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ABSTRACT 
 

In this study, we consider different estimation methods for the parameters of Weibull Lindley distribution introduced by 

Ashgarzadeh et al. [1].  In this context, maximum likelihood (ML), least squares (LS), weighted least squares (WLS), Cramer 

Von Mises (CVM) and Anderson Darling (AD) estimation methods are utilized. The main focus of this study is to examine 

performances of these estimation methods. For this purpose, we carry out a Monte-Carlo simulation study based on different 

parameter settings and various values of the sample size. Results show that the AD estimators are almost preferable. Two real 

life data sets taken from the literature are also considered at end of the study.  
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1. INTRODUCTION 
 

There has been a great interest to Lindley distribution, proposed by Lindley [2], in statistics and many 

related areas because of its tractable properties. For example, its probability density function (pdf), 

cumulative density function (cdf) and hazard rate function (hrf) have simple and closed forms. 

Furthermore, it provides flexibility in terms of modelling, see for example [3]. These features of Lindley 

distribution lead to researchers to study extensions and generalizations of it. In the related literature, 

there are many papers considering its different generalizations [4-8]. Weibull is another widely-used 

and well-known distribution in statistics and other areas such as engineering, reliability and so on  [9]. 

Although it is used in lifetime analysis frequently, it is not suitable to model all data sets [10, 11]. This 

is because of the fact that its hazard rate function is monotone decreasing or increasing according to 

value of the shape parameter. In other words, data sets having bathtub hazard rates cannot be modelled 

using Weibull distributions. Therefore, different extensions/generalizations of Weibull distribution is 

considered in the related literature, see for example [12-17].  

 

It is clear that extended or generalized versions of a distribution are more flexible than its simplest 

version in terms of accommodating the skewness and/or kurtosis. However, most of the generalized 

distributions include a large number of parameters which may bring some difficulties in studying 

mathematical and/or statistical features especially for small sample sizes. Asgharzadeh et al. [1] propose 

Weibull Lindley (WL) distribution as a new generalization of Lindley distribution. As its name refers, 

the WL distribution is obtained by compounding the well-known Weibull and Lindley distributions. The 

advantage of the WL distribution is that it includes three parameters.  

 

The derivation of the WL distribution is explained as follows [1]: Assume that independent random 

variables 𝑌 and 𝑍 have Lindley(𝜆) and Weibull(𝛼, 𝛽) distributions, respectively. Then, the random 

variable 𝑋 defined as the minimum of 𝑌 and 𝑍, i.e. 𝑋 = min(𝑌, 𝑍), has the WL distribution. The pdf of 

𝑋 is given by 
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𝑓(𝑥) =
1

1 + 𝜆 
[𝛼𝜆(𝛽𝑥)𝛼 + 𝛼𝛽(1 + 𝜆)(𝛽𝑥)𝛼−1 + 𝜆2(1 + 𝑥)]𝑒−𝜆𝑥−(𝛽𝑥)𝛼

 (1) 

 

where 𝑥 > 0, 𝛼 > 0, 𝛽 ≥ 0 and 𝜆 ≥ 0. The random variable 𝑋 having the WL distribution with 

parameters 𝛼, 𝛽 and 𝜆 is shortly denoted by 𝑋 ∼ 𝑊𝐿(𝛼, 𝛽, 𝜆). The WL distribution reduces to the 

Weibull and Lindley distributions when 𝜆 = 0 and 𝛽 = 0, respectively. It is clear that the Rayleigh and 

exponential distributions are also special cases of the WL distribution, i.e. Rayleigh distribution is 

obtained for 𝜆 = 0 and 𝛽 = 2 while the exponential distribution occurs when 𝜆 = 0 and 𝛼 = 1. The 

WL distribution can be bimodal for different parameter settings. The plots of the WL distribution are 

given in Figure 1 for some selected values of the parameters.  

 

  
(a) (b) 

  
(c) (d) 

Figure 1. The pdf plots of the WL distribution for some selected values of the parameters (𝛼, 𝛽, 𝜆): 

(a) (1,1,1)   (b) (0.5,1,1)  (c) (5,1,1)   (d) (5,1,1.5) 

 

The cdf and the hrf of 𝑋 are formulated as 

  

𝐹(𝑥) = 1 −
1 + 𝜆 + 𝜆𝑥

1 + 𝜆 
𝑒−𝜆𝑥−(𝛽𝑥)𝛼

 (2) 

and 

ℎ(𝑥) =
𝜆2(1 + 𝑥)

1 + 𝜆 + 𝜆𝑥
+ 𝛼𝛽(𝛽𝑥)𝛼−1, (3) 

 

respectively. The superiority of the WL distribution over many other generalizations of the Lindley 

distributions is that it has a bathtub shaped hazard rate besides it can be decreasing or increasing. On the 
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other hand, none of the known generalizations of the Lindley distribution is able to model bathtub shaped 

hazard rate [1]. We refer to Asgharzadeh et al. [1] for further details about the WL distribution.  

 

In spite of the fact that the WL distribution has attractive properties, it has not been considered in the 

context of evaluating the performances of the different estimation methods as far as we know. Indeed, 

the maximum likelihood (ML) estimation is applied by Asgharzadeh et al. [1]. In this study, we also 

consider least squares (LS), weighted LS (WLS), Cramer Von-Mises (CVM) and Anderson Darling 

(AD) methods which can be seen in the context of minimum distance estimation methods. In these 

methods, the distance between the estimated and empirical cdf is minimized with respect to the 

parameters of interest. Norms and the goodness of fit statistics are mostly used as distance criteria, see 

e.g. [18-20] for further details. 

 

The aim of this study is to compare the efficiencies of the ML, LS, WLS, CVM and AD methods which 

are used to estimate the unknown parameters of the WL distribution. We carry out an extensive Monte-

Carlo simulation study to compare the performances of the considered estimators. It should also be noted 

that there are many papers in which the performances of the different estimation methods for the 

parameters of a distribution are compared. One can see for example Mazucheli et al. [21] and Akgul and 

Senoglu [22] in this context. 

 

The rest of the paper is organized as follows. Descriptions of the ML, LS, WLS, CVM and AD methods 

are briefly given in Section 2. Section 3 is reserved to Monte-Carlo simulation study and its results. In 

Section 4, two real data sets are considered to show the implementation of the different estimation 

methods in estimating the parameters of the WL distribution. The paper is finalized with a conclusion 

section.  

 

2. METHODS FOR PARAMETER ESTIMATION 

 

This section includes the parameter estimation methods, i.e. we briefly review the ML, LS, WLS, CVM 

and AD methods. It should be noted that the ML estimation of the parameters of the WL distribution 

has already been considered by Asgharzadeh et al. [1]. To the best of our knowledge, other estimation 

methods are firstly considered in this study to estimate the unknown parameters of the WL distribution.  

 

2.1. ML Method 

 

Let 𝑋1, 𝑋2, … , 𝑋𝑛 be a random sample from WL(𝛼, 𝛽, 𝜆) distribution. Then, the loglikelihood (log 𝐿) 

function is given by  

 

log 𝐿 = ∑ log[𝛼𝜆(𝛽𝑥𝑖)𝛼 + 𝛼𝛽(1 + 𝜆)(𝛽𝑥𝑖)𝛼−1 + 𝜆2(1 + 𝑥𝑖)]

𝑛

𝑖=1

− 𝜆 ∑ 𝑥𝑖

𝑛

𝑖=1

− 

               ∑(𝛽𝑥𝑖)𝛼

𝑛

𝑖=1

− 𝑛 log(1 + 𝜆). 

(4) 

 

It is well-known that the ML estimates of the unknown parameters are points that log 𝐿 function attains 

its maximum. Therefore, the partial derivates of log 𝐿 function with respect to the parameters of interest 

should be taken to obtain the following likelihood equations. They are given as follows:   
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𝜕 log 𝐿

𝜕𝛼
= ∑

1

𝑀(𝑥𝑖)

𝑛

𝑖=1

{[𝛽(1 + 𝜆) + 𝛼𝛽(1 + 𝜆) log(𝛽𝑥𝑖)](𝛽𝑥𝑖)𝛼 + [𝜆 + 𝛼𝜆 log(𝛽𝑥𝑖)𝛼]}

− 𝜆 ∑(𝛽𝑥𝑖)𝛼 log(𝛽𝑥𝑖)

𝑛

𝑖=1

= 0, 

𝜕 log 𝐿

𝜕𝛽
= ∑

1

𝛽𝑀(𝑥𝑖)

𝑛

𝑖=1

[𝛼𝛽(1 + 𝑥𝑖)(𝛽𝑥𝑖)𝛼−1 + 𝛼2𝜆(𝛽𝑥𝑖)𝛼] −
𝛼

𝛽
∑(𝛽𝑥𝑖)𝛼

𝑛

𝑖=1

= 0, 

𝜕 log 𝐿

𝜕𝜆
= ∑

1

𝑀(𝑥𝑖)

𝑛

𝑖=1

[𝛼(𝛽𝑥𝑖)𝛼 + 𝛼𝛽(𝛽𝑥𝑖)𝛼−1 + 2𝜆(1 + 𝑥𝑖)] − ∑ 𝑥𝑖

𝑛

𝑖=1

−
𝑛

1 + 𝜆
= 0 

 

where 𝑀(𝑥) = 𝜆2(1 + 𝑥) + 𝛼𝜆(𝛽𝑥)𝛼 + 𝛼𝛽(1 + 𝜆)(𝛽𝑥)𝛼−1. It is clear that likelihood equations cannot 

be solved explicitly. Therefore, numerical methods should be performed. See Ashgarzadeh et al. [1] for 

more details about the ML estimators of the parameters of the WL distribution.  

  

2.2. LS Methodology  

 

The LS estimators of the parameters of the WL distribution are obtained by minimizing the following 

function: 

 

𝑆 =
1

𝑛
∑ (𝐹(𝑥(𝑖)) −

𝑖

𝑛 + 1
)

2𝑛

𝑖=1

 (5) 

 

with respect to the parameters 𝛼, 𝜆 and 𝛽. Here, 𝐹(⋅) is the cdf of the WL distribution given in Equation 

(2) and 𝑥(𝑖) stands for 𝑖 −th ordered observation. The LS estimates of the parameters 𝛼, 𝜆 and 𝛽 are 

obtained as solutions of the following nonlinear equations: 

𝜕𝑆

𝜕𝛼
= ∑ (𝐹(𝑥(𝑖); 𝛼, 𝛽, 𝜆) −

𝑖

𝑛 + 1
) Λ1(𝑥(𝑖); 𝛼, 𝛽, 𝜆)

𝑛

𝑖=1

= 0, 

𝜕𝑆

𝜕𝛽
= ∑ (𝐹(𝑥(𝑖); 𝛼, 𝛽, 𝜆) −

𝑖

𝑛 + 1
) Λ2(𝑥(𝑖); 𝛼, 𝛽, 𝜆)

𝑛

𝑖=1

= 0, 

𝜕𝑆

𝜕𝜆
= ∑ (𝐹(𝑥(𝑖); 𝛼, 𝛽, 𝜆) −

𝑖

𝑛 + 1
) Λ3(𝑥(𝑖); 𝛼, 𝛽, 𝜆)

𝑛

𝑖=1

= 0 

where 

 

Λ1(𝑥(𝑖); 𝛼, 𝛽, 𝜆) = 
(1 + 𝜆 + 𝜆𝑥(𝑖))(𝛽𝑥(𝑖))

𝛼
ln(𝛽𝑥(𝑖)) 𝑒−𝜆𝑥(𝑖)−(𝛽𝑥(𝑖))

𝛼

(1 + 𝜆)
, (6) 

 
Λ2(𝑥(𝑖); 𝛼, 𝛽, 𝜆) = 

𝛼(1 + 𝜆 + 𝜆𝑥(𝑖))(𝛽𝑥(𝑖))
𝛼

𝑒−𝜆𝑥(𝑖)−(𝛽𝑥(𝑖))
𝛼

𝛽(1 + 𝜆)
, (7) 

 
Λ3(𝑥(𝑖); 𝛼, 𝛽, 𝜆) = 

(2 + 𝜆 + 𝜆𝑥(𝑖) + 𝑥(𝑖))𝜆𝑥(𝑖)𝑒−𝜆𝑥(𝑖)−(𝛽𝑥(𝑖))
𝛼

(1 + 𝜆)2
. (8) 

 

It is clear that LS estimators should also be obtained using numerical methods. We refer to Swain et al. 

[23] for details about LS estimation method. 
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2.3. WLS Methodology  

 

The WLS estimators of the parameters of the WL distribution are obtained by minimizing the following 

function: 

 

𝑆𝑤 =
1

𝑛
∑ 𝑤𝑖 (𝐹(𝑥(𝑖)) −

𝑖

𝑛 + 1
)

2𝑛

𝑖=1

 (9) 

 

where 𝐹(⋅) is the cdf of the WL distribution given in Equation (2) and 𝑥(𝑖) denotes 𝑖 −th ordered 

observation.  The weights denoted by 𝑤𝑖 are formulated as follows: 

 

𝑤𝑖 =
1

𝑉𝑎𝑟[𝐹(𝑥(𝑖))]
=

(𝑛 + 1)2(𝑛 + 2)

𝑖(𝑛 − 𝑖 + 1)
, 𝑖 = 1,2, … , 𝑛. 

 

After taking partial derivatives of the 𝑆𝑊 with respect to the parameters of interest, i.e. 𝛼, 𝜆 and 𝛽, 

following nonlinear equations are obtained:  

𝜕𝑆𝑤

𝜕𝛼
= ∑ 𝑤𝑖 (𝐹(𝑥(𝑖); 𝛼, 𝛽, 𝜆) −

𝑖

𝑛 + 1
) Λ1(𝑥(𝑖); 𝛼, 𝛽, 𝜆)

𝑛

𝑖=1

= 0, 

𝜕𝑆𝑤

𝜕𝛽
= ∑ 𝑤𝑖 (𝐹(𝑥(𝑖); 𝛼, 𝛽, 𝜆) −

𝑖

𝑛 + 1
) Λ2(𝑥(𝑖); 𝛼, 𝛽, 𝜆)

𝑛

𝑖=1

= 0, 

𝜕𝑆𝑤

𝜕𝜆
= ∑ 𝑤𝑖 (𝐹(𝑥(𝑖); 𝛼, 𝛽, 𝜆) −

𝑖

𝑛 + 1
) Λ3(𝑥(𝑖); 𝛼, 𝛽, 𝜆)

𝑛

𝑖=1

= 0 

where Λ1, Λ2 and Λ3 are given in Equations (6), (7) and (8), respectively. The solutions of these 

equations give the WLS estimates of the parameters 𝛼, 𝜆 and 𝛽. Similar to LS estimators, WLS 

estimators should also be obtained using numerical methods. See Swain et al. [23] for more details about 

WLS estimation method.  

 

2.4. CVM Method 

 

The CVM estimators of the parameters 𝛼, 𝛽 and  𝜆 are obtained by minimizing the following function 

[24]:  

 

𝑊2 =
1

12𝑛
+ ∑ (𝐹(𝑥(𝑖)) −

2𝑖 − 1

2𝑛
)

2𝑛

𝑖=1

 (7) 

 

where 𝐹(⋅) is the cdf of the WL distribution given in Equation (2) and 𝑥(𝑖) is  𝑖 −th ordered observation. 

It should be noted that CVM estimators cannot be obtained explicitly as in other methods since the 

following estimating equations include nonlinear functions of the parameters: 

𝜕𝑊2

𝜕𝛼
= ∑ (𝐹(𝑥(𝑖); 𝛼, 𝛽, 𝜆) −

2𝑖 − 1

2𝑛
) Λ1(𝑥(𝑖); 𝛼, 𝛽, 𝜆)

𝑛

𝑖=1

= 0, 

𝜕𝑊2

𝜕𝛽
= ∑ (𝐹(𝑥(𝑖); 𝛼, 𝛽, 𝜆) −

2𝑖 − 1

2𝑛
) Λ2(𝑥(𝑖); 𝛼, 𝛽, 𝜆)

𝑛

𝑖=1

= 0, 
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𝜕𝑊2

𝜕𝜆
= ∑ (𝐹(𝑥(𝑖); 𝛼, 𝛽, 𝜆) −

2𝑖 − 1

2𝑛
) Λ3(𝑥(𝑖); 𝛼, 𝛽, 𝜆)

𝑛

𝑖=1

= 0 

where Λ1, Λ2 and Λ3 are the same as in the LS and WLS methods. Therefore, numerical methods should 

be utilized to obtain the CVM estimates.  

 

2.5. AD Method 

 

The AD estimators of the parameters of the WL distribution are obtained by minimizing the following 

function [25]: 

 

𝐴2 = −𝑛 −
1

𝑛
∑(2𝑖 − 1) {log 𝐹(𝑥(𝑖)) + log (1 − 𝐹(𝑥(𝑛+𝑖−1)))}

𝑛

𝑖=1

 (8) 

 

with respect to the parameters 𝛼, 𝜆 and 𝛽. Here, 𝐹(⋅) is the cdf of the WL distribution given in Equation 

(2) and 𝑥(𝑖) stands for 𝑖 −th ordered observation. The AD estimates of the parameters are solutions of 

the following nonlinear equations: 

 

𝜕𝐴2

𝜕𝛼
= −

1

𝑛
∑(2𝑖 − 1) {

(1 + 𝜆 + 𝜆𝑥(𝑖)) ln(𝛽𝑥(𝑖)) (𝛽𝑥(𝑖))
𝛼

(1 + 𝜆)𝑒𝜆𝑥(𝑖)+(𝛽𝑥(𝑖))
𝛼

− 𝜆(1 + 𝑥(𝑖)) − 1
− (𝛽𝑥(𝑛+𝑖−1))

𝛼
ln(𝛽𝑥(𝑛+𝑖−1))} 

𝑛

𝑖=1

= 0, 

𝜕𝐴2

𝜕𝛽
= −

1

𝑛
∑(2𝑖 − 1) {

𝛼(1 + 𝜆 + 𝜆𝑥(𝑖))(𝛽𝑥(𝑖))
𝛼

𝛽(1 + 𝜆)𝑒𝜆𝑥(𝑖)+(𝛽𝑥(𝑖))
𝛼

− 𝛽(1 + 𝜆 + 𝜆𝑥(𝑖))
− 𝛼𝑥(𝑛+𝑖−1)

𝛼𝛽𝛼−1} 

𝑛

𝑖=1

= 0, 

𝜕𝐴2

𝜕𝜆
= −

1

𝑛
∑(2𝑖 − 1) {−

𝜆𝑥(𝑖)(2 + 𝜆 + 𝑥(𝑖) + 𝜆𝑥(𝑖))

(1 + 𝜆) (1 + 𝜆 + 𝜆𝑥 − (1 + 𝜆)𝑒𝜆𝑥(𝑖)+(𝛽𝑥(𝑖))
𝛼

)
−

𝜆𝑥(2 + 𝜆 + 𝑥 + 𝜆𝑥)

(1 + 𝜆)(1 + 𝜆 + 𝜆𝑥)
} = 0.

𝑛

𝑖=1

  

 

Since the AD estimators cannot be obtained explicitly, numerical methods should be used. 

 

3. SIMULATION STUDY  

 

In this section, we provide a Monte-Carlo simulation study which is carried out to compare the 

efficiencies of the estimation methods described in the previous section. We generate random samples 

from the WL distribution using the algorithm given by Asgharzadeh [1] for several values of the sample 

size (𝑛) and different parameter settings. The sample size is taken to be 𝑛 = 20, 50, 100, 200 and 500. 

Without loss of generality, we use the following scenarios in which different parameter values are 

considered: 

 

 Scenario 

Parameter 1 2 3 4 

𝛼 1 0.5 5 5 

𝛽 1 1 1 1 

𝜆 1 1 1 1.5 

 

The computation of the estimates is done using “fminsearch” function which is available in the 

optimization toolbox of  MATLABR2017b software. The performances of the estimators are compared 

using mean and mean squared error (MSE) criteria based on 1000 Monte Carlo runs.  The deficiency 

(DEF) criterion is also considered to compute the joint efficiencies of the estimators, see e.g. Kantar and 

Senoglu [9], Akgul et al. [10]. The DEF is formulated as follows: 
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𝐷𝐸𝐹 = 𝑀𝑆𝐸(�̂�) + 𝑀𝑆𝐸(�̂�) + 𝑀𝑆𝐸(�̂�). (9) 

 

The results of the Monte-Carlo simulation study are tabulated in Tables 1 – 4.  

 

Results according to Table 1 

 

 The ML, LS, WLS, CVM and AD estimators of α have larger bias values except 𝑛 = 500. 

Furthermore, the LS, WLS and AD estimators are relatively unbiased when 𝑛 = 200. In terms 

of MSE, the LS estimator of 𝛼 is the best for small sample size for 𝑛 = 20 and 50. However, 

the AD estimator is more preferable for the remaining values of the sample size since it has the 

minimum MSE value. 

 

 The ML method overestimates 𝛽 for 𝑛 = 20 and has high bias values for the remaining sample 

sizes. The LS, WLS, CVM and AD estimators are almost unbiased for 𝑛 = 100 and 𝑛 = 200. 

While the AD estimator of 𝛽 is more efficient when the sample size is 20, the CVM estimator 

gains efficiency for the other sample sizes according to the MSE criterion. The LS estimator 

also gives promising results while estimating 𝛽. 

 

 𝜆 is generally underestimated by all methods and they are biased in most of the cases. The ML 

and CVM estimators have negligible biases for 𝑛 = 200 and 𝑛 = 500, respectively.  The MSEs 

of the LS and CVM estimators of 𝜆 are close to each other except 𝑛 = 20, 50 and 200. They 

perform better than the others in terms of MSE criterion in most of the cases. The AD estimator 

also provides a promising performance.  

 

 The LS estimator is the best in terms of DEF criteria for scenario 1 when the sample size is 20, 

200 and 500. It is followed by the AD estimator which is more preferable for 𝑛 = 50 and 100.  

 

Results according to Table 2 

 

 The biases of the estimators of  𝛼 are negligible for all values of the sample size. The ML 

estimator has minimum MSE value for parameter 𝛼. The AD estimator is the second best.  

 

 The LS, WLS, CVM and AD estimators of  𝛽 have higher bias values for 𝑛 = 20 and 50. 

However, they become unbiased as the sample size increases.  The ML estimator of  𝛽 is also 

biased for 𝑛 = 20 and 50 but its bias decreases when 𝑛 ≥ 100. The AD estimator is almost the 

best one according to the MSE criterion. The LS and the WLS, ML estimators also provide 

satisfactory results when 𝑛 = 20 and 500, respectively.  

 

 The estimators of 𝜆  have larger biases values except the ML for small 𝑛. Indeed, the ML 

estimator is unbiased for all values of the sample size.  While the AD has the smallest MSE 

values in estimating 𝜆 for 𝑛 = 20 and 50, the ML method is more preferable for other values 

of the sample size.  

 

 The DEF values for scenario 2 show that the LS and the ML estimators are more preferable in 

terms of MSE criterion for 𝑛 = 20 and 500, respectively. In the remaining values of the sample 

size, the AD estimator outperforms its rivals.  
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Results according to Table 3 

 

 All estimators of 𝛼 have larger biases when 𝑛 ≤ 100. However, they become unbiased as the 

sample size increases. The AD estimator of 𝛼 is more preferable for the values of sample size 

20, 50 and 100. Otherwise, the ML method has the smallest MSE value but it is followed by the 

AD.  

 

 The LS,WLS, CVM and AD estimators of  𝛽 are unbiased for all values of the sample size. The 

MSEs of these estimators are also close to each other except 𝑛 = 20. Therefore, all estimators 

can be preferred while estimating 𝛽. 

 

 The biases of the all estimators of  𝜆 are almost unbiased. The MSEs of the estimators are more 

or less the same as for larger values of the sample sizes. The WLS has the smallest MSE in 

majority of the cases.  

 

 According to the DEF criterion the AD estimator has the best performance for  𝑛 ≤ 100 for 

scenario 3. Otherwise, the ML estimator can be preferred.   

 

Results according to Table 4 

 

 𝛼 is overestimated and its estimators have larger bias values for 𝑛 ≤ 200. The AD estimator of 

𝛼 provides a better performance than the others for 𝑛 = 20, 50 and 100 in terms of MSE 

criterion. However, the ML method gains efficiency for larger values of the sample size.  

 

 The biases of all estimators of 𝛽  are negligible for all considered cases. The WLS estimator has 

the minimum MSE value for 𝑛 = 20 and 50. However, all estimators are efficient when the 

sample size increases.  

 

 All estimators of 𝜆 have small amount of bias value except 𝑛 = 20 and 50. The WLS estimator 

has satisfactory results in terms of MSE values but all estimators gain efficiency when 𝑛 gets 

larger. 

 

 The DEF values imply that the AD and ML estimators are more preferable for scenario 4 when 

𝑛 ≤ 100 and 𝑛 ≥ 200, respectively.  

 

Overall, we suggest to use the AD method for estimating the parameters of the WL distribution since it 

has the minimum DEF values when the sample size is less and equal than 100. It should be noted that 

the ML method is more preferable for larger values of 𝑛. However, it is not efficient for small sample 

sizes. We therefore suggest to use the AD for larger values of sample sizes since it is the second best 

after the ML method.  
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Table 1. Simulated means and MSEs of the estimators based on Scenario 1. 

 
 𝛼 = 1 𝛽 = 1 𝜆 = 1  

 MEAN MSE MEAN MSE MEAN MSE DEF 

Method 𝑛 = 20  

ML 1.7144 12.5855 1.0346 0.9664 0.7997 1.1884 14.7403 

LS 1.3937 1.7736 1.1518 0.5576 0.7365 0.8040 3.1352 

WLS 1.3564 2.0566 1.1208 0.6067 0.7418 0.8753 3.5387 

CVM 1.6018 2.4777 1.1889 0.5613 0.7751 0.8608 3.8998 

AD 1.3203 1.9618 1.1329 0.5318 0.7322 0.8608 3.3545 

 𝑛 = 50  

ML 1.4573 6.1572 0.9719 0.9200 0.8807 1.0800 8.1572 

LS 1.2152 0.6291 1.1614 0.4671 0.7054 0.8310 1.9272 

WLS 1.2255 0.7477 1.1054 0.4954 0.7595 0.8340 2.0771 

CVM 1.3056 0.8177 1.1785 0.4358 0.7233 0.7952 2.0487 

AD 1.1868 0.4712 1.1261 0.5188 0.7328 0.8856 1.8756 

 𝑛 = 100  

ML 1.2378 1.3111 0.8766 1.2996 0.9543 1.4770 4.0877 

LS 1.1734 0.3933 1.0898 0.4238 0.7746 0.7998 1.6170 

WLS 1.1609 0.3803 1.0578 0.4597 0.7955 0.8426 1.6826 

CVM 1.2390 0.4738 1.0938 0.4045 0.8071 0.7892 1.6676 

AD 1.1537 0.2897 1.1011 0.4293 0.7405 0.8257 1.5447 

 𝑛 = 200  

ML 1.1913 1.8614 0.8207 1.3046 1.0334 1.5864 4.7523 

LS 1.0721 0.1665 1.0553 0.4640 0.7910 0.8289 1.4594 

WLS 1.0850 0.2388 1.0023 0.5220 0.8427 0.8790 1.6398 

CVM 1.1110 0.1912 1.0533 0.5057 0.8024 0.8958 1.5927 

AD 1.0579 0.1309 1.0357 0.5091 0.7997 0.8706 1.5106 

 𝑛 = 500  

ML 1.0608 0.2721 0.7336 1.6002 1.1371 1.9167 3.7890 

LS 1.0084 0.0586 0.9596 0.4761 0.9100 0.7670 1.3017 

WLS 1.0132 0.0719 0.9788 0.4851 0.8717 0.7913 1.3483 

CVM 1.0430 0.1132 0.9131 0.4607 0.9902 0.7451 1.3190 

AD 1.0206 0.0583 0.9890 0.4686 0.8662 0.7832 1.3101 
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Table 2. Simulated means and MSEs of the estimators based on Scenario 2. 

 
 𝛼 = 0.5 𝛽 = 1 𝜆 = 1  

 MEAN MSE MEAN MSE MEAN MSE DEF 

Method 𝑛 = 20  

ML 0.5398 0.0304 0.9640 1.8145 1.0952 0.6365 2.4814 

LS 0.4883 0.0668 1.3437 1.4233 0.7379 0.6037 2.0939 

WLS 0.4925 0.1159 1.3114 1.4551 0.7837 0.5614 2.1325 

CVM 0.5365 0.0978 1.3762 1.7262 0.8311 0.6716 2.4956 

AD 0.4903 0.0363 1.2835 1.5615 0.8784 0.5592 2.1570 

 𝑛 = 50  

ML 0.5241 0.0157 0.9865 1.0581 1.0331 0.3954 1.4692 

LS 0.4844 0.0208 1.2031 0.8569 0.8451 0.4011 1.2788 

WLS 0.4901 0.0192 1.1807 0.8239 0.8745 0.3674 1.2105 

CVM 0.4993 0.0221 1.2177 0.8955 0.8718 0.4169 1.3345 

AD 0.4964 0.0180 1.1693 0.8027 0.9084 0.3479 1.1685 

 𝑛 = 100  

ML 0.5106 0.0082 1.0294 0.5338 0.9866 0.1893 0.7313 

LS 0.4923 0.0133 1.1272 0.5802 0.8792 0.2909 0.8845 

WLS 0.4952 0.0110 1.0990 0.5034 0.9175 0.2352 0.7496 

CVM 0.5015 0.0135 1.1405 0.5910 0.8894 0.2940 0.8985 

AD 0.4988 0.0106 1.0966 0.4870 0.9330 0.2188 0.7165 

 𝑛 = 200  

ML 0.5050 0.0044 1.0356 0.2868 0.9865 0.0943 0.3856 

LS 0.4908 0.0075 1.0470 0.3564 0.9591 0.1655 0.5294 

WLS 0.4974 0.0056 1.0529 0.2970 0.9662 0.1198 0.4224 

CVM 0.4957 0.0074 1.0541 0.3586 0.9646 0.1665 0.5325 

AD 0.4995 0.0054 1.0562 0.2901 0.9690 0.1121 0.4075 

 𝑛 = 500  

ML 0.5025 0.0019 1.0303 0.1049 0.9897 0.0330 0.1398 

LS 0.5013 0.0036 1.0523 0.1759 0.9644 0.0686 0.2481 

WLS 0.5016 0.0024 1.0385 0.1274 0.9790 0.0430 0.1729 

CVM 0.5029 0.0036 1.0536 0.1762 0.9681 0.0680 0.2477 

AD 0.5024 0.0024 1.0411 0.1265 0.9786 0.0422 0.1710 
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Table 3. Simulated means and MSEs of the estimators based on Scenario 3. 

 
 𝛼 = 5 𝛽 = 1 𝜆 = 1  

 MEAN MSE MEAN MSE MEAN MSE DEF 

Method 𝑛 = 20  

ML 6.9767 37.7485 1.0295 0.0144 0.9351 0.2061 37.9690 

LS 6.4599 16.5876 1.0032 0.0168 0.9900 0.1503 16.7547 

WLS 6.1292 14.0433 1.0060 0.0105 0.9856 0.1437 14.1976 

CVM 6.4664 17.0314 1.0374 0.0131 0.9137 0.1675 17.2119 

AD 5.9396 10.5258 1.0231 0.0108 0.9442 0.1502 10.6868 

 𝑛 = 50  

ML 5.5136 3.3891 1.0091 0.0040 0.9914 0.0684 3.4615 

LS 5.4676 3.5508 1.0013 0.0035 1.0060 0.0577 3.6120 

WLS 5.3344 2.6685 1.0020 0.0033 1.0029 0.0555 2.7274 

CVM 5.4617 3.5553 1.0134 0.0038 0.9777 0.0616 3.6207 

AD 5.2485 2.0609 1.0083 0.0034 0.9861 0.0582 2.1225 

 𝑛 = 100  

ML 5.2054 0.8425 1.0038 0.0017 0.9988 0.0286 0.8728 

LS 5.1692 1.1703 1.0012 0.0017 1.0004 0.0291 1.2011 

WLS 5.1280 0.9411 1.0010 0.0016 1.0012 0.0278 0.9706 

CVM 5.1670 1.1759 1.0071 0.0018 0.9869 0.0300 1.2078 

AD 5.0925 0.8398 1.0038 0.0017 0.9938 0.0282 0.8697 

 𝑛 = 200  

ML 5.0719 0.3394 1.0027 0.0009 0.9916 0.0141 0.3543 

LS 5.0590 0.4948 1.0007 0.0009 0.9943 0.0139 0.5096 

WLS 5.0456 0.3871 1.0013 0.0009 0.9931 0.0138 0.4017 

CVM 5.0572 0.4962 1.0036 0.0009 0.9876 0.0142 0.5113 

AD 5.0237 0.3625 1.0026 0.0009 0.9893 0.0139 0.3772 

 𝑛 = 500  

ML 5.0337 0.1243 1.0004 0.0003 0.9993 0.0053 0.1299 

LS 5.0332 0.1795 0.9996 0.0003 1.0005 0.0054 0.1852 

WLS 5.0299 0.1425 0.9998 0.0003 1.0003 0.0054 0.1482 

CVM 5.0324 0.1796 1.0007 0.0003 0.9979 0.0054 0.1853 

AD 5.0191 0.1385 1.0003 0.0003 0.9986 0.0054 0.1442 

 

  



Acıtaş and Arslan / Eskişehir Technical Univ. J. of Sci. and Tech. B – Theo. Sci. 8 (1) – 2020 
 

30 

Table 4. Simulated means and MSEs of the estimators based on Scenario 4. 

 
 𝛼 = 5 𝛽 = 1 𝜆 = 1.5  

 MEAN MSE MEAN MSE MEAN MSE DEF 

Method 𝑛 = 20  

ML 10.7829 640.6584 1.0596 0.0395 1.3838 0.3260 641.0239 

LS 7.2579 40.8133 1.0193 0.0381 1.3974 0.2649 41.1163 

WLS 6.9039 43.6619 1.0246 0.0315 1.3935 0.2650 43.9584 

CVM 7.2576 45.5161 1.0756 0.0476 1.3143 0.3270 45.8907 

AD 6.5222 29.4139 1.0508 0.0438 1.3617 0.2932 29.7510 

 𝑛 = 50  

ML 6.2880 25.7493 1.0203 0.0094 1.4748 0.1081 25.8668 

LS 5.9292 7.7802 1.0127 0.0080 1.4712 0.0964 7.8846 

WLS 5.7026 6.3834 1.0121 0.0080 1.4724 0.0939 6.4854 

CVM 5.8972 8.3087 1.0313 0.0095 1.4427 0.1048 8.4229 

AD 5.4778 4.3840 1.0217 0.0091 1.4556 0.1013 4.4945 

 𝑛 = 100  

ML 5.3802 1.9756 1.0077 0.0032 1.5008 0.0430 2.0219 

LS 5.3585 3.2012 1.0051 0.0033 1.4925 0.0453 3.2498 

WLS 5.2169 2.0631 1.0053 0.0033 1.4922 0.0449 2.1113 

CVM 5.3314 3.2104 1.0142 0.0037 1.4789 0.0473 3.2613 

AD 5.1334 1.6198 1.0094 0.0035 1.4859 0.0461 1.6694 

 𝑛 = 200  

ML 5.1467 0.6357 1.0035 0.0015 1.4930 0.0232 0.6604 

LS 5.1749 1.1602 1.0020 0.0016 1.4914 0.0247 1.1865 

WLS 5.1036 0.8405 1.0022 0.0016 1.4906 0.0247 0.8668 

CVM 5.1611 1.1572 1.0064 0.0016 1.4849 0.0252 1.1840 

AD 5.0708 0.7700 1.0040 0.0016 1.4876 0.0250 0.7966 

 𝑛 = 500  

ML 5.0846 0.2547 1.0020 0.0006 1.4988 0.0088 0.2641 

LS 5.0692 0.4460 1.0014 0.0006 1.4966 0.0091 0.4557 

WLS 5.0633 0.3185 1.0015 0.0006 1.4976 0.0090 0.3281 

CVM 5.0633 0.4454 1.0030 0.0006 1.4941 0.0092 0.4552 

AD 5.0450 0.3053 1.0021 0.0006 1.4963 0.0090 0.3149 
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4. APPLICATION 

 

In this section, two real data sets considered by Asgharzadeh et al. [1] are reanalyzed to show the 

implementation of the different estimation methods.  

 

4.1. Data set 1 

 

This data set contains times to reinfection of sexually transmitted diseases (STD) for 877 patients, see 

Klein and Moeschberger [26]. Asgharzadeh et al. [1] model this data set using the WL distribution and 

compare its modeling performance with seven different statistical distributions. In modeling the data, 

they use the ML methodology to obtain the unknown parameters of the corresponding distributions. At 

the end of their analysis, it is obtained that the WL distribution models the data better than its rivals in 

terms of the some criteria such as Akaike information criterion (AIC), Bayesian information criterion 

(BIC), Kolmogorov-Smirnov (KS) test statistic and etc.  

 

Different from Asgharzadeh et al. [1], in this study the LS, WLS, CVM and AD estimation methods are 

considered in addition to ML method to model the data using WL distribution. The estimates of the 

unknown parameters are given in Table 5. It is clear from Table 5 that the estimates do not differ so 

much. We suggest to use AD estimators since it has the smallest KS test statistic value.  

 
Table 5. The parameter estimates for the data set 1. 

 
 ML LS WLS CVM AD 

𝛼 0.6434 0.6074 0.6305 0.6087 0.6136 

𝛽 0.0017 0.0017 0.0017 0.0017 0.0017 

𝜆 0.0023 0.0022 0.0023 0.0022 0.0023 

KS 0.0324 0.0265 0.0291 0.0263 0.0238 

 

4.2. Data set 2 

 

This data set is also taken from Klein and Moeschberger [26] and contains times to death of twenty-six 

psychiatric patients. Asgharzadeh et al. [1] model this data using eight different distributions including 

WL distribution. They show that the WL distribution provides a better fitting performance than other 

considered distributions. In this study, we also fit WL distribution to this data set using different 

estimation methods. The resulting parameter estimates are given in Table 6.  It is clear from Table 6 that 

the ML, LS, WLS, CVM and AD estimates are more or less the same. As in the first data set, we suggest 

to use the AD method in terms of KS test statistic value. The ML method is also promising.  

 
Table 6. The parameter estimates for data set 2. 

 
 ML LS WLS CVM AD 

𝛼 9.8995 10.2507 9.4119 10.5498 10.7058 

𝛽 0.0283 0.0282 0.0281 0.0284 0.0280 

𝜆 0.0436 0.0432 0.0429 0.0423 0.0457 

KS 0.1085 0.1086 0.1087 0.1089 0.1078 

 

5. CONCLUSION  

 

In recent years, many new distributions have been proposed. Most of them have intractable pdfs and/or 

hazard rates besides having many parameters. Although the modelling performance of the distribution 

will increase when the number of parameters increases, there may occur some computational problems 

while studying mathematical and/or statistical properties. Therefore, distributions including less number 

of parameters and exhibiting good fitting performance have a great interest in terms of practical aspects. 
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In this context, the WL distribution, proposed by Asgharzadeh et al. [1], can be seen as an attractive 

alternative since it has three parameters and tractable statistical properties. For example, its hazard rate 

function is expressed analytically and take different forms (bath-tubed, increasing and decreasing) 

according to different parameter settings. The WL distribution has good statistical properties but it has 

not been considered in the context of different estimation methods as far as we know. We therefore 

consider the ML, LS, WLS, CVM and AD estimation methods to estimate the unknown parameters of 

the WL distribution. We conduct a Monte-Carlo simulation study to compare the efficiencies of the 

estimators.  

 

Results of the simulation study show that the AD method outperforms its rivals in most of the considered 

cases. The CVM is the almost the worst estimator. The performances of the LS and WLS estimators are 

promising since they are the best or follow AD estimators in a limited number of cases. Although the 

ML method exhibits a satisfactory performance for large 𝑛, it is not efficient so longer for small values 

of sample size. In the applications, it is also obtained that the AD method is preferable to other estimation 

methods according to the KS test. We therefore suggest to use AD in estimating the parameters of the 

WL distribution.  
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