, ξ1) = 0, ḡ(X̄, ξ2) = 0, ḡ(J̄X̄, J̄ Ȳ ) = −λ2ḡ(X̄, Ȳ ), ∀X̄, Ȳ ∈ Γ(TM̄).

Thus, (M̄, ḡ, J̄ , λ) is a 2-lightlike almost metric PCR-manifold which admits a 2-form Ω with 2-dimensional
radical distribution D = RadTM̄ = {ξ1, ξ2} and 2-dimensional screen distribution D̃ = S(TM̄) = {ξ3, ξ4} such
that

TM̄ = Rad(TM̄)⊕orth S(TM̄), rank(ḡ) = 2,

J̄X̄ = λη1(X̄)ξ1 + λη2(X̄)ξ2 + η3(X̄)ξ4 + λ4η3(X̄)ξ3

J̄2 = λ2I, J̄RadTM̄ = RadTM̄, [X̄, Ȳ ] ∈ RadTM̄, ∀X̄, Ȳ ∈ RadTM̄.

NOTE 2. Following Examples 2.3 and 2.4 one can show that there do exist odd and even dimensional r-
lightlike almost metric PCR-manifolds which admit a 2-form Ω defined by (2.5). Since lightlike manifolds are
usually studied as hypersurfaces or higher co-dimensional submanifolds of semi-Riemannian manifolds, in a
followup paper we plan to discuss more examples of lightlike PCR-submanifolds.
Let ∇̄ be Levi-Civita connection on M̄ with 2-form Ω as defined above. Then

(∇̄X̄Ω)(Ȳ , Z̄) = ḡ(Ȳ , (∇̄X̄ J̄)Z̄), ∀X̄, Ȳ , Z̄ ∈ Γ(TM̄).

We say that a tensor field NJ̄(λ) of type (1, 2) defined by

NJ̄(λ)(X̄, Ȳ ) = [J̄ , J̄ ](X̄, Ȳ ) = [J̄X̄, J̄ Ȳ ] + λ2[X̄, Ȳ ]− J̄([X̄, J̄ Ȳ ] + J̄ [J̄X̄, Ȳ ]), (2.6)
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∀X̄, Ȳ ∈ Γ(TM̄), is called pseudo Nijenhuis tensor of J̄ . Using the terminology of CR-structures we say that
PCR-structure is normal if NJ̄(λ) vanishes. Suppose an almost metric PCR-manifold M̄ admits 2-form Ω. Then,
M̄ is called almost K manifold (briefly denoted by AK-manifold) if Ω is closed,i.e., d(Ω) = 0. Also, an almost
metric PCR-manifold is called metric PCR-manifold if its PCR-structure is normal, that is,NJ̄(λ) vanishes. Then,
AK-manifold will be called K-manifold.
Suppose S(p) is the sectional curvature of a K-manifold M̄ for a section p in TM̄ and an invariant section
spanned by a non-null tangent vector X̄ (i.e. ḡ(X̄, X̄) 6= 0) and J̄X̄ . The sectional curvature of M̄ with respect
to an invariant S(p) is called the invariant sectional curvature and if X̄ , J̄X̄ are orthonormal basis for S(p),
then, S(p) = ḡ(R̄(X̄, J̄X̄)J̄X̄, X̄). A K-manifold is said to be a space-form if its invariant sectional curvature is
independent of the choice of an invariant section at each point. A space-form with constant invariant sectional
curvature c is denoted by M̄(c) whose curvature tensor is given by

R̄(X̄, Ȳ )Z̄ =
c

4
[ḡ(Ȳ , Z̄)X̄ − ḡ(X̄, Z̄)Ȳ + ḡ(J̄ Ȳ , Z̄)J̄X̄

− ḡ(J̄X̄, Z̄)J̄ Ȳ + 2ḡ(X̄, J̄ Ȳ )J̄ Z̄].

Open problems 1.
(a) Example 2.2 of even dimensional PCR-manifold and its Note 1 raises the following question? Do there exist
any odd dimensional non-degenerate PCR-manifold which admits a 2-form Ω. Also, as stated in Note 1, the
existence of even dimensional Riemannian PCR-manifolds, with a 2-form Ω, is another open problem.
(b) A. Gray and L. M. Hervella [12] have classified the almost Hermitian manifolds in 16 classes. Some well
studied classes are:

Almost Kähler condition−→ dΩ = 0 . Kähler condition−→ ∇̄J̄ = 0.
Nearly Kähler condition−→ (∇̄)X̄ J̄)X̄ = 0. Almost semi Kähler condition−→ δΩ = 0.
Semi- Kähler condition−→ δΩ = 0. Hermitian condition−→ N = 0.

It is an open problem to investigate similar classification of almost metric PCR-manifolds subject to the
functions λ and µ. New conditions are expected.
(c) We know that the vanishing of Nijenhuis tensor N implies from a result of Newlander and Nirenberg
[16] that the almost complex structure tensor J̄ is integrable. It is an open question to find the integrability
conditions of the almost PCR-structure tensor J̄ if its pseudo Nijenhuis tensor vanishes.
(d) Although we have above specific examples of odd and even dimensional semi-Riemannian and lightlike
metric PCR-manifolds, it is an open question of an arbitrary existence (or non-existence) of semi-Riemannian
metric for a PCR-manifold.

Remark 2.1. To compare new notations with those of CR-manifolds, we say that if the PCR-manifold reduces to
a CR-manifold (λ2 = −1, µ = 1), then, the corresponding almost metric (resp. metric) manifold will be almost
Hermitian (resp. Hermitian), the AK-manifold(resp. K-manifold) will be almost Kähler (resp. Kähler) manifold
for which the real distribution D = Re(H + H̄) where H is a holomorphic subbundle of CT (M̄) such that
H ∩ H̄ = {0} and H is involutive, that is, [X̄, Ȳ ] ∈ H for every X̄, Ȳ ∈ H . Also, compared to the fixed condition
(J̄ defines an isometry) for the almost Hermitian manifold we have choice of suitable values of the pair (λ, µ)
for a variety of almost metric PCR-manifolds and as per Theorem 2.1 it is not restricted to an even dimension
(see Examples 2.1 and 2.3).
For the special case of a Lorentzian PCR-manifold (M̄, ḡ, J̄ , λ), we suggest following two possible approaches
which satisfy the compatibility condition (2.2). Those who are interested in using complex manifold theory,
they can use Flaherty’s [11] method by replacing the real J̄ with a complex valued endomorphism J = iJ
retaining the classical CR-equations (λ2 = −1) which satisfy the compatibility condition of an almost Hermitian
structure of M̄ . However, although the use of complex manifold theory is “alive and well", it is carried out by
a relatively small number of enthusiastic researchers and, in particular, the underline physics (as presented
in Flaherty’s Thesis [11] on applications of Hermitian and Kählerian geometry in general relativity) is of very
mild interest. The more general approach comes from our new equation (2.1) of PCR-manifolds subject to the
compatible condition (2.2) for semi-Riemannian (in particular, Lorentzian and lightlike) manifolds, supported
by Examples 2.1-2.4 and a physical model.
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3. Pseudo framed manifolds

Let M be an (n = m+ q)-dimensional manifold. We say that a pseudo framed structure on M is a real tensor f
of type (1, 1) at every point of M satisfying

f3 − λ2f = 0, rank(f) = m (3.1)

where λ is a non-zero function (same as assumed in previous section) on M . Corresponding to two projection
operators P and Q applied to TM , defined by

(i) λ2P = f2 , (ii) λ2Q = −f2 + λ2I,

where I is the identity operator, there exist two complementary distributions D and D̃ such that dim(D) = m

and dim(D̃) = q. The following relations hold

fP = Pf = f , fQ = Qf = 0 , f2P = λ2P , f2Q = 0 .

Thus, we have a PCR-distribution (D, J̄ = f/D, J̄2 = λ2I) and f acts on D̃ as a null operator. Therefore, T (M)
splits into a direct sum of two subbundles, namely im(f) (with a PCR-structure) and ker(f). Suppose that
kerf is parallelizable. Then, there exist global(or local) linearly independent q vector fields {ξa} at any point
spanning D̃, (m+ 1 ≤ a , b , . . . ≤ m+ q), with its dual set {ηa} such that

f2 = λ2 (I − Σaη
a ⊗ ξa) .

In the above case, we say that M is pseudo framed manifold, briefly denoted by PF-manifold with PF-structure
denoted by (M,f , λ, ηa, ξa). Following holds

fξa = 0 , ηa ◦ f = 0 , ηa(ξb) = δab , Q(X) = Σaη
a(X)ξa.

We say that PF-structure of M is normal if its torsion tensor Tf(λ) is zero i.e., if

Tf(λ) ≡ Nf(λ) − λ2 d ηa ⊗ ξa = 0 ,

where Nf(λ) is the pseudo Nijenhuis tensor of f as defined in previous section. Consider a semi-Riemannian
metric g on PF-manifold M . We say that M is an almost metric PF-manifold if

g(fX, fY ) = µ
(
g(X,Y ) + εaσ

2
aη
a(X)ηa(Y )

)
,

g(X, ξa) = εaσ
2
aη
a(X), g(ξa, ξa) = εaσ

2
a, ∀X,Y ∈ Γ(TM), (3.2)

where εa = +1 or −1 according as the corresponding ξa is spacelike or timelike, µ (same as assumed in
previous section) and σa are non-zero real functions on M . An almost PF-structure is generalization of an
almost PCR-structure (q = 0) whose sub-structure is classical f-structure if λ2 = −1 and µ = 1. If q = 1 then we
say that almost PF-structure is an almost contact PF=structure, denoted by almost CPF-structure, whose almost
CPF-manifold, as per Proposition 2.1, is not necessarily of odd dimension (see some details on CPF-manifolds
in next subsection). In particular, M is an almost contact manifold [4] if q = 1, λ2 = −1, µ = 1. Suppose an
almost metric PF-manifold M admits a 2-form Ω. Then, we say that M is almost PK manifold (briefly denoted
by APK-manifold) if Ω is closed,i.e., d(Ω) = 0. Also, an almost metric PF-manifold is called metric PF-manifold
if its PF-structure is normal. Then, APK-manifold will be called PK-manifold.
Following is a mathematical model relating PCR and PF manifolds.

Mathematical Model. Let (M̄, ḡ, J̄ , λ, µ) be a m-dimensional almost metric PCR-manifold defined by J̄2 =
λ2I and ḡ(J̄X̄, J̄ Ȳ ) = µḡ(X̄, Ȳ ). Construct a product manifold

M = [(M̄ ×M ′), g = ḡ + g′],

where (M ′, g′) is a q-dimensional semi-Riemannian manifold with g′ its metric. Denote any vector field on M
by X = (X̄,Σaη

a(X) ∂
∂xa ) with (xa), a = (1, · · · , q), local coordinates on M ′ and ηa(X) are q smooth functions

on M . Let ξa = (0, ∂
∂xa ) be q vector fields tangent to M and f be a (1, 1) tensor field on M defined by

f(X) = f(X̄,Σaη
a(X)

∂

∂xa
) = (J̄X̄, 0).
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Then, it is easy to obtain f3 = λ2f, f(ξa) = 0, ηaf = 0, ηa(ξb) = δab . Let g(ξa, ξa) = εσ2
a, ∀a = (1, · · · , q).

Using all this we get
g(fX, fY ) = µ

(
g(X,Y ) + Σaσ

2
aεaη

a(X)ηa(Y )
)
.

Therefore, (M, g, f, λ, µ, ξa) is mathematical model of almost metric PF-manifolds.

Example 3.1. Suppose {ξ1, ξ2, ξ3; ξa} is an adapted basis for TpM at a point p of a (3 + q)-dimensional semi-
Riemannian manifold (M, g) endowed with a real tensor field f of type (1, 1) and two real non-zero function λ
and µ on M , where (a = 4, 5, · · · , 3 + q). Let

fξ1 = λξ1, fξ2 = ξ3, fξ3 = λ2ξ2, fξa = 0, ∀(a = 4, 5, · · · , 3 + q),

g(ξ1, ξ1) = εσ2
1 , g(ξ2, ξ2) = σ2

2 , g(ξ3, ξ3) = σ2
3 , g(ξa, ξa) = σ2

a,

where σ1, σ2, σ3 and σa are (3 + q) real functions onM . Using the metric compatible equation (2.2) and following
as examples of Section 2, we get µ = λ2 and λ2σ2

2 = σ2
3 . Taking X = Σaη

a(X)ξa we have

g(X,Y ) = εσ2
1η

1(X)η1(Y ) + σ2
2

(
η2(X)η2(Y ) + λ2η3(X)η3(Y )

)
,

+ Σaσ
2
aη
a(X)ηa(Y ), ∀X,Y ∈ Γ(TM),

fX = λη1(X)ξ1 + η2(X)ξ3 + λ2η3(X)ξ2, rank(f) = 3,

f2X = λ2(X − Σaη
a(X)ξa), f3X = λ2fX,

g(fX, fY ) = λ2
(
g(X,Y ) + Σaσ

2
aη
a(X)ηa(Y )

)
.

Therefore, (M, g, f, λ, ξa) is an almost metric (Riemannian or Lorentzian according as ε is 1 or −1, respectively)
PF-manifold.

NOTE 3. In above example if σ2
a is replaced by εaσ2

a, then, one can get a variety of metric signatures of almost
metric PF-manifolds, subject to restrictions stated in next open problems. Moreover, if M admits a 2-form
Ω defined by (2.4), then, µ = −λ2 so above example is not applicable. Therefore, we suggest as an exercise to
follow Examples 2.2-2.4 for constructing examples of non-degenerate and lightlike almost metric PF-manifolds
which admit a 2-form Ω.
Physical Model 2. A Lorentzian manifold (M, g) is said to be globally hyperbolic if there exists a spacelike
hypersurface H such that every endless causal curve intersects H once and only once. Such a hypersurface
is called a Cauchy surface. If M is globally hyperbolic, then (a) M is homeomorphic to R×H and for each t,
{t} ×H is a Cauchy surface, (b) if H ′ is any compact hypersurface without boundary, of M , then H ′ must be a
Cauchy surface.
Although simple examples of globally hyperbolic spacetimes are Minkowski and the Einstein static universe,
to include some more physically important models, such as Robertson-Walker and Schwarzschild spaces, Beem
and Ehrlich [1] constructed a large extended class of globally hyperbolic Lorentz manifolds as follows:
Let (M1, g1) and (M2, g2) be Lorentz and Riemannian manifolds respectively. Let h : M1 → (0,∞) be a C∞

function and Π : M1 ×M2 →M1 , Π̄ : M1 ×M2 →M2 the projection maps given by Π(p, q) = p and Π̄(p, q) = q
for every (p, q) ∈M1 ×M2. Then, define the metric g given by
g(X,Y ) = g1(Π?X, Π?Y ) + h(Π(p, q)) g2(Π̄?X, Π̄? Y ),
where Π? and Π̄? are respectively tangent maps. They proved

Theorem 3.1. Let (M1, g1) and (M2, g2) be Lorentzian and Riemannian manifolds respectively. Then, the Lorentzian
warp product manifold M = (M1 ×hM2, g = g1 ⊕h g2) is globally hyperbolic if and only if both following conditions
hold:
(1) (M1, g1) is globally hyperbolic.
(2) (M2, g2) is a complete Riemannian manifold.

For physical use of above theorem with several other examples of globally hyperbolic spacetimes (including
the 5D Friemann-Robertson-Walker(FRW) spacetime of Section 2) we refer Beem-Ehrlich[1] and Duggal-
Sharma [9][pages 68-72]. Now we need following general example for the physical interpretation of a class
of PF-manifolds by relating them with globally hyperbolic spacetimes.

Example 3.2. Let {ξ1, ξ2; ξa} be a basis for TpM at a point p of a (2 + q)-dimensional Lorentzian manifold (M, g)
endowed with a real tensor field f of type (1, 1), two real non-zero functions λ and µ on M . Suppose fξ1 =
ξ2, fξ2 = λ2ξ1 and fξa = 0, ∀(a = 3, · · · , 2 + q). Suppose g(ξ1, ξ1) = −1 and g(ξa, ξa) = σ2

a, ∀a = (3, · · · , 2 +
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q), where σa are real functions onM . AssumeM admits a 2-form Ω defined by (2.4). Then, as per Proposition 2.1
µ = −λ2. Using this and the metric compatible equation (2.2) we get g(fξ1, fξ1) = −λ2g(ξ1, ξ1) = λ2 = g(ξ2, ξ2).
Therefore, taking g(ξ2, ξ2) = λ2 and X = η1(X)ξ1 + η2Xξ2 + Σaη

a(X)ξa we have

g(X,Y ) = −η1(X)η1(Y ) + λ2η2(X)η2(Y ) + Σaσ
2
aη
a(X)ηa(Y ), (3.3)

fX = η1(X)ξ2 + λ2η2(X)ξ1, rank(f) = 2,

f2X = λ2(X − Σaη
a(X)ξa), f3X = λ2fX,

g(fX, fY ) = −λ2

(
g(X,Y ) +

∑
a

σ2
aη
a(X)ηa(Y )

)
, ∀X,Y ∈ Γ(TM).

Therefore, (M, g, f, λ) is an almost metric Lorentzian PF-manifold which admits a 2-form Ω defined by (2.4).

Following are known examples of 4-dimensional globally hyperbolic spacetimes related to above example
(for details see [9][pages 68-72]). First we set q = 2 so dim(M) = 4 and let σ2

3 = λ2α2 and σ2
4 = λ2β2, where α

and β are some real functions on M ,. Then, the metric (3.3) of above example takes the form

g(X,Y ) = −η1(X)η1(Y ) + λ2[η2(X)η2(Y ) + α2η3(X)η3(Y ) + β2η4(X)η4(Y )]. (3.4)

De-Sitter spacetime. Transform the metric equation (3.4) into following form

ds2 = −dt2 + a2 cosh2(t/a)[dx2 + dy2 + dz2],

where the local basis {ξ1, ξ2, ξ3, ξ4} is with respect to local coordinates (t, x, y, z), λ = a cosh(t/a) for some non-
zero constant a, α2 = β2 = 1 and we take curvature c = 1. Transforming 3D part into spherical symmetric
coordinates we get

ds2 = −dt2 + a2 cosh2(t/a)[dr2 + sin2 r(dθ2 + sin2 θdφ2]. (3.5)

Therefore, Example 3.2 is related to globally hyperbolic De-Sitter spacetime of constant curvature c = 1 which
is topologically R1 × S3 (see [9][page 69] for details).

Robertson-Walker spacetime. Recall from physical model 1 the Robertson-Walker(RW) spacetime with
metric

ds2 = −dt2 + S2(t)dΣ2 = −dt2 + S2(t)[dr2 + f2(r)(dθ2 + sin2 θdφ2)], (3.6)

where dΣ2 is the metric of a spacelike hypersurface, Σ has spherical symmetry and f(r) = sin r, sinh r or
r according as c = 1,−1 or 0, with respect to a local spherical coordinate system (r, θ, φ). The range of the
coordinates is restricted from 0 to 2π or from 0 to∞ for c = 1 or −1 respectively. For c = 1, Σ is diffeomorphic
to S3 and the corresponding RW-spacetime is globally hyperbolic, but, it is not globally hyperbolic for both
cases of c = −1, 0. See [9][pages 70-72] for details on this with references. Therefore, we consider c = 1 for
which f(r) = sin r.
Replacing λ2 = a2 cosh2(t/a) in equation (3.5) by S2(t) we get the equation (3.6), with f(r) = sin r, as a globally
hyperbolic RW-spacetime. Therefore, Example 3.2 is related to this RW-spacetime for the case c = 1. We leave it
as an exercise to show that Friemann-Robertson-Walker(FRW) and Schwarzschild spacetimes are also physical
examples of a class of almost metric Lorentzian PF-manifolds.

Physical Model 3. A lightlike manifold (M, g) is called globally null manifold if it admits a single global null
vector field and a complete Riemannian hypersurface. Details on this class of manifolds, with its physical use,
is available in [7][Chapter 8]. Here we show that a particular case of our Example 3.2 is a physical example of
globally null manifolds. Set λ2 = 1 in the equation (3.3) and transform it into

ds2 = −dt2 + d(x2)2 + hab d x
a d xb, (a, b = 3, · · · , q), (3.7)

with respect to a local coordinate system (x1 = t, x2, · · · , xq). As explained in physical model 2 we assume that
the PF-spacetime (M, g), with g its metric (3.7), is globally hyperbolic. Take two null coordinates u and v such
that u = t+ x2 and v = t− x2. Then, above metric transforms into

ds2 = − du dv + hab dx
a dxb.

The absence of du2 and dv2 in above metric implies that {v = constant.} and {u = constant.} are lightlike
hypersurfaces of M . Let (H, h, v = constant) be one of this lightlike hypesurface with 1-dimensional RadTM
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distribution D generated by the null vector {ξ1} in M . A leaf H ′ of the (m− 1)-dimensional screen distribution
of M is Riemannian with metric dΩ2 = hab dx

a dxb. In particular, there will be many global timelike vector
fields in this globally hyperbolic PF-spacetime M . We choose a fixed global time function t with its gradient a
global timelike vector field in M so that its lightlike hypersurface admits a global null vector field ξ1. Now, it
follows from the well know Hopf - Rinow theorem that we can choose our corresponding leaf H ′ a complete
Riemannian hypersurface of M . Consequently, we have constructed a globally null manifold (H, h, v =
constant) as a lightlike hypersurface of an almost metric PF-spacetime of example 3.2. A simple example is
the Minkowski spacetime with (H, hab = δab, v = constant) its globally null hypersurface.
Just as Beem and Ehrlich [1] constructed an extended class of globally hyperbolic warped product Lorentz
manifolds, to construct some more physical examples of globally null manifolds, in 2001, Duggal [6] proposed
the following concept of lightlike warped product manifolds: Let (H, g

H
) and (N, g

N
) be a lightlike and

a Riemannian manifold of dimensions n1 and n2 respectively, where the RadTH is of rank r. Let θ be a
smooth function on H , π : H × N → H and η : H × N → N be the projection maps given by π(x, q) = x and
η(x, q) = q for (x, q) ∈ H × N respectively, where the projection π on H is with respect to screen S(TH).

Definition 3.1. The product manifold M = H × N is said to be a lightlike warped product H ×θ N , with the
degenerate metric g defined by

g(X, Y ) = g
H

(π?X, π? Y ) + (θ ◦ π)2 g
N

(η?X, η? Y ),

for every X, Y of M and ? is the symbol for the tangent map.

It follows thatRadTM ofM still has rank r but dim(M) = n1 + n2 and dim(S(TM)) = n1 + n2 − r. Consistent
with above example we assume that (H, g

H
) is globally null for which r = 1 and (N, g

N
) is a complete

Riemannian manifold. Thus, we quote the following theorem. The proof is common with the proof of
Lorentzian case [1]:

Theorem 3.2. (Duggal [6]). Let (H, g
H

) and (N, g
N

) be lightlike and Riemannian manifolds respectively. Then the
warped product (M = H ×θ N, g) is globally null if and only if both the following conditions hold:

(1) (H, g
H

) is globally null.
(2) (N, g

N
) is a complete Riemannian manifold.

It is easy to show that De-Sitter, Robertson-Walker and Schwarzschild spacetimes admit globally null
hypersurfces which satisfy above theorem and are physical models of null hypersurfaces of the almost metric
PF-spacetime of Example 3.2.

Open problems 2.
(a) Yano [20] has proved that the existence of an f -structure is equivalent to the reducibility of the structure
group of TM to U(m/2)×O(q), where m is even. This raises following question? Find the structure group of
TM for the existence of an almost PF-structure of a PF-manifold M . The case m even is a generalization of
above Yano’s result, subject to some conditions on the pair (λ, µ). The case m odd seems quite different so we
request input from interested researchers.
(b) As stated in open problem 1(b) of previous section on the classification of almost metric PCR-manifolds, a
similar classification of almost metric PF-manifolds is needed to study the geometry of APK and PK-manifolds.
(c) Blair [4] has proved that on a K-manifold the q vector fields ξa are Killing. It is an open question to find metric
symmetry (conformal, homothetic or Killing) of these q-vector fields of PK-manifolds.
(d) Find integrability conditions of PF-structure tensor f and its distributions.
(e) Although we have above specific examples of odd and even dimensional semi-Riemannian and lightlike
metric PF-manifolds, it is an open question of an arbitrary existence (or non-existence) of semi-Riemannian
metric for a PF-manifold. We only know from Blair [4] and Duggal-Sahin [8][pages 307-308] the existence of
Riemannian and Lorentzian metric, respectively, for f-manifolds.
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3.1. Contact Pseudo Framed manifolds

Let M be an (n = m+ 1)-dimensional almost metric contact pseudo framed (CPF) manifold (M, g, f, λ, η, ξ)
where η is a 1-form (called contact form), ξ is a vector field , called characteristic vector field, g is a semi-
Riemannian metric and f is a (1, 1)) tensor field satisfying

f3 − λ2f = 0, η(ξ) = 1, ∀X ∈ T (M).

g(fX, fY ) = µ
(
g(X,Y ) + εσ2η(X)η(Y )

)
,

g(X, ξ) = εσ2ηa(X), g(ξ, ξ) = εσ2,

where ε = +1 or −1 according as ξ is spacelike or timelike, σ and µ are real non-zero functions. Also, as per
previous section there exists an almost PCR-distribution D given by (J̄ = f/D, J̄2 = λ2I, η = 0). It is important
to mention that in above definition ξ is never a lightlike (null) vector field. We highlight that, contrary to the
Riemannian contact manifolds, we have following subcases of CPF-manifolds.
Riemannian CPF-manifolds: In Example 3.1 if we consider a 4-dimensional Riemanian manifold (M, g) with
ε = 1 and q = 1 , then, it is easy to see that (M, g) is an example of even dimensional almost metric CPF-
manifold. Furthermore, this example can be extended to dim(M) = 2n, with dim(D) = 2n− 1 and q = 1 to show
that there do exist even dimensional almost metric Riemannian PC-manifolds. Using this example, we suggest
further study on even dimensional almost metric Riemannian CPF-manifolds discussing the similarities and
differences compared with the results of odd dimensional almost contact Riemannian manifolds. On the
other hand, as per open problems 1(a), we do not know the existence of even dimensional spacelike PCR-
distributionsD needed to construct an example of odd dimensional almost metric CPF-manifold which admits
a 2-form Ω.
Lorentzian CPF-manifolds: Following are two cases for this type of manifolds:
Case 1. ε = −1 and D spacelike. Case 2. ε = 1 and D timelike. For both these cases we follow the terminology
used in [5] and say that the corresponding almost CPF-manifold is an almost Lorentzian (in particular,
spacetime) CPF-manifold. Following are physical models of these two cases:
Physical Model(case 1). Let (M̄m, ḡ, J̄2 = λ2I) be an almost metric Riemannian PCD-manifold with ḡ
compatible with J̄ if ḡ(JX̄, JȲ ) = µḡ(X̄, Ȳ ), for every vector fields X̄ , Ȳ and some non-zero function µ of
M̄ . As a particular case of Mathematical Model of this section, we construct a product manifold defined
by M = [(M̄ ×R), g = ḡ − dt2]. Let X = (X̄, η(X) ddt ) be a vector field on M where X̄ is tangent to M̄ , t is a
coordinate of R and η(X) is a smooth function on M . Set η = dt so that ξ = (0, ddt ) is a vector field tangent to M .
Suppose f is a (1, 1) tensor field on M defined by

f(X) = f(X̄, η(X)
d

dt
) = (J̄X̄, 0).

Then, we obtain

f2(X) = λ2X + η(X)ξ, f(ξ) = 0, ηf = 0, η(ξ) = 1,

g(ξ, ξ) = −1, g(fX, fY ) = µ (g(X,Y )− η(X)η(Y )) ,

which shows that (M, g, f, λ, µ) is almost metric a Lorentzian CPF-manifold, with a timelike characteristic
vector field ξ.

Example 3.3. In Example 3.1 we set ε = 1, q = 1, g(ξ4, ξ4) = g(ξ, ξ) = −1. Then, it is easy to see that
(M, g, η, ξ) is an almost metric Lorentzian CPF-manifold. In particular, if ξ is global then M is a spacetime.
Following the construction of physical examples of previous section, it is straightforward to show that 4-
dimensional (in general 2n-dimensional) de-Sitter and Robertson-Walker spacetimes are examples of physical
model(class 1) of CPF-manifolds.

Physical Model(case 2). Let (M̄m, ḡ, J̄2 = λ2I) be an almost metric Lorentzian PCD-manifold with ḡ
compatible with J̄ if ḡ(JX̄, JȲ ) = µḡ(X̄, Ȳ ), for every vector field X̄ , Ȳ . Construct a product manifold
defined by M = (M̄ ×R), g = ḡ + du2), where u is coordinate of R and η(X) is a smooth function on M . Let
X = (X̄, η(X) d

du ) be a vector field on M where X̄ is tangent to M̄ . Set η = du so that ξ = (0, ddu ) is a vector field
tangent to M . Let ξ be a spacelike vector field tangent to M . Proceeding as in case 1, we say that (M, g, f, λ, µ)
is an almost metric Lorentzian CPF-manifold, with a spacelike characteristic vector field ξ.

Example 3.4. In Example 3.1 if we consider a 4-dimensional Lorentzian manifold (M, g) with ε = −1 and q = 1
, then, it is easy to see that (M, g) is an example of even dimensional almost metric CPF-manifold. This example
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can be extended to dim(M) = 2n, with dim(D) = 2n− 1. Here also one can construct examples of de-Sitter and
Robertson-Walker CPF-spacetimes.

Lightlike CPF-manifolds. For this case we need following example.

Example 3.5. Suppose {ξ1, ξ2, ξ3, ξ4} is an adapted basis for TpM at a point p of a (3 + 1)-dimensional manifold
(M, g) endowed with a real tensor field f of type (1, 1) and two real non-zero function λ and µ on M . Assume
M admits a 2-form Ω defined by (2.5). Then, as per Proposition 2.1, µ = −λ2. Let fξ1 = ξ1. Using this and the
metric compatible equation (2.2) we get g(fξ1, fξ1) = −λ2g(ξ1, ξ1) = λ2g(ξ1, ξ1). This implies that ḡ(ξ1, ξ1) = 0
so ξ1 is a null vector. Let g(ξa, ξa) = σ2

a for each a = 2, 3, 4), where each σa is a real function on M . Suppose
fξ2 = ξ3, fξ3 = λ2ξ2, fξ4 = 0. Then, following Example 3.1 and taking X = Σaη

a(X)ξa we get

g(X,Y ) = σ2
2

(
η2(X)η2(Y )− λ2η3(X)η3(Y )

)
+ σ2

4η
4(X)η4(Y ), ∀X̄, Ȳ ∈ Γ(TM).

Thus, as explained in section 2, (M, g, f, λ) is a 1-lightlike almost metric CPF-manifold which admits a 1-
dimensional radical distribution RadTM̄ = {ξ1} and 3-dimensional screen distribution S(TM) = {ξ2, ξ3, ξ4}
such that

TM = Rad(TM)⊕orth S(TM)⊕ {ξ4}, rank(ḡ) = 2,

fX = λη1(X)ξ1 + η2(X)ξ3 + λ2η3(X)ξ2

f3 = λ2f. fRadTM = RadTM, [X,Y ] ∈ RadTM, ∀X,Y ∈ RadTM.

Using Examples 2.3 = 2.4, one can show that there exist r-lightlike almost metric CPF-manifolds which
admit a 2-form Ω. As stated in Section 1, in a followup paper we plan to discuss more physical examples of
lightlike CPF-hypersurfaces.

Remark 3.1. In this paper we have focused on a variety of examples (with physical interpretation) to justify,
for the first time in the literature, the existence of odd dimensional Riemannian, Lorentzian (in particular,
spacetime) and r-lightlike almost metric (PCR) and even dimensional (CPF) manifolds compared with the even
dimensional CR and odd dimensional contact manifolds, respectively. We have also shown that the metric of
our new definitions of PCR and PF manifolds is not severely restricted. This initial paper opens a new area
of research on the geometry of odd dimensional PCR-manifolds, even dimensional CPF-manifolds and their
submanifolds with applications. Since we have proposed several open problems in this paper, an input from
interested readers is requested before proceeding with further study on the geometry and physics of PCR and
PF (in particular, CPF) manifolds and their submanifolds.
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