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ABSTRACT 

 
One must first make sure that a given matrix subject to factorization is symmetric, and then use it in 
Cholesky  algorithm, in MATLAB. This may cost machine time to check for symmetry, however, saves 
much more of it by preventing errors due to inherent structure of the built-in algorithm.   
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1. INTRODUCTION 
Nowadays, mathematical software packages 
have become indispensible tools in signal 
processing. In most cases, one assumes that no 
problems exist in their built-in algorithms. 
Cholesky factorisation (CF) is a useful method in 
the analysis and simulation of signals and 
systems. CF built-in algorithm in MATLAB 
Software Package uses LAPACK subroutine 
DPOTRF for real matrices.[1].In fact, MATLAB 
has an extensive set of commands and 
application packages (such as DSP block set) for 
the implementation of CF. 
 
2. CHOLESKY FACTORIZATION 
Positive definite matrices are of both theoretical 
and computational importance in a wide variety 

of applications. They are used, for example, in 
optimization algorithms and in the construction 
of various linear regression models, design of 
robust adaptive control systems, and non-
parametric factor corellated Monte-Carlo 
simulation. 
 
An (n x n) complex matrix A is called positive 
definite if   R [x*Ax]>0 for all nonzero complex 
vectors x, where x* denotes the conjugate 
transpose of the vector x. In the case of a real 
matrix A, equation R [x*Ax]>0 reduces to 
x*Ax>0, where xT denotes the transpose. Some 
other properties of positive definite matrices are 
briefly given in the appendix section. 
 
Cholesky factorisation applies to any positive 
definite symmetric matrix A, producing the 
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lower triangular matrix L so that A=LLT. This 
can be stated in more general form: If  A is a 
positive definite real symmetric matrix, it can be 
factorized in Cholesky form as A=LLT or 
A=UUT where L and U are lower and upper real 
triangular matrices, respectively, and T stands for 
transpose operation [2-3]. 
 
A linear system of equations with a positive 
definite matrix can be efficiently solved using 
the so-called Cholesky decomposition. Unlike 
general matrices, a positive definite matrix has 
exactly one matrix square root.  
 
If the matrix A is symmetric and positive 
definite, then, denoting 
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Thus, a recursive computation of Cholesky 
factorization is possible. 
 
3. MATLAB COMPUTATION 
 
Above given recursive equations show that the 
manual matrix factorisation of even smaller 
matrices involves tedious and a time consuming 
work. This work is greatly simplified using 
MATLAB which has an extensive set of 
commands and application packages (such as 
DSP block set) for the implementation of CF. In 
fact, this operation consists of a single command: 
C=chol(A) which yields the CF of a matrix A. 
Note, however that the matrix A must posess 
certain properties. 
 
For example, using an ordinary square test 
matrix A which is neither positive definite nor 
symmetric, and applying  C=chol(A)  in 
MATLAB, an error message appears as “Error 
using chol; matrix must be positive definite”. 

However, nothing is said about the symmetry of 
A . 
Example: Let 
 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

7121
3421
4352
4536

A      (1) 

 
An attempt to factorize A by  U=chol(A) will 
result in an error message as described above. 
If the value of A13=5 term is replaced with  
A13=4,  the algorithm  “computes” the CF of A 
as  
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and with B=UUT, 
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Apparently, A ≠ B. 
 
Moreover, when  “[U,p]=chol(A)” command is 
input, one will obtain U as given before, with the 
flag value p=0, meaning that algorithm treats A 
as a positive definite matrix! The same situation 
can be  observed for other  values of A11 or A33 
(e.g., A11=7, A33=5). 
 
The reason for this is that, MATLAB does not 
check whether a given matrix is real symmetric 
or complex Hamiltonian. It takes the upper 
triangular part of the matrix under consideration 
and assume WITHOUT CHECK that the strictly 
lower part of it will conform. 
 
Therefore, one must make sure that a matrix is 
symmetric before using it in the CF algorithm,  
by imposing symmetry testing conditions 
(especially for larger matrices). This may cost 
time to check for symmetry, however, saves 
much more of it by preventing errors. 
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APPENDIX 
A necessary and sufficient condition for a 
complex matrix A to be positive definite is that 
the Hermitian part  AH=(A+AH)/2, where AH 
denotes the conjugate transpose, be positive 
definite. This means that a real matrix A is 
positive definite if and only if the symmetric part 
AS=(A+AH)/2 where AT is the transpose, is 
positive definite [4-6]. 
 
A Hermitian (or symmetric) matrix is positive 
definite if and only if all its eigenvalues are 
positive. Therefore, a general complex 
(respectively, real) matrix is positive definite if 
and only if its Hermitian (or symmetric) part has 
all positive eigenvalues.  
 
The determinant of a positive definite matrix is 
always positive, so a positive definite matrix is 
always non-singular.  
 
If A and B are positive definite, then so is their 
matrix sum. The matrix inverse of a positive 
definite matrix is also positive definite.  
 
The definition of positive definiteness is 
equivalent to the requirement that the 
determinants associated with all upper-left sub 
matrices are positive.  
 
The following are necessary (but not sufficient) 
conditions for a Hermitian matrix A (which by 
definition has real diagonal elements aii) to be 
positive definite:  

1. aii >0 for all i ,  
2. aii+ajj>2 R[aij],  fori≠j ,  
3. The element with largest modulus lies on the 
main diagonal,  
4. det (A) >0.  
 
Here, R[z] is the real part of z.  
A real symmetric matrix A is positive definite if 
and only if there exists a real non-singular matrix 
L such that A=LLT where LT  is the transpose. 
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