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SUMMARY 

 
In this paper, the performance of turbo coded signals  are investigated over a new channel 

model, denoted as /D1 n± Partial Response Fading Channels (PRFC) with imperfect phase 

reference. The combined effects of the /D1 n± PRFC and nonideal coherent receiver on the phase 
of the received amplitude and of a noisy carrier reference are considered, each modelled by the 
Rician and Tikhonov distributions respectively.  As an example, the jitter performance of turbo coded 
signals are evaluated over /D1+ PRSC channel with different fading parameter K,  effective signal-
to-noise ratio in the carrier tracking loop α , iteration number and data block size N. The numerical 
results clearly demonstrate the error performance degradation due to both amplitude fading and 
phase noise process. 
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1. INTRODUCTION
Turbo codes are a new a class of error correction 
codes that were introduced a long with a 
practical decoding algorithm in 1 . The 
importance of turbo codes is that they enable 
reliable communications with power efficiencies  
close to the theoretical limit predicted by Claude 

Shannon 2 . Since their introduction, turbo codes 
have been proposed for low-power applications 
such as deep-space and satellite communications, 
as well as for interference limited applications 
such as third generation cellular and personal 
communication services.  
 
 

For wireless applications on fading channels, 
channel coding is an important tool for 
improving communication reliability. Coding 
theorists have great problems in developing  
codes which have a sufficent performance in 
fading channels. The challenge to find pratical 
decoders for large codes has not been considered 
until turbo codes which was announced by 
Berrou and et'al in 1993 1 .  The performance of 
this new code was near the Shannon-limit error 
correction with relatively simple component 
codes and large interleavers. 
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Turbo codes represent a more recent 
development in the coding research field, which 
has risen a large interest in the coding 
community. They are parallel concatenated 
convalutional codes (PCCC) whose encoder is 
formed by two (or more) costituent systematic 
encoders joined through one or more 
interleavers. The input information bits feed the 
first encoder and, after having been scrambled by 
the interleaver , they enter the second encoder. A 
code word of a parallel concatenated code 
consists of the input bits to the first encoder 
followed by the  parity check bits of  both 
encoders.  
 
On partial response channels, such as the digital 
magnetic recording channel, convolutional 
coding techniques were often proposed. Wolf 

and Ungerboeck3 examined the channel with 
(1-D) in AWGN case. Their system uses a binary 
convolutional code, with a ν2 -state trellis and a 
good free Hamming distance, followed by a 
channel precoder.    Mohammed Siala and 
Ghassan K. Kaleh 4 , concentrated on a class of 
convolutional codes which the maximum 
likelihood decoder, matched to the encoder, 
precoder and the channel has the same trellis 
structure as the encoder. Thus, doubling the 
number of states due to the channel memory is 
avoided.  
 
In this paper, performance of turbo codes over 
1± Dn / Partial Response Fading Channels with 
no channel state information (CSI) are 
investigated. We consider turbo codes for 
improving the reliability of data transmission 
over the binary precoded noisy (1+Dn) Partial 
Response Fading Channels with imperfect phase 
reference.  Here the combined effects of the 
fading, and a nonideal coherent receiver, on the 
phase of the received signal will be taken into 
account.  In the presence of Partial Response 
Rician Fading Channel with phase jitter, the 
performance of  turbo coded signals are 
evaluated for fading parameter K,  effective 
signal-to-noise ratio in the carrier tracking loop 
α , iteration number, data block size N and 
signal-to-noise ratio SNR. 
 
The paper is organised as; in Section 2, our 
proposed system model is explained, in Section 
3, Turbo Decoder is given and at the last Section,  
performance of turbo coded  signals over 

1+D/PRFC with / without channel state 
information is simulated for different parameters. 
It is shown that there causes bit error 
performance degredation due to phase jitter at all 
SNR, K values.  
 

2. SYSTEM MODEL 
Our considered system is composed of a new 
turbo encoder structure including pre-coder and 
1+Dn / PRSC channel equivalence, followed by a 
Rician fading environment without channel state 
information (CSI) and turbo decoder (Figure 1-
4).  The rapid advances in digital information 
processing and transmission technologies have 
led to an increase in studies on storage channel 
models. Partial Response Fading Channel 
(PRFC) acts in a similar way to Partial Response 
Signalling (PRS) with a Rician Fading 
probability density function.  
 
The block diagram for a turbo coded system 
operating over imperfect phase reference and 
fading are shown in Figure 4. Then we have the 
channel output uk  is  
uk = ak.xk.ejθk + nk.            (1) 
nk is Gaussian Noise where the noise variance 
σ2=N0/2Es ,  ak is fading amplitude and the term 
ejθk is a unit vector where θk represents the phase 
noise as mentioned in 6 , 5  for the signaling 
interval k which is assumed to have the 
Tikhonov distribution given by 

)(I2
))cos(exp(

)(P
0

k
k απ

θα
=θ |θk| < π             (2) 

 
Here α is effective signal-to-noise ratio at the 
receiver tracking loop in dB and I0(α) is the zero 
order modified Bessel function.  
 
Here, we focus on the performance of turbo 
coding over 1+D / PRSC, but the results can 
easily be enlarged to general storage channel 
models.  In this scheme, owing to the 
catostrophic nature of the partial response 
channel structure, it is necessary to place an 
appropriate precoder (Figure 5). Generally we 
assume that at the kth coding step, the 
information bit dk, takes { }1,0 values with equal 

probability. These values are mapped to { }1± by 
using QPSK modulator. Furthermore at the 
output of 1+D / PRSC , { }1±  values are mapped 
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to { }2,0 ±  as shown in Table I-II. When no 
precoder is used, at the coding step k, if  the  
input of the channel model is x'k(0) and alters 
from 0 to 1 or 1 to 0, channel output xk

(0) takes 
value of 0,  and if x'k-1

(0) is 1 and x'k(0) is 1, xk
(0) 

takes value +2 and finally if x'k-1
(0) is 0 and x'k(0) 

is 0, xk(0) takes value –2 and these states are 
shown in Table I. A suitable  pre-coder is 
replaced to solve error propagation problems of 
partial response channels. The pre-coder 
illustrated in Figure 5 is for 1+D/PRFC case and 
relation between the channel output and the input 
bit is shown in Table II.   
 
We prefer Recursive Systematic Convolutional 
(RSC) encoder model shown in Figure 6. We 
will give more information about RSC in the 
following subsection. After applying pre-coder 
and 1+D/PRFC channel model for all lines, the 
transmitter block diagram of our proposed model 
can be drawn as as Figure 7.   

 
2.1. The Recursive Systematic 

Convolutinal (RSC) Encoders  
In this section, we give general information 
about Recursive Systematic Convolutional 
(RSC) codes which we will be used in our paper 
. Consider a half-rate RSC encoder with M 
memory size. If the dk is an input at time k the 
output  Xk is equal to 

kk dX =               (3) 
Remainder r(D) can be found using feedback 
polynomal g(0)(D) and feedforward polynomal is 
g(1)(D). The feedback variable is  

∑
=

−+=
K

j
jjkki grdr

1

)0(                           (4) 

and RSC encoder output Yk which called parity 
data 7  , is  
 

∑
=

−=
K

j
jjkk grY

0

)1(
            (5) 

RSC encoder with memory M=2 and rate R=1/2 
which feedback polynomal g(0)=7 and 
feedforward polynomal g(1)=5 is illustrated in 
Figure 6 and it has a generator matrix  
 









+

++= 2

2

1
11)(

D
DD

DG                      (6) 

3. TURBO DECODING 
The problem of estimating the state sequence of 
a Markov process observed through noise has 
two well known trellis -based solutions- Viterbi 
algorithm8  (VA) and the symbol-by-symbol 
maximum a posteriori (MAP) algorithm. The key 
difference between algorithms is that the states 
estimated by the VA must form a connected path 
through the trellis, while the states estimated by 
the MAP algorithm need not to be connected. 
When applied to digital transmission systems, 
the VA minimizes the frame error rate (FER), 
while the MAP algorithm minimizes the bit error 
rate (BER).  
 
The problem of decoding turbo codes involves 
the joint estimation of two Markov processes, 
one for each constituent code.  While in theory it 
is possible to model a turbo code as a single 
Markov process, such a representation is 
extremely complex and does not lend itself to 
computationally tractable decoding algorithms.  
Turbo decoding proceeds instead by first 
independently estimating the individual Markov 
processes. Because the two Markov processes 
are defined by the same set of data, the estimates 
can be refined by sharing information between 
the two decoders in an iterative fashion.  More 
specifically, the output of one decoder can be 
used as a priori information by the other decoder 
(Figure 3).  If the outputs of the individual 
decoders are in the form of hard-bit decisions, 
then there is little advantage to sharing 
information.  However, if soft-bit decisions are 
produced by the individual decoders, 
considerable performance gains can be achieved 
by executing multiple iterations of decoding6 . 
 

3.1 Soft-Input, Soft Output (SISO) 
Decoding 
In the symbol-by-symbol MAP decoder, the 
output is given by  
 

[ ]
[ ]y

y
0
1

ln
=
=

=Λ
k

k
k mP

mP
                         (7) 

 
m is message bit and y is received sequence. 
There are three inputs for Soft-Input,Soft-Output 
(SISO) decoder. yk

(s) is the systematic 
observation, yk

(p) is the parity information and zk  
is the priori information which is derived from 
the other decoder's output. The log-likelihood at 
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the output of a SISO decoder using the channel 
model can be factored into three terms as6  
 

kk
s

k
s

s
k

s
k

k lzy
N

Ea ++=Λ )(

0

)()( )cos(4 θ            (8) 

 
where the term lk is called the extrinsic 
information. ak is fading amplitude, Es is the 
energy per code symbol and N0 is the noise 
power. The priori information at the input of one 
decoder is found by subtracting two values from 
its output to prevent "positive feedback problem" 
as shown in Figure 6 of M.C. Valenti6 study. 
First of all we make the following notation; 

0

)cos(4
N

Ea
L skk

c
θ=                    (9) 

 
which is called the reliability of the channel, and 
 

k
s

k
s

ckk zyLl −−Λ= )()(
  (10) 

The converter in the receiver, changes the 
received bits domain from {2,0, –2} to {1, –1} 
with mathematical computation which is given 
bellow 
yk = -abs(uk) + 1                 (11) 
It is clear to understand that the BER will 
increase by the nature of the PRFC model. All 
the probable observation bits y are lesser than 1 
and there are no bits higher than 1  because of 
the transformation of uk. Figure 8a. shows the 
observation y for without PRFC and  Figure 8b. 
shows the observation y for PRFC. 
 
The MAP algorithm attempts to find the most 
likely individual state si given y 
 

[ ]




= yk

s
k sPs

k

  maxargˆ   (12) 

 
Befor finding the a posteriori probabilities 
(APPs) for the messege bits, the MAP algorithm 

finds the probability of [ ]y1+→ kk ssP  of each 

valid state transition given the noisy channel 
obsevation y. 
 

[ ] [ ]
[ ]y

yy
P

ssP
ssP kk

kk
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+
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→
=→              (13) 

 

3.2.  Log-MAP Algorithm 
The maximum a posteriori (MAP) algorithm can 
calculate the a posteriori probability of each bit 
with a perfect performance. However there are 
known problems as the number of calculation 
depending on the memory states.  These 
problems can be solved by performing the entire 
algorithm in the log domain 10,9 . To illustrate 
how performed in the log domain, consider the 
Jacobian Logarithm : 
 
ln(ex+ey) = max(x,y) + ln(1 + exp{-|y-x|}) (14) 
  = max(x,y) + fc(|x-y|) 
 
this equation discribes the log-MAP algorithm 
with a correction function fc. 

Let )( 1+→ kk ssγ  denoted the natural 

logarithm of )( 1+→ kk ssγ  
 
 
     )(ln)( 11 ++ →=→ kkkk ssss γγ               (15) 

[ ] [ ]kkk xyPmP lnln +=      (16) 

and 
[ ] )1ln(ln kz

kkk emzmP +−=                      (17) 
 
and the Equation  17  becomes 
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Now let )( ksα be the natural logarithm 

of )( ksα , 
 
 
    )(ln)( kk ss αα =   

[ ]








→+= ∑
∈
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− As
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k
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1
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sss
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where A is the set of states sk-1 that are connected 
to the state sk. 
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Now let )( ksβ be the natural logarithm 

of )( ksβ , 
 

)(ln)( kk ss ββ =             (22) 

[ ]
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where B is the set of statets s k+1 that are 
connected to state s k , and we can calculate the 
Log Likelihood Ratio (LLR) by using 
 

[ ]
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where { }1:11 =→= + kkk mssS  is the set of 
all state transitions associated with a message bit 
of 1, and { }0:10 =→= + kkk mssS  is the set 
of all state transitions associated with a message 
bit of  0. 
At the last iteration we make the hard decision 
by using the second decoder output Λ(2), 
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4. PERFORMANCE OF TURBO 
CODED SIGNALS OVER 1+D / 
PRFC WITH IMPERFECT PHASE 
REFERENCE 
In this section,  the performance of turbo coded 
signals are evaluated over /D1+ PRSC channel 
with different fading parameter K,  effective 
signal-to-noise ratio in the carrier tracking loop 
α , iteration number and data block size N.   
 
In our example,  ½ rate turbo encoder with 
channel model is  investigated as shown in 
Figure 7. Here the generator matrix is 
g=[111:101], a random interleaver is used and 
the frame size N=400.  The bit error performance 

in /D1+ PRSC with ideal CSI for K=∞ , 20, 
10 and 0 [dB] are compared for various iteration 
numbers (Figure 9a-9e). In Figure 9e, for the 5th 
iteration, with ideal CSI,  the performance is 
simulated for K values. It is clear that for a 
constant iteration number, as K increases 
performance improves for the same SNR values.  
 
Jitter effect of the channel is simulated for 
various numbers of iterations, different SNR and 
K values  (Figure 10a-10e). In these curves SNR 
and effective signal-to-noise ratio in the carrier 
tracking loop α  varies simultanously. The x-axis 
is showing the simultanous change of Eb/No  
(SNR) with α  both in dB, while y-axis is the bit 
error performance (BER). In Figure 10e, for the 
5th iteration, with no CSI,  the performance is 
simulated for K values. It is clear that for a 
constant iteration number, as K increases 
performance improves for the same SNR and 
αvalues. When the performance results obtained 
in Figures 9 (the ideal CSI) with Figures 10 (no 
CSI), the degradation of error performance due 
to phase distortion can easily be seen for all SNR 
, K values.   
 
To emphasize the importance of imperfect phase 
effect, the performance of the considered scheme 
is simulated with various α  values and K as 
shown in Figures (11a-11b) . For  α=10 dB and 
K=∞ , for the same SNR value, as iteration 
number increases, performance gets better 
(Figure 11a). The similar results are obtained for   
α=20 dB, K= ∞ case (Figure 11b). The bit 
performance of the one with greater α  (Figure 
11b) is clearly better than the other case (Figure 
11a) at all SNR and iteration number, showing 
the effect of jitter. The similar results are 
obtained for K= 20 dB and K=0 dB values 
(Figure 12-14). It is clear that phase jitter 
distortion is effective for severe fading (K=0 dB) 
and also Rician fading.  
 
In the last group of Figures (15a-15d), for 
constant K values, and for the 5th iterations, we 
only change the  α  parameter ( From 0 dB to ∞  
dB) for different SNR values. The interesting 
point, here  is the effect of α  parameter on bit 
error performance. Jitter effect  becomes  more 
effective at higher SNR values for all K values.  
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5.   CONCLUSION 
In this paper we have shown how turbo codes 
can be adapted to 1+Dn / Partial Response Fading 
Channels with no channel state information 
(CSI). As an example, the jitter performance of 
turbo coded signals are simulated over 

/D1+ PRSC channel with different fading 
parameter K,  effective signal-to-noise ratio in 
the carrier tracking loop α , iteration number and 
data block size N. 
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Table I. Channel outputs without pre-coder 
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Table II. Channel outputs with pre-coder 

dk 0 1 

xk
(0) +2 or –2 0 

 

 
 
 
 
 
 
 
 
 
 

 
Figure 1.  Pre-coder and 1 ± Dn / PRFC Model 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 2. Turbo Encoder for  1 ± Dn / PRFC Model 
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Figure 3. Turbo Decoder for  1 ± Dn / PRFC Model 

 

 

 

 

 

 

 

Figure 4. Fading channel with imperfect phase reference 

 

 

   

 

 

 

Figure 5. Pre-coder and 1+D/PRFC Model 
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Figure 6. Recursive Systematic Convolutional (RSC) Encoder 

 
 
 
 
 
 
 
 
 
 
 

  

 

 

 

Figure 7. 1/2 Rate Turbo Encoder with 1+D / PRFC Model 
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Figure 9a.  The performance in 1+D / PRFC with ideal CSI for  K= ∞ , N=400 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9b.  The performance in 1+D / PRFC with ideal CSI for  K=20 dB , N=400 
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Figure 9c.  The performance in 1+D / PRFC with ideal CSI for K=10dB  , N=400 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9d.  The performance in 1+D / PRFC  with ideal CSI for K=0 dB , N=400 
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Figure 9e.  The performance in 1+D / PRFC for K=0,10,20,∞ (dB), with ideal CSI, N=400, 
for 5th iteration 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10a.  The performance in 1+D / PRFC with imperfect phase reference for  K= ∞ dB, 
N=400 
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Figure 10b.  The performance in 1+D / PRFC with imperfect phase reference for 
K =20 dB , N=400 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10c.  The performance in 1+D / PRFC with imperfect phase reference, K=10 dB , N=400 
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Figure 10d.  The performance in 1+D / PRFC with imperfect phase reference for  K=0 dB , 
N=400 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10e.  The performance in 1+D / PRFC with imperfect phase reference for  
K=0,10,20,∞ (dB), N=400, for 5th iteration 
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Figure 11a. The performance in 1+D / PRFC with imperfect phase reference for  αα =10 dB , 
K= ∞  dB, N=400 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11b. The performance in 1+D / PRFC with imperfect phase reference for  αα =20 dB , 
K= ∞  dB , N=400 
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Figure 12a. The performance in 1+D / PRFC with imperfect phase reference for  αα =10 dB , 
K=20 dB , N=400 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12b. The performance in 1+D / PRFC with imperfect phase reference for  αα =20 dB , 
K=20 dB , N=400 
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Figure 13a. The performance in 1+D / PRFC with imperfect phase reference for  αα =10 dB , 

K=10 dB , N=400 
 

 

 

 

 

 

 

 

 

 

 

 
 
 

Figure 13b. The performance in 1+D / PRFC  with imperfect phase reference for  αα =20 dB , 
K=10 dB , N=400 
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Figure 14a. The performance in 1+D / PRFC with imperfect phase reference for  αα =10 dB ,  
K=0 dB,  N=400 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 14b. The performance in 1+D / PRFC with imperfect phase reference for  αα =20 dB ,  

K=0 dB , N=400 

1,00E-04

1,00E-03

1,00E-02

1,00E-01

1,00E+00

2 dB 4 dB 6 dB 8 dB

Eb/N0

B
E

R

1. Iteration

2. Iteration

3. Iteration

4. Iteration

5. Iteration

1,00E-04

1,00E-03

1,00E-02

1,00E-01

1,00E+00

2 dB 4 dB 6 dB 8 dB

Eb/N0

B
E

R

1. Iteration

2. Iteration

3. Iteration

4. Iteration

5. Iteration



Performance Of Turbo Coded Signals Over Partial Response Fading Channels With Imperfect Phase Reference 
 
 

 Osman N. UÇAN, Onur OSMAN and Aykal GÜMÜª 

167 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 15a. The performance in 1+D / PRFC  with imperfect phase reference , K=0 dB , N=400 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 15b. The performance in 1+D / PRFC with imperfect phase reference , K=10 dB , N=400 
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Figure 15c. The performance in 1+D / PRFC with imperfect phase reference , K=20 dB , N=400 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 15d. The performance in 1+D / PRFC with imperfect phase reference , 
K= ∞ dB , N=400 
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