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Abstract 

Several recent studies have used various data mining techniques to obtain accurate electrical 

energy demand forecasts in power supply systems. This paper, for the first time, compares the 

efficiency of the decision tree (DT) and classic genetic programming (GP) data mining models 

developed for electrical energy demand forecasting in Nicosia, Northern Cyprus. The models 

were trained and tested using daily electricity consumptions measured during the period 2011-

2016 and were compared in terms of three statistical performance indices including coefficient of 

determination, mean absolute percentage error and concordance coefficient. The prediction 

results showed that the proposed models can be effectively applied to forecasts of electrical 

energy demand. The results also indicated that the GP is slightly superior to DT in terms of the 

performance indices. 
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1. INTRODUCTION 

 

The 21 century is known as the age of information means that a huge amount of data from multiple sources 

is produced, measured, and recorded every second. In other words, data is everywhere, available in multiple 

formats and expanding exponentially. To extract information from data, many learning algorithms are 

available that typically use computers to learn underlying knowledge in data. Data mining is a set of 

techniques that can be used to classify the data and distill knowledge from it. Classically, data mining is 

defined as the computing process of discovering patterns in large data sets [1]. It involves the use of machine 

learning (ML), statistics and database systems to recognize the hidden patterns among the data. Once the 

patterns (knowledge) are recognized, they can be used for generalization aims; however the pattern must 

be verified before we reach any sort of conclusions.  

 

Using the recent advancements in computer technology, there are noticeable increase in the application of 

data mining techniques for descriptive and predictive modelling. Some of the tasks accomplished by mining 

a sort of data include anomaly detection, association rule mining (i.e., market basket analysis), clustering, 

classification, regression and time series forecasting. In the present study, we apply two data mining 

techniques, namely genetic programming (GP) and decision tree (DT) to accomplish both classification and 
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regression tasks in order to forecast electrical energy demand (hereafter ED) based upon observed energy 

consumption time series.  

 

The ED forecasting models are used in the wider domain of energy management such as power generation 

and distribution, energy market, power plant operation, building energy demand, etc. A number of data 

mining-based models have been suggested to estimate ED using either historical power demand or via 

regression analysis among ED and germane forcing parameters such as temperature, demography, charges, 

and others. For instance, artificial neural networks (ANN) were compared with regression analysis as well 

as DT methods and was shown that ANNs can forecast the ED more precise than the counterparts [2]. In a 

similar work, ANN was also used to the long-term forecast of ED in Greece [3]. The author showed that 

the ANN forecasts are more truthful than those of linear regression as well as support vector regression 

(SVR). DT method was applied for building energy use intensity modeling of Japanese residential buildings 

[4]. The authors elaborately demonstrated how one can generate decision trees based on a set of training 

data and how the results can be evaluated on test data. The authors also showed that DT is capable of 

classifying and predicting building energy demand levels precisely. Because of the non-stationary feature 

of the ED time series, the frequently used ad hoc ML methods may not be accurate enough to forecast ED. 

In such conditions, hybrid ML methods were implemented and promising results were reported. For 

instance, [5] demonstrated that a hybrid genetic algorithm (GA)-ANN model can meaningfully improve 

the accurateness of ad hoc ANN-based ED forecasting models. Even though these crossbreed models may 

create favorable forecasts, these are implicit models in which the relationship between the inputs and the 

output data cannot be easily expressed in a clear mathematical form. Therefore, hybrid models would be 

difficult to be used in practice. 

 

The authors’ review in the relevant literature revealed that the primary application of GP for ED prediction 

belongs to [6] where the study examined the capability of linear GP for short-term ED forecasts in the State 

of Victoria, Australia. The results showed that the linear GP generates direct and truthful models. Later, [7] 

used a more recent GP variant, namely gene expression programming (GEP) to regress ED series to the 

climatological features in Canada. The model was reported as efficient to be employed in practice. The 

advantages of GP and GEP in identifying precise and explicit models were described for electricity 

prediction, in which a clear mathematical form is provided or can be induced from the GP/GEP 

chromosome [8, 9]. Recent attempts have also discussed the usage of the smart meters (SMs) in a smart-

city grid (SG) as enabling technologies for the aforementioned ML methods in order to enhance the process 

of the ED prediction between the supplier and the demand side considering different aspects [10-12]. 

Among such applications, power outage detections/allocation, and the voltage/frequency fluctuations 

monitoring are essential features/events to monitor not only for power utilities but also for customer 

benefits. 

 

The objective of this study is to use GP and DT, as the subsets of data mining approaches, in order to 

develop ED forecasting models. The ultimate goal is to compare the effectiveness of the models and to 

show how they can be applied to evolve one-day ahead ED prediction models for Nicosia, the capital city 

of Northern Cyprus. To this end, the DT code, written in MATLAB, and GPdotNET, an open-source GP 

software, were used in this study. Both the programs provide user-friendly frameworks with the capability 

of exporting their tree-based results to numerically readable spreadsheet data sets. Currently, energy 

demand prediction for Nicosia is not efficient and therefore, our results may be used to increase the 

efficiency of the energy industry of Northern Cyprus. 

 

2. METHODS AND DATA 

 

2.1. Utilized Data 

 

The GP and DT models developed in the present study use daily ED records from the northern part of 

Nicosia (Turkish Republic of Northern Cyprus) in the period 2011-2016. The city has a typical 

Mediterranean climate with annual average electricity consumption of about 4000 MWh on the northern 

part and about 6000 MWh on the southern part [13]. The local power generation and distribution authority, 

called KIBTEK, predicts ED occasionally based only on the weather conditions not the actual user energy 
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consumption. It applies the SCADA which is a sophisticated expensive solution for ED prediction with 

intensive administrator dependence. The electricity consumption time series is depicted in Figure 1. This is 

a refined data (anomaly detected and removed) indicating a positive trend in energy use, particularly since 

2013. The figure also represents seasonal behavior, since the sinusoidal shape of the data can be recognized 

visually. The statistical properties of the electricity consumption series are shown in Table 1. 

 

 
Figure 1. Daily ED records in northern part of Nicosia 

 

Table 1. Statistical properties of implemented data, using the observations 2011-01-01 to 2016-12-31 

Data set Mean (MWh) Minimum (MWh) Maximum (MWh) 

Entire data 3876 2130 7032 

Training set 3782 2130 7032 

Validation set 4097 2293 6215 

 

2.2. Data Preparation 

 

Developing a DT model for modeling a nonstationary time series seems natural due to the complex nature 

of such events. Since the ED shown in Figure 1 represents a typical nonstationary time series (obvious trend 

and seasonality), the DT model was developed and compared with GP that both can handle the 

nonstationary series. The available data (i.e., ED time series) is represented with only one variable which 

is the example of a univariate time series. To prepare the data for GP- and DT-based univariate modeling, 

it must be transformed into data frame-based sets, i.e., features (input) and label (output). The features are 

generated by the previously observed values, so-called time lag values while the label is the time series 

value at the current time step. In this way, the time series is transformed so that historical changes influence 

the current value. For both DT and GP model configurations, seven days of time lags were selected and 

normalized using mi-max normalization method so that normalized ED at time step t+1 is assumed to be 

the function of normalized ED at the current time step 𝐸𝐷t and previous time steps 𝐸𝐷t−i as expressed in 

Equation 1. Once the data frame is created, training (80%) and validation (20%) data sets were created to 

calibrate and verify the models 

 

𝐸𝐷t+1 = 𝑓(𝐸𝐷t−i) 𝑎𝑛𝑑 (𝑖 = 0,1, … ,7 ). (1) 

2.3. DT-based Modelling 

 

As a data mining technique, DT is applied commonly in many engineering fields for classification and 

prediction problems [4, 14, 15]. DT utilizes the information available in the data set mainly for classification 

purposes. Respecting the initial information on each class data, a tree-based model is generated as a diagram 

called the decision tree. It is a nonparametric regression method in which training algorithm output is a type 

of discrete class. To obtain accurate results, the entropy theory is used for the characterization of impurity 

on a data set. DT generates a discrete response for the model through an entropy reduction at its structure. 

In the modeling procedure, a binary tree is used for finding the optimum tree size. The degree of importance 
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of variables in DT is related to their location at DT flowchart, where preceding sets have higher entropy. 

Lowest entropy belongs to leaves that cause a reliable decision as a decision support system [16].  

 

DT finds a relationship between dependent and independent variables in a nonlinear manner by a series of 

binary splits. Assuming a sample X containing a set of independent variables (x1, x2, …, xn), and the 

dependent variable of y (here 𝐸𝐷𝑡+1), DT determines y via subdivision of sample X. The tree is grown 

through successive branches of subsets of sample X into subsequent branches. The root node is defined as 

X and the binary tree is finalized in the set of terminal nodes. Based on the independent variable vector 

value the branches are determined at each node of a binary tree. The branches selection at each parent node 

is based on the DT algorithm in which model variance in y has the maximum reduction. The decision at 

each node comes from considering a specific value of the independent variable at the data range domain. 

Decisions stop once the model variance reduction reaches a specific value called the critical number. 

Finally, in order to find the optimal tree size, the cross-validation is used [17, 18].  

 

2.4. GP-based Modelling 

 

Fundamentals of GP and its variants can be found in [19]. Therefore, a brief overview is presented here in 

order to help the reader to realize the applied methodology in this paper. GP is an evolutionary algorithm 

that generates and optimizes computer programs (called individuals) to solve a wide diversity of problems. 

For more than a couple of decades, GP has been one of the most robust ML techniques to solve symbolic 

regression problems [20, 21]. However, it was also used to solve binary or multiclass classification 

problems [22, 23]. The main reason for its great success over time is it’s explicitly and ability to evolve 

mathematical expressions that can be easily analyzed, validated and applied in practice. Similar to most of 

the evolutionary algorithms, the main operators that are used to convert the initial population of individuals 

(i.e., random programs) to a set of preferred solutions include crossover, mutation, and reproduction. In 

contrast to the genetic algorithm, these operations act on a single or a pair of individuals having a tree shape 

known as the GP tree. GP trees can be commonly expressed by mathematical equations. For example, 

mathematical representations of a GP tree was illustrated in Figure 2. 

 
Figure 2. Tree and mathematical representations of a GP program 

 

Using crossover operation, some nodes and branches of a pair of GP trees (called parents) are exchanged. 

It is expected that the operation creates better programs (called offspring). Reproduction is the direct copy 

of the best GP tree in the initial population to a new population of individuals. Mutation is the alteration of 

a node or branch in a single GP tree. Each node in a tree can adopt a function or terminal variables such as 

x1 and x2 in Figure 2. One of the main issues in the GP-based modeling is the selection of a set of appropriate 

functions, input variables and maximum depth (also referred to as height) of GP trees. While the appropriate 

functions and variables can be select concerning the physics of the desired phenomenon, the tree depth is 

commonly constrained in order to control the complexity of the model to be developed. In an analogy with 

ANNs, the latter acts similar to the implementation of a restricted number of hidden neurons/layers. 

Complexity control in GP setup may also help the system to avoid overfitting problems where the solutions 

show very low errors on the training set, but high errors on the testing set.  

 

Nowadays, a few GP tools are available to run regression or classification analysis. A list of GP software 

frameworks/scripts and their features were presented in [19]. To create GP solutions in the present study, 
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we utilized GPdotNET which uses C# programming language to run evolutionary operations and to compare 

the solutions in terms of different goodness of fit functions. 

 

3. RESULTS 

 

3.1. DT Results 

 

The DT models developed in this study is shown in Figure 3. It has to be emphasized that the priority of 

decision is linked to the level of decision in each branch. As it is shown in Figure 3, the DT model has five 

decision steps algorithm. It is seen in Figure 3 that EDt is located at the top of the DT. It indicates that EDt 

is the most important variable in the modeling procedure in the decision-making plan of this study. The 

aforesaid assertion is supported for levels two and three, where EDt is located at one-three levels of DT 

flowchart. Looking to the forth level of DT, it can be found that behind EDt, variables of EDt-5, EDt-2 and 

EDt-4 have a great effect on the model output. It is also seen in Figure 3 that EDt-3 is located at the fifth level 

and variable EDt-1 is not listed in DT flowchart showing its lowest importance in the modeling procedure 

of this study.  

 

The observed ED values are compared with corresponding values computed by the DT model in Figure 4. 

It can be seen that the DT-based model yield high performance, where provides results close to the 

measured values.  

 

 
Figure 3. DT model for energy demand prediction 

 

 
Figure 4. Predicted demand obtained by the DT model for the validation set 
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3.2. GP Results 

 

As previously mentioned, the normalized daily ED prediction scenario was also considered to be modeled 

by GPdotNET. Similar to DT, the RMSE between the predicted and target values was selected as the 

objective function as suggested by Hrnjica and Danandeh Mehr [24]. This is the absolute error function 

often used as a fitness function in regression problems. In addition to lagged ED series (i.e., input vectors), 

five random constants in the range 0-1 were generated and used as members for terminal and inner nodes 

of GP individuals. The range is identical to the range of input vectors so the GP solutions would not be 

biased toward constants. To avoid more complex programs and possible overfitting problem, only four 

basic arithmetic operators (+,*, /, -) were selected as potential functions in the GP setup. Besides, the 

maximum height of the best solutions was limited to six levels. Some other important evolutionary 

parameters used in the setup of the GP tool are listed in Table 2. 

 

Table 2. Statistical properties of implemented data, using the observations 2011-01-01 to 2016-12 

Parameter Selected values 

Population Size 500 

Initialization Ramped Half and Half 

Validation set 4097 

Maximum Number of Generations 500 

Selection Method Tournament Selection 

Probability for Crossing-Over 90% 

Probability for Mutation 5% 

 

It’s worth mentioning that we monitored fitness simulation at each generation and ended the runs when the 

average fitness of the evolved models reaches to the fitness of the best-evolved model (see Figure 5). This 

procedure helps the modeler to get away from highly complex solutions. 

 

 
Figure 5. Fitness values obtained by the GP model for the training set 

 

Figure 5 indicates that GPdotNET is able to provide the best individual approximately after 40 generations, 

and program growth may increase the complexity of the solutions without noteworthy improvement in 

prediction accuracy. Figure 6 shows the best GP model attained for 1-day ahead ED forecast at Northern 

Nicosia. The parameters x1, x2, …, and x7 shown in the figure represent the normalized values of EDt-6, EDt-

5, ..., and EDt, respectively. The parameters ri are the random constants created by GPdotNET This is the 

row model tree that might include some introns, i.e., a program part without any influence on the result. 

Thus, it requires special attention that can simplify the model. 

 

The mathematical function of the best GP model (Figure 6) has been expressed in Equation (2). The 

constant 0.388 in the equation is the product of 0.542 and 0.716, which are randomly generated by GP in 

the initial stage of the model run. 

𝐸𝐷t+1 = 𝐸𝐷t  − (𝐸𝐷t  − 𝐸𝐷t−5 )(0.388𝐸𝐷t−6 ). (2) 
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Figure 6. The best GP model for ED forecasting 

 

Figure 7 plotted the best GP model forecasts and the observed ED series at the validation period. Similar 

to the DT results, the GP model is also able to capture ED fluctuations as well as both low and peak 

consumptions.  

 

 
Figure 7. Predicted demand obtained by the GP model for the validation set 

 

3.3. Comparison of DT and GP 

 

To compare the accuracy of the DT and GP models developed in this study, their performances are 

investigated based on three statistical performance indices; coefficient of determination (R2), mean absolute 

percentage error (MAPE) and concordance coefficient (CC).  

 

The R2 is a statistical measure of how the results are fitted to the best fit line and defined as 
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 respectively are, observation, prediction and mean of observation 

power demand, and n is number of data.  

 

The MAPE calculates model errors by comparison of the observation and prediction outputs defined as  
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The CC shows the concordance between observation and prediction data. It ranges from 1 to -1 and has 

the perfect value of 1. CC is calculated by 
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where r is correlation coefficient, 
obs  and pre  are standard deviation of observation and prediction 

power demand respectively, and   
1t

pre

mean
ED


 is the mean of prediction power demand.  

 

Table 3 shows the performance of DT and GP models in terms of three statistical indices of R2, MAPE and 

CC. The R2 and CC values in both models are so close to the perfect fitness value of 1.00 with slightly 

higher values for the GP model. Regarding the error measure of MAPE, the GP model has also less error 

than DT. Therefore, it can be concluded that GP provides better performance than DT in the present case 

study. Considering the efficiency results given in Table 3, one can imply that the DT and GP models have 

almost similar performance with close ED forecasts. Figure 8 compares the forecasts and observed ED time 

series during the validation period. Although both the models seem reliable for ED prediction in northern 

Nicosia, the figure indicates that GP is more satisfactory than ED in capturing peak ED values.  It is also 

worthy to mention that the GP model is simpler, explicit, and straightforward and therefore, motivating to 

be used in practice.  

 

Table 3. Model evaluation measures at validation period based on R2, MAPE and CC 

Index DT GP 

R2 0.901 0.918 

MAPE  4.21 3.7 

CC 0.950 0.958 

 

 
Figure 8. Observed and predicted electricity demand in the validation period 

 

Both GP and DT techniques have the ability to determine the most effective variables through the modeling 

procedure. For instance, looking to the ED pattern, based on DT results shown in Figure 3, the energy 

consumption in northern Nicosia is correlated to one-, three-, four-, five-, and seven-day ago variables, 

while in GP it is more correlated to the one-, six-, and seven-day antecedent values. It is understood that 

both GP and DT techniques can find the most effective variables within the input parameters. It makes an 

advantage in the application of GP and DT to consider a higher number of input parameters regardless of 
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their degree of impact on output. However, it should be noticed that having a higher number of input 

parameters may increase the time of computation. It has to be emphasized that DT can detect the importance 

degree of input parameters as well. As mentioned before, most important parameters are located at the top 

level of the tree, while less important parameters are located at the lower levels. It is the advantage of DT 

in comparison with GP, where the degree of effectiveness of parameters can be simply found from DT 

flowchart. It is seen from the results that energy consumption in northern Nicosia is most correlated to the 

one-day ago variable (EDt) which have the greatest impact on the model output.  

 

4. CONCLUSION 

 

Using historical data, this study compared the efficiency of two data mining methods for ED prediction. To 

demonstrate and verify the proposed models’ efficiency, a simple use case was presented using historical 

electricity consumption records from Nicosia and one-day ahead ED prediction models were developed. 

The performance of the models was evaluated in terms of coefficient of determination, mean absolute 

percentage error and concordance coefficient. The results showed that the proposed models can easily 

handle the daily ED process. However, the GP is slightly superior to DT. Both GP and DT methods are 

able to classify and predict ED variables using a tree shape structure that enable the modeler to quickly 

extract useful knowledge from the phenomenon. 

 

The current framework was confined to historical electricity consumption records as required data for ED 

predictions. To decrease the uncertainty of ED predictions, particularly in long-term forecasting scenarios 

such as weekly, monthly, and even seasonally, it may be useful to include other effective parameters such 

as climate and the economic factors into the prediction process. For example, air temperature and touristic 

information at summer seasons may have a significant role in reliable ED prediction. Returning to the study 

area condition, it is also worth to mention that the almost entire ED in Northern Cyprus is produced by fuel 

that creates a high level of environmental pollution [24]. Undoubtedly, precise ED predictions in the 

country will lead to saving energy and consequently reduce in the use of fuels that is known as one of the 

most eco-environmental problems of the island. 
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