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Abstract 

In this paper, we study surfaces of revolution which have lightlike axes of revolution in Minkowski space with 

density. The generating curve of these surfaces satisfies a non-linear second order differential equation which 

describes the prescribed weighted Gaussian curvature. By solving differential equation, we get surfaces of 

revolution. Also, we draw a graph of the surface of revolution.  
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Yoğunluklu Minkowski Uzayında Lightlike Dönme Eksenli Dönel Yüzeyler Üzerine Bir Not  

Öz 

Bu çalışmada, yoğunluklu Minkowski uzayında lightlike dönme eksenli dönel yüzeyleri çalıştık. Üzerinde 

çalıştığımız dönel yüzeylerin üreteç eğrisinin, yüzeyin ağırlıklı Gauss eğriliğinden hareketle elde ettiğimiz 

ikinci dereceden lineer olmayan diferansiyel denklemin bir çözümü olduğunu gördük. Bu diferansiyel denklemi 

çözerek dönel yüzeyin denklemini elde ettik. Son olarak da elde ettiğimiz dönel yüzeylerin grafiklerini çizdik.  

Anahtar Kelimeler:  Minkowski uzayı, yoğunluklu manifold, ağırlıklı eğrilik, dönel yüzeyler.  

 

 

1. Introduction 

It is well known that a surface of revolution is 

a special form of a helicoidal surface. A 

surface of revolution is a surface generated by 

rotating a two dimensional curve about an 

axis. It has been studied in 3  as well as in 

the other spaces with special conditions. 

Firstly, Delaunay has studied a surface of 

revolution with nonzero constant mean 

curvature in 3  (Delaunay, 1841). Kenmotsu 

has studied surfaces of revolution with 

prescribed mean curvature (Kenmotsu, 1980). 

Then Hsiong et. al have generalized theorem 

of Delaunay (Hsiang and Yu, 1981). Beneki 

et. al have studied these surfaces in 

Minkowski 3−space 3

1
 (Beneki et al., 2002). 

For more details on ruled surfaces and its 

applications, see (Athoumane, 2004; Chen et 

al., 2005; Güler, 2007; Güler and 

Hacısalihoğlu, 2011) 

Recently, the studies in Riemannian 

manifolds with density have arisen. Above 

problem is extended to manifols with density. 

It is well known that a manifold with a 

positive density function e  used to weight 
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the volume and the hypersurface area. For 

more details on manifolds with density, see 

(Hıeu and Hoang, 2009; Morgan, 2016; 

Morgan, 2005; Morgan, 2009; Morgan, 2006; 

Rayon and Gromov, 2003; Rosales et al., 

2008; Yıldız et al., 2018, Yıldız et al., 2018; 

Yıldız and Akyiğit, 2019). 

In Minkowski 3−space with density e  the 

weighted mean curvature is given with 

1
,

2
H H N       

where H  is the mean curvature of the surface, 

N  is the unit normal vector of the surface and 

  is the gradient vector of   (Rayon and 

Gromov, 2003). If 0H   then the surface is 

called weighted minimal surface. The 

weighted Gaussian curvature with density e  

is 

G G    

where G  is the Gaussian curvature of the 

surface and   is the Laplacian operator 

(Corwin et al., 2006). 

In this paper, we study surfaces of revolution 

in the Minkowski 3−space with density e , 

where 2 2y z    . We construct a surface of 

revolution with prescribed weighted Gaussian 

curvature. Then we give examples to illustrate 

our results 

2. Preliminaries  

The Minkowski 3−space 3

1
 is the real vector 

space 3  provided with the standard flat 

metric given by 

2 2 2 2ds dx dy dz    

where ( , , )x y z  is a rectangular coordinate 

system of 3

1
. Let 

1 2 3( , , )a a a a , 

3

1 2 3 1( , , )b b b b  , then the vector product in 

3

1
 is defined by 

1 2 3

1 2 3

1 2 3

e e e

a b a a a

b b b



   

In the Minkowski 3−space the axis of 

revolution is either spacelike, or timelike or 

lightlike. So there exist four kind of a surface 

of revolution. In this study, we examine 

surfaces of revolution with lightlike axis. In 

addition, the discriminant of the first 

fundamental form 2 2( ( )) ( 1 ( ) )u g u g u     

is negative (Hano and Nomizu, 1984). 

Let   be a 2C −curve on yz −plane of type 

( ) (0, , ( ))u u g u   where u I for an open 

interval  0I   . By applying the rotation 

with lightlike axis, we can obtain a surface of 

revolution M  as 

2 2

2 2

1
0

( , ) 1
2 2

( )

1
2 2

v v

v v
R u v v u

g u
v v

v

 
 

  
   
  
    

  
  

.         (1) 

So the parametric equation can be given in the 

for 

2 2

2 2

( , ) ( ( ) ) ,(1 ) ( ),
2 2

                (1 ) ( ) .
2 2

v v
R u v g u u v u g u

v v
u g u


   



  



      (2) 

We can calculate the mean curvature H , the 

Gaussian curvature G  and the unit normal of 

surface as 
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2 2

3
2 2 2

( ) (( 1 ) (1 ) ( ) )
,

2(( ) ( 1 ))

u g g g u g g
H

u g g

        


  
 

 

2( )( 1 )(1 )

g
G

u g g g


 

    
 

and 

2 2

2 2

1
( )( 1 ),

1
                ( )( ( 2 ) ),

2

1
                ( )( 2 )

2

N v u g g
w

u g v v g

u g v v g


   



    


    


 

respectively, where 2 2( ) ( 1 ) 0u g g     and 

2 2( ) ( 1 )w u g g    . We assume that M  is 

a surface in 3

1
 with density e  where 

2 2y z    . By considering density 

function, we can calculate the weighted mean 

curvature H  and the weighted Gaussian 

curvature G  as 

2 2

2 2 2

( ) (( 1 ) (1 ))

           2( )( 1 )((1 ) ( )

H u g g g

u g g v g v u g g




      



       

 

3
2 2        ( )) ( ) / 2u v g u g g w


     


           (3) 

and 

2
4

( )( 1 )(1 )

g
G

u g g g



 

    
               (4) 

respectively. 

3. Surface of Revolutıon with Prescribed 

Weighted Gaussian Curvature 

In this section, we construct surface of 

revolution with prescribed weighted Gaussian 

curve 

Theorem 3.1. Let ( ) (0, , ( ))u u g u   be a 

profile curve of the surface of revolution give 

2 2

2 2

( , ) ( ( ) ) , (1 ) ( ),
2 2

                 (1 ) ( )
2 2

v v
R u v g u u v u g u

v v
u g u


   



  



  

in 3

1
 with density 

2 2y ze  and ( )G u  be the 

weighted Gaussian curvature. Hence, the 

differential equation of the surfaces of 

revolutions in 3

1
 with density 

2 2y ze   is (4), 

the solution of which is given for some 

particular functional forms of the weighted 

Gaussian curvature. 

Proof. Let’s consider the equation (4). If we 

apply ( ) ( )g u h u u   into the equation (4), 

then we get 

2

2

4 (2 )
.

(2 )

hh h h
G

hh h


   


 
                              (5) 

This is second-order nonlinear differential 

equation. Analytical solution of the equation 

can’t be obtained easily. So, we approach by 

some special functional forms of the Gaussian 

curvature. 

First case, we assume that ( ) 0G u  , then 

equation (5) takes the form 

24 (2 ) 0.hh h h                                      (6) 

Solution of (6) is 

1 1
2 1

1

1 2
ln 0,   2 0

2 8 1 2

c c hh
u c c h

c h


    


 and 

1 2,c c  , i.e , 

1 1
2

1

1 2 ( )
ln 0

2 8 1 2 ( )

c c g ug u
c

c g u

 
  

 
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If 
1 0c   the 

2( ) 2g u c u  . So we obtain the 

parametrization of the surface as follow 

2 2

2 2

2 2

2

( , ) (2 ) , (1 ) (2 ),
2 2

                 (1 )(2 )
2 2

v v
R u v c u u v u c u

v v
u c u


     



   



and the figure of the domain 

0 20

5 5

u

v

 

  

 

is given in figure 1. 

 

Figure 1 

Second case, we assume that ( ) 4G u   which 

is satisfied by the function 1 2( ) ( 1)g u c u c  

, then we obtain the parametrization of the 

surface as follow 

2 2

1 2 1 2

2 2

1 2

( , ) ( ) ,(1 ) ( ),
2 2

                 (1 )( ) .
2 2

v v
R u v c u c u v u c u c

v v
u c u c


     



   



We assume that 

2 2

1 2 3 1 2 1 2

4
( )( 1 2 )(1 2 )

g
G

u c u c u c c u c c u c



 

       

which is satisfied by the function 
2

1 2 3 1 2 3( ) ( 1) ; , ,g u c u c u c c c c      then 

we obtain the parametrization of the surface as 

follow  

2 2
2

1 2 3

2 2

( , ) ( ( 1) ) , (1 ) ( ),
2 2

                 (1 ) ( ) .
2 2

v v
R u v c u c u c u v u g u

v v
u g u


      



  



The figure of the domain 

3 3

2 2

u

v

  

  

 

and for 1 2 3 1c c c    is given in figure 2 

 

Figure 2 
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