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Abstract

In this paper, we construct two modified spinorial Levi—Civita connection based on the Energy—Momentum
tensor and its trace to bring an optimal lower bound to the eigenvalues of the compact Riemannian
Spin—submanifold Dirac operator in terms of the the Energy—Momentum tensor and its trace. Then, we
extend these estimates in terms of the Yamabe number and the area of the submanifold under the conformal

change of the metric.

Keywords: Spin and Spin® geometry, Dirac operator, Estimation of eigenvalues.

Kompakt Riemannian Spin—Alt manifold Dirac Operatériiniin Alt Simir Ozdeger Problemleri
Oz
Bu makalede, kompakt Riemannian Spin altmanifold Dirac operatériniin 6zdegerlerine Energy—Momentum

tensoril ve onun izine bagli olarak optimal bir alt sinir getirmek igin spinorial Levi—Civita konneksiyonunu
Energy—Momentum tensorii ve onun izine bagli olarak deforme ettik. Daha sonra bu tahminleri konformal

degisim metrigi altinda Yamabe sayisi ve altmanifoldun alanina bagl olarak genislettik.

Anahtar Kelimeler: Spin and Spin geometry, Dirac operator, Estimation of eigenvalues

1. Introduction

Obtaining information about the topology and
geometry of the manifolds is the main
research topic for the mathematicians. In
doing so, many formulas have been developed
that naturally comes from the structure of the
manifold. While doing this, firstly the
Spin—structure is constructed on the manifold
and a manifold endowed with this structure is
called Spin—manifold. Also with the help of
this structure, a spinor bundle can be

*Corresponding Author:serhane@agri.edu.tr

constructed (Friedrich, 2000; Naber, 1997).
On the spinor bundle A. Lichnerowicz

(Lichnerowicz, 1963) defined the
Schrodinger—Lichnerowicz ~ formula  as
follows:

D'D=VV+5, (1)

where R is the scalar curvature of M, V* is the
adjoint of the spinorial Levi—Civita
connection V and D* is the adjoint of the Dirac
operator D. Considering this formula, one can
obtain subtle informations about the scalar
curvature of the manifold and geometry of it.
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As well as optimal lower bounds to the
eigenvalues of the Dirac operator can be
obtained as in (Hijazi, 1991; Hijazi et al.,
2001; Hijazi et al., 2001, Nakad et al., 2013;
Zhang, 1998). Moreover, by considering the
limiting case of the eigenvalue estimation one
can be find whether the manifold is Einstein
or not. As mentioned above, on the compact
Spin—manifold, the lower bound estimates for
the eigenvalues of the Dirac operator was
firstly introduced by A. Lichnerowicz as
follows (Lichnerowicz, 1963):

22> iirAllfR, @)

where R is the scalar curvature of M.

Later on, T. Friedrich in (Friedrich, 2001)
modified the spinorial  Levi—Civita
connection based on the eigenvalue of the
Dirac operator and improved the lower bound
given in (2). At this point, eigenvalue
estimation has gained a different dimension
by O. Hijazi. Because O. Hijazi developed
these eigenvalue estimates based on the first
eigenvalue of the Yamabe operator using
some identities coming with respect to the
conformal change of the metric (Hijazi,
1986). Moreover, O. Hijazi improved his
estimates in terms of the square of the
Energy—momentum tensor (Hijazi, 1995) and
extended his estimates with respect to the
conformal change of the metric. As mentioned
above, eigenvalue estimates are not only
studied on the Spin—manifolds. Also it has
been studied on the manifold endowed with
Spin—structure whose codimension is gretar
or equal to 1 as in (Hijazi et al., 2001; Hijazi,
et al., 2001; Zhang, 1998; Zhang, 1999).

In this paper, we improve the following
estimates for the eigenvalue A, of the
submanifold Dirac operator Dy defined by O.
Hijazi and X. Zhang in section 5 and page 173
of (Hijazi et al., 2001) for the compact

Riemannian Spin—submanifolds M™ c N™*"
of dimension n = 2 whose normal bundle is
also Riemannian Spin:

A4
— - - @ H 2
>J 45151) LLLQ]:( T+ngZ—2p C"'ﬁ'd’(l—nﬂ)z eI,
L ((RERLw)e™ + 4100 (n-1)
A Ny o nEO (1= np)?

®)
where || H lI= /X4 H2 is the norm of the
mean curvature denoted by H, and for any
spinor field ® € I'(S),

)

Rio= —%(Zi,j,A,B Rijape’-el-et-ef - o, |¢|2)
is defined on the complement set of zeros M,
= nBR2pl o o (4 L (Relcw- D)
Cnpo = 1prapp 2 =2 (1 lor ))

where e = (—1)""L

This paper is organized as follows. At first,
we introduce some basic facts concerning
compact Riemannian Spin—submanifold
Dirac operator (Hijazi et al., 2001). Then, we
obtain a new lower bound for the eigenvalue
of the submanifold Dirac operator in terms of
the mean curvature, Energy—momentum
tensor and it trace. Finally, we improve these
estimates in terms of the Yamabe number,
Energy—Momentum tensor and its trace.

In the following section, some fundemantal
definiton and properties are given. For details
see (Hijazi et al., 2001).

2. Submanifold Dirac Operator

Assume that N is an (n + r) —dimensional
compact Riemannian Spin—manifold and M
its n —dimensional compact Riemannian
Spin—submanifold. As it is known, the
Spin—structure on the tangent bundle of the
(n + r) —dimensional N whose codimension
greater than 1 and the Spin—structure on the
tangent bundle of M determine the
Spin—structure constructed on the normal
bundle of M. Moreover, the Spin—structure
constructed on the normal bundle of M is
unique. Here, the Spin—structure defined on

64

I H IIZ>,



Lower Bound Eigenvalue Problems of the Compact Riemannian Spin—Submanifold Dirac Operator

the tangent bundle of N is the total sum of the
Spin—structure defined on the tangent bundle
of M and the Spin—structure constructed on
its normal bundle. Accordingly, the spinor
bundle S defined on N is also globally defined
on M. Therefore, the spinor bundle defined on
N and M is denoted by the same symbol.
Thus, two different spinorial Levi—Civita
connections can be defined on S. The spinorial
Levi—Civita connections constructed on N
and M are represented by V and V,
respectively. Similarly, the Dirac operators
connected with the spinorial Levi— Civita
connections V and V are indicated by D and D,
respectively. Also, on the spinor bundle S, it
can be defined the following well—known
positive definite Hermitian metric which
satisfies, w € I'(T*N), and any spinor field
d, ¥ eI'(S), the relation (Lawson et al.,
1989)

w-o,w-¥) = |w|*(®,WV), (4)

where " - " denotes the Clifford multiplicapion.
Recall that, with respect to the metric (, ) V
is globally defined along M. Also, D is
formally self—adjoint with respect to this
metric (Hijazi, 2001).

The identities used in this paper are given as
follows without the need for proof since they
are the identities mentioned in (Hijazi, 2001).
As in (Hijazi, 2001)., fix a point s € M and an
orthonormal basis {e,} of T,N with {e,}
normal and {e;} tangent to M such that
(Vie;) = 0. Throughout the whole paper
indices ranges are given as follows:

1<apfyn<n+r;1<ijkl<n,
n+1<AB<n+r. (5)

Let e* be the coframe at point s. Then the
relation between V and V is given by

vi= Vi+%hAijeA‘ej ) (6)

where hy;; = hyj; = (Viey, ) is the second
fundemantal form. According to this relation,
V is metric compatible with the metric ( , ).

Moreover, Rggyy, Rijii be the curvature
tensor of N and M, respectively. Also, R;jsp
be the curvature of the normal bundle of M.
Recall that the normal bundle of M is flat if

and only if R;;,5 = 0. With respect to the (5),
D is given as

D=D+He" @)

where Hy, = X7, hy;; 1S the component of the
mean curvature of M. On the submanifold M,
for any spinor field & €T (S)|y, the
Schrodinger—Lichnerowicz—type formula is
described as follows

Jyy IDOIP, = [, (IV[2 + 7 (R +Ry)|P[2)v,. (8)
Considering the operator w, defined on S by,
w, = (—1)TT"DNeA1. gh2  e4r . 9)

where {e4i} is an orthonormal coframe, the
submanifold Dirac operator D, satisfies the
following relation

DHZwl'ﬁ. (10)

Here Dy is formally self—adjoint with respect
to the metric ( , ) and satisfies D*D = D2,
where  D*¢ = Do — %HAeA -0

2001).

(Hijazi,

3. Eigenvalue Estimates For the Spin
Submanifold Dirac Operator

In this section, we consider the compact

Spin—submanifold Dirac operator defined by

O. Hijazi and X. Zhang in (Hijazi, 2001) as

follows:

DO = —Ayew, - & —"Let - @, (11)
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where € =(—=1)""1 and Ay is the real

constant or real function eigenvalue of Dy.

After a simple calculation we get

IDD|? = 22 |D|? + ””” |2 + AyH Re(ew, - @, e - D).
(12)

To simplify calculations in the way used to

obtain an estimate for the eigenvalue 1 of the

Dirac operator Dy, we integrate (12) over M

and combine with (8) to get

[y V012, = [, (2107 + "5 (@)% + 2, H,Re(ew, -

)I[?) v,

R+RL¢

d,ed - P) — (—=2 (13)

In the following theorem, we obtain an
optimal lower bound to the eigenvalue A, of
the Dirac operator Dy by using the modified
spinorial Levi—Civita connection constructed
with the Energy—Momentum tensor Q4 and
its trace trQq.

Theorem 3.1 On a compact Riemannian
Spin—submanifold M™ c N™*" of dimension
n = 2 whose normal bundle is also Spin, any
square of the eigenvalue A5 of the Dirac
operator to which attached an eigenspinor @
satisfies

A2 > sup inf(
4ﬁr’<n,ﬁ M

R+R | w+4kn gltrQop|?
np2-2p+1

(m=DIHI?
RETE >(14)

where S real function, g = 1
(1- nﬁ)z

n

if Hy # 0 for

some A and k,, 5: =

Proof 3.2 For any real fuctions a,,y, we
define the modified spinorial Levi—Civita
connection in terms of the trace of the
Energy—Momentum tensor Q, as follows:
ViPY® = V0 +SHuel et & — plyeet -

® +ytrQgpe’ - ® (15)
Forany 1 < i < n, the square norm of v**" @
is

VA o2 = |v, |* + aH,Re(V;, el-eh. @)
—Z,BAHRe(V d,eet - w, - d)) + ZytrQ¢Re(VifD,ei . d:')

2
a

+ HH I [0 +y21trQo [P |12 + f2 25| )2

—afAyH Re(e? - @,ew, - D) + ayH trQoRe(e? - @, d)

—2ByAgtrQeRe(ew, - ®, ). (16)

Summing over i, one gets
2

na” + 2a
VLY DI = [VO[2 + (———) I H I |2

+(a — B —naB)A H,Re(e? - d,ew, - D)
+(nB? — 2B) 41 PI* + (ny? — 2y)[trQq|?|@|?

—2nfylytrQeRe(ew, - O, D). a7

Integrating over M and using (13), we get

f |Va,ﬁ,y¢,|2vg — f ((nﬁz — Zﬂ + 1)/1%1|CD|2

+ (A2 | H P || + (@ - f—nap + 1)

AyH Re(e? - ®,ew, - ®) + (ny? — 2y — 2nfy)|trQq|?

- (FEe2) joop? )vg (18)
Taking a = ﬁ and y = =28

1 R+Ry,

fM A§,|<D|2vg = f ((nBZ 23+1)( +4 =+
KngltrQal?) = oo I H 1) [0, (19)
This give us (14).
4. Extending Eigenvalue Estimation

Based on Conformal Metric

Let g, = e?%gy be a conformal change of
the metric for any real function u on N.
Depending on the gy and g,, one can
construct two SO, principal bundles as
504, N and S04, N, respectively. As well as
the isometry G,, can be defined between them.
Also, G, induced an isometry between Sping,,
and Sping, principal bundles which are
defined regard to the gy and g, respectively.
As in (Hijazi, 1986; Hijazi, 2001), with the
help of the Sping, and Sping, principal
bundles one can construct S and S spinor
bundles, respectively. On the spinor bundles S
and S one can define Hermitian metrics

(, )gyand (, )z, respectively, satisfies

W@, )y, = (F, D)y, (20)

where ¥, ® €I'(S) and ¥ =6, ¥, o =G, P €
r'(S).

The Clifford multiplication on I'(S) is defined
as follows
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el Pi=el .y,

(21)

Also, the regular class of N denoted by U is
given as

U = {u € C°(N,R), du(e,)|y = 0,forall A}. (22)

Considering the regular conformal metric g =
e?*|,,g one gets the following identities
(Hijazi, 2001):

EH (e—((n—l)Z)uE) = e—((n+1)2)uDH_cp (23)

Hijs = e “(H;ja + du(ey)). (24)

Also, with respect to the conformal metric
gy = e?“gy,one has R;j,p = e 2“R; 45 and
Ry = e 2R, o for ¥ = e~(m-DDug,

Aye "W where ¥ = e~(m=D2)u @ and H, =
e “Hy.

Considering g, = et g, and applying @ to
the equation (19), we get

- SOBY &
Sy L+ nB? = 2B)e™ A5 Wigvg = [, (V" Plg+

2_ _ _
_((1+nB 2B (1 n))e_z-u ” I7] ”2 |q}|%+

RN )
LR+ R P e

Gt =267 Qg [P 2) v (25)
According to this, the following corollaries
are obtained.

Corollary 4.1 Under the same conditions as
in Theorem 3.1, if n > 2, then any eigenvalue
Ay of the submanifold Dirac operator Dy to
which is attached an eigenspinor @ satisfies

((E+EJ_,\P)ezu+4Kn,B|trQ¢|2 _ (n_l)”H"Z)' (26)

2 51 ;
Az 2 Jup inf nB2-2B+1 (1-np)?

Bv’(n,ﬁ M
where R is the scalar curvature of M
associated to a regular conformal metric g =
e?*|,,g, for some real functions 8, u on N.

In the following, the inequality obtained in
(21) is extended in terms of the first
eigenvalue u, of the Yamabe operator L: =

n-1
47— Ag +R.

Considering the relation between pu, and the

scalar by u, =

sup inf(Re?“), one gets the following
u M

curvature R given

inequality.

Corollary 4.2 Under the same conditions as
in Theorem 3.1, if n > 3, then

(n-1)
(1-np)?

(1 + Ryo + 4icy | tQa |*)
np2-2p+1

1 .
Ay =5 supinf Il

B»Kn,ﬁ Md)
H ||2>,

where u, is the first eigenvalue of the Yamabe
operator.

@7)

As in the above corallary, by considering the

relation between R and the area of M given as
8
Area(M)’

sup inf(Re?¥) = one gets the
u M

following inequality.
Corollary 4.3 Under the same conditions as

in Theorem 3.1, if M is compact surface of
genus zero and

2 o1 . 1 81
Ay 2 4535} Lg{ (2ﬁ2—2ﬁ+1 (Area(M) TR+
1
4162 g1 Qo ) = g 1 H I2), (28)
(1-2B)2 .
where i, 5 = — and Area(M) is denoted

the area of M.

In the following theorem we get a new an
eigenvalue estimate to the eigenvalue of the
submanifold Dirac operator Dy by
constructing modified spinorial Levi—Civita
connection in terms of the
Energy—Momentum tensor and its trace.
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Theorem 4.4 Under the same conditions as
in Theorem 3.1, if n > 2, then any eigenvalue
of Dy satisfies

22 Su inf ((R+R¢,w)+4((n32—2ﬁ)lfTQq>|2+|Qw|2) _
ﬁp Mo npZ-2p+1

(n=DIHI?

(1-np)? ) (29)

Proof 4.5 For real fuctions a, 8, y, we define

VD =V + SHyeleh - b — BAyee - w

O +ytrQpe’ - @ + Q;j e’ - P. (30)

Forany 1 < i < n, the square norm of v**” is

VPV D2 = |V,®|2 + aH,Re(V, D, el - e - @) —
2BAyRe(V;®,eet - w, - D) + 2ytrQquRe(V;d, e’ -
) + 2Re(V,, Qyype’ - ®) + % I H I2 |7 +
VitrQe|?|®|? — afAyH Re(ed - @, ew, - @) +
ayH,trQqRe(e - ®,®) + aH,Re(e' - e

D,Q;; e’ - D) + B2 |P|? — 2ByAytrQeRe(cw, -
®,®) — 2PRe(ee’ - w, - D,Q;;e) - D) +

2ytrQeoRe(e’ - @,Q;;0e’ - @) + |Q;j 0 *| P>  (BD)
Summing over i, one gets
VAT D2 = V2 + (=2 D2 2 O + (o —

B —nap)AyHyRe(e? CD,E(uJ_ ®) + (np? —
2B)AF|@1* + (ny? — 2y + 2Y)|trQo *|®1? — (28 +
2npy)AutrQoRe(ew, - @, @) — Qo |*|P|?. (32)

Integrating over M and using (11), we get

J,, VEPY D2y, = [ (B2 — 2B + 1)A%|® +
2y | 2 (2 — | Q22 + (a— B -
naf + DA yH,Re(e? - @,ew, - @) + (ny? — 2y +
20)|trQo|?|®|2 — (28 + 2nBy) AytrQeRe(cw, -

0, ) — (D) ||y, (33)
Taking a = nlﬁ;—ﬁl’ y = _ﬁ, we get

S (nﬁ’z — 2B+ DA DPry = [, ((R+Rl¢)|q>|2 _
4(1 n,l?)2 ILH NI |®]* + (np? — 2B)|trQq |*|P|* +
|Qu 1?1V, (34)

This give us the desired result given in (29).

Under the conformal change of the metric
g = e?*|yg the following corollaries are
obtained.

Corollary 4.6 Under the same conditions as
in Theorem 4.4, if n > 2, then any eigenvalue
Ay of the submanifold Dirac operator Dy to
which is attached an eigenspinor @ satisfies

22 > Lsup inf ((E+E,w)e2“+4<<nt?2—2ﬁ)|trQ¢|2+|Q¢|Z) _
H =4

np2-2p+1
(m—-D)IHI?
(1—Tlﬁ)2 )’ (27)
where R is the scalar curvature of M

associated to a regular conformal metric g =
e?%|,, g, for some real functions 5, u on N.

As in the corollaries (4.2) and (4.3), the
inequality obtained in (35) can be improved in
terms of the fist eigenvalue u, of the Yamabe
number and area of M as in the following
corollaries.

Corollary 4.7 Under the same conditions as

in Theorem 4.4, if n > 3, then

2 51 . ((m+RL,¢+4<(nﬁ2—2ﬁ)|rro¢|2+|o¢|2)_
A = sup Lnf BT 2B 11

Dy g2

a-np)? ) (36)

where y;, is the first eigenvalue of the Yamabe
operator.

Corollary 4.8 Under the same conditions as
in Theorem 4.4, if M is compact surface of
genus zero and

2 51 ; 1 2
Ay 2 451#) LILZ (2ﬁ2 2p+1 (Area(M) T (C

2P)|trQol* +1Q0]”) — I H 1?)

=T (37)

where Area(M) is denoted the area of M.

If m is odd, all results are the same as in
(Hijazi, 2001).
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