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ABSTRACT 
 

In this work, a basic inverse heat conduction problem of a simple 2-D model with steady state heat 
source is taken into view. The physical problem is for a square region with uniform thermophysical 
properties and a point heat source of unit magnitude. To obtain boundary data , temperature probes 
are placed at the midpoints of the sides of the square domain. The objective of the inverse problem  is 
to estimate the coordinates of the point source with the least amount of data. Initially, the inverse 
problem is analyzed to determine  the main causes that render the problem ill conditioned. As for the 
solution, among the methods that has been tried so far, the best results are obtained from a 
backpropagating ANN with four-probe data. When white Gaussian noise is added to the 
measurements, no catastrophic failure has been observed. 
 
Keywords: Inverse heat conduction problem, poisson equation, artificial neural networks, self 
organizing maps 
 
 
1. INTRODUCTION 
Inverse problems are encountered in various 
fields of the computational mathematical physics 
and with the advent of new solution techniques 
have been attracting the attention of researchers. 
In some cases it is systematically by nature of the 
problem per se, such as computed tomography; 
in others it arises from some technical problems. 
 
The behaviour of most physical systems can be 
mathematically modelled as well-posed 
problems, [1-6]. This is true just because such 
physical systems have certain common 
characteristics; spatio-temporal low-pass filtering 
properties being the top item of that list. From 

this observation it immediately follows that the 
associated inverse problems are necessarily 
based on high-pass models, which in principle 
tend to amplify the high frequency noise 
components of the measured input data, and this 
is obviously contrary to what we get used to. In 
other words, the difficulty is that the inverse 
problem is extremely sensitive to measurement 
errors which results in the instability of the 
solution. Another flaw of the inverse problem 
stems from the fact that the solution of the 
forward problem may correspond to a situation 
in which several distinct points of the input space 
are mapped onto the same point of the output 
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space, which violates the uniqueness requirement 
of the well-posedness, at least locally.  
 
The regularization method is a remedy to the 
adverse high-pass property of the time dependent 
inverse problem combined with the 
nonuniquness of the solution. As for the steady 
state problems judicious selection of 
measurement points might be helpful in 
rendering a well posed inverse problem [6]. A 
brief overview of the generic applications of 
inverse methods in engineering is given in Ch.13 
of [2]. Inverse source problem of the Poisson 
equation is chiefly used in determining dipole 
current source in the brain and the heart [7]. 
Electrical source imaging (ESI) is an emerging 
technique for reconstructing brain or cardiac 
electrical dipole current activity from electrical 
potential measured by the electrodes placed on 
the skin, which is a substantial improvement 
upon the classical diagnostics. 
 
Although there are certain well established 
generic forms of the regular heat conduction 
problem, there is no such classification of inverse 
heat conduction problems (IHCP); rather 
circumstances dictate the formulation [8-11]. 
 
Neural network approach is rather rarely used in 
the solution of IHCP. In this work, we address 
the simplest case of inverse source problem of 
the Poisson equation –namely, estimation of 
point source coordinates from measured 
boundary data-with the aid of backpropagating 
feedforward artificial neural networks. 
 
2. THE PHYSICAL PROBLEM 
 
Our conduction problem consists of a unit square 
region of homogeneous thermophysical 
properties. Homogeneous boundary conditions of 
the third kind are applied to the periphery of the 
region. A steady point source is located 
somewhere inside the square. Temperature 
probes are placed at the midpoints of the all four 
sides of the medium, Fig.1. The formulation of 
the problem is stated below in the conventional 
notation: 

( ),y,xTk 2  ρ−=∇    , 1x0 << 1y0 <<   (2.1) 
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Here, T(x, y ), k, h, L(=1) are the local 
temperature, thermal conductivity of the 
medium, convective heat transfer coefficient, and 
the length of the side of the square region, 
respectively.  
 
The solution of the direct problem is given in 
normalized coordinates as: 

∫ ∫=
1

0

1

0
dvdu)v,u()v,u;y,x(G)y,x(T     ρ ,        (2.4) 

 
where the Green’s function of the problem is 
constructed as a series in terms of the 
eigenfunctions )x(iϕ  and eigenvalues iλ of the 
related one dimensional homogeneous problem 
which results from the separation of variables: 
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Fig. 1. Geometry of the heat conduction 
problem; iθ  represent the pointwise boundary 
temperature measurements 
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Now we elaborate upon the associated inverse 
problem. For a given point source located at 
(xo,yo), we may calculate/measure the boundary 
temperature data, say ( NE ,θθ ). Direct heat 
conduction problem is considered as a mapping; 
DHCP: ),()y,x( NEoo θθ→  which is not 
invertible. Fig. 2 shows the randomly selected 
source coordinates from a  uniform joint 
probability density function. Fig. 3 gives the 
corresponding mapping to( NE ,θθ ) space. It is 
easy to demonstrate the noninvertibility of the 
mapping. In order to surmount this difficulty, we 
increase the dimensionality of the measured data 
set to four. 
 
3. SOLUTION 
 
In this work we intend to test some of the 
emerging methods to attack the inverse problem. 
Self-organizing mapping (SOM) method, [13], 
seemed to be one of the simplest approaches 
worth trying. SOM consists of neural elements 
distributed on a regular lattice. Θ vectors are fed 
for training , and a fading Gaussian 
neighborhood function is used. When trained, for 
a particular  Θ vector, the physical position of 
the firing (or winning) neuron is expected to 
represent approximately the position of the 
corresponding point source. Unfortunately the 
problem proved to be too hard for the SOM to 
learn. It did not yield reasonable results because 
the original 2X Θ→  mapping do not preserve 
the topology and we surmise that the same is true 
for 4X Θ→ mapping. 
  y 
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Fig. 2. a) Point sources picked from  uniform 
probability density on a square.  
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Fig. 2. b) Corresponding mapping onto 2Θ  
space 
 
Next in line comes the artificial neural networks 
[12,13]. In the hidden layer tanh and in the 
output layer unipolar sigmoid are used as 
activation functions. Paralysis of the nodes due 
to saturation has been taken care of. For training 
and validation purposes a data set of 2000 is 
generated randomly. Half of the data set is set 
aside for on line validation tests. Training was 
halted at the moment the learning stopped and 
memorizing began. Backprop ANN with 2x10x2  
layer structure could not learn the inverse 
mapping: X→2θ  for obvious reasons. ANN 
with 4x10x2: X4 →θ produced reasonable 
results. In order to test the robustness of the 
ANN, the training set was extended by adding 
white Gaussian noise to measurement data with 

%20,10,5=σ . Training session takes about 
75000 epochs with exact data whereas it may 
take up to 200000 with noise- corrupted data 
sets. Results are graphically displayed in Fig. 3 
through 10. 
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                                                  x, estimated value 
Fig. 3. Validation performance of the ANN 
trained with exact measurements and tested with 
the same sort of data 
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                                                  x, estimated value 
Fig. 4. Validation performance of the ANN, 
trained with exact measurements but tested with 
noise-corrupted  data( %5=σ ) 
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                                                  x, estimated value 
Fig. 5. Validation performance of the ANN, 
trained with exact measurements but tested with 
noise-corrupted  data( %10=σ ) 
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Fig. 6. Validation performance of the ANN, 
trained with exact measurements and tested with 
noise-corrupted data( %20=σ ) 
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                                                           x, true value 
Fig. 7. Validation performance of the ANN, 
trained with noise-corrupted measurements 
( %5=σ ) and tested with the same sort of data 
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                                                  x, estimated value 
Fig, 8. Validation performance of the ANN, 
trained with noise-corrupted 
measurements( %10=σ ) and tested with the 
same sort of data 
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                                                 x, estimated value 
Fig. 9. Validation performance of the ANN, 
trained with noise-corrupted 
measurements( %10=σ ), but tested with exact 
data 
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                                                  x, estimated value 
Fig. 10. Validation performance of the ANN, 
trained with noise corrupted 
measurements( %10=σ ), but tested with another 
set of noise-corrupted data( %5=σ ) 
 
In Fig.11-a,b,c,d , it can be seen that the 
estimation error of the ANN which is trained 
with non-noise measurements, but tested with 
(σ =0, %5, %10, %20 ) noise corrupted data, 
respectively. 
      yε  

 
              (a) 
 
         yε  

 
              (b) 
 
 
 
 

     yε  

 
                                             (c) 
      yε  

 
                                               (d) 
Fig. 11. Distribution of estimation error (ANN 
trained with exact data ) tested a)  by the same 
sort of data, b) by noise-corrupted data (σ =5%) 
c) by noise-corrupted data (σ =10%) d) by 
noise-corrupted data (σ =20%) 
 
In Table 1 and 2, the performance of the ANN 
versus corrupting noise is displayed. 
 
Table 1. Effect of measurement noise on the 
performance of the ANN(in terms of σ values) 

Noise added to 
test data→  

Noise added to 
training data↓  

 
 

% 0 

 
 

% 5 

 
 

% 10 

 
 

% 20 

% 0 0.0223 0.0333 0.0627 0.1300
 

% 5 - 0.0302 - - 
 

% 10 0.0250 0.0345 0.0611 - 
 

 
 
 
 

xε  
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Table 2. Percentage of  results which are within 
an acceptable error of 10% 

Noise added to 
test data→  

Noise added to 
training data↓  

 
 

% 0 

 
 

% 5 

 
 

% 10 

 
 

% 20 

% 0 99 99 89 55 
 

% 5 - 99 - - 
 

% 10 99 99 89 - 
 

 
4.  RESULTS AND DISCUSSION 
 
From the training experiments described above  
it is concluded that ANN cannot learn when the 
inverse mapping is not unique. By increasing the 
dimensionality of the boundary data uniqueness 
or invertibility is achieved and hence the ANN  
can be expected to learn the inverse problem. 
Initially ANN is trained and tested with the exact 
data to demonstrate the capability of the ANN, 
Fig. 3.  Deviation from linearity increases at the 
edges due to Gibbs phenomenon spoiling the 
numerical results , Eqs. (2.4,2.5). As the additive 
noise level of the input data is increased the 
noise level of the results behave similarly, Fig. 
(4-6). From Fig. (7-10), we can conclude that 
ANN trained with noise-corrupted data perform 
reasonably better with the exact data than vice 
versa. This is due to the jitter which inherently 
provides some sort of regularization during the 
learning process [12]. 
 
5. CONCLUSION 
 
We took on  the simplest case of  inverse heat 
conduction problem, namely the estimation of 
coordinates of the point source of a 2-D Poisson 
equation with the aid of artificial neural 
networks. It was observed that ANN fails 
gracefully in the face of measurement data 
corrupted with additive white Gaussian noise. 
Application of SOM did not yield reasonable 
results because the topology nonpreserving 
nature of the problem. The ANN approach could 
be further generalized by considering distributed 
source configurations. Time dependent sources 
can be handled with recurrent neural networks as 
well. 
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