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ABSTRACT 

 
This paper deals with identification and control of a highly nonlinear real world application. The 
performance and applicability of the proposed methods are demonstrated for an industrial heat 
exchanger. The main difficulties for identification and control of this plant arise from the strongly 
nonlinear center. First, a neural network based predictive controller using Multi Layer Perceptron 
(MLP) is designed to govern the dynamics of a heat exchanger pilot plant. The performance of the 
proposed controller is compared with that of Local Linear Model Tree (LOLIMOT) through 
simulation studies. 

 
Keywords: Neural network control, Multi Layer Perceptron, Local Linear Model Tree, predictive 
control, heat exchanger pilot plant. 
 
1. INTRODUCTION 
 
Predictive control is now widely used in industry 
and a large number of implementation 
algorithms. Most of the control algorithms use an 
explicit process model to predict the future 
behavior of a plant and because of this, the term 
model predictive control (MPC) is often utilized 
[1-2]. The most important advantage of the MPC 
technology comes from the process model itself, 
which allows the controller to deal with an exact 
replica of the real process dynamics, implying a 
much better control quality. The inclusion of the 
constraints is the feature that most clearly 
distinguishes MPC from other process control 

techniques, leading to a tighter control and a 
more reliable controller. Another important 
characteristic, which contributes to the success of 
the MPC technology, is that the MPC algorithms 
consider plant behavior over a future horizon in 
time. Thus, the effects of both feedforward and 
feedback disturbances can be anticipated and 
eliminated, fact, which permits the controller to 
drive the process output more closely to the 
reference trajectory. 
 
Although industrial processes usually contain 
complex nonlinearities, most of the MPC 
algorithms are based on a linear model of the 
process. Linear models such as step response and 
impulse response models derived from the 
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convolution integral are preferred, because they 
can be identified in a straightforward manner 
from process test data. In addition, the goal for 
most of the applications is to maintain the system 
at a desired steady state, rather than moving 
rapidly between different operating points, so a 
precisely identified linear model is sufficiently 
accurate in the neighborhood of a single 
operating point. As linear models are reliable 
from this point of view, they will provide most of 
the benefits with MPC technology. Even so, if 
the process is highly nonlinear and subject to 
large frequent disturbances, a nonlinear model 
will be necessary to describe the behavior of the 
process. Also, in servo control problems where 
the operating point is frequently changing, a 
nonlinear model of the plant is indispensable [3-
5]. 
 
In situations like the ones mentioned above, the 
task of obtaining a high-fidelity model is more 
difficult to build for nonlinear processes. 
Recently, neural networks have become an 
attractive tool in the construction of models for 
complex nonlinear systems [6-7]. A large 
number of control and identifications structures 
based on neural networks have been proposed [8-
15]. 
 
Most of the nonlinear predictive control 
algorithms imply the minimization of a cost 
function, by using computational methods for 
obtaining the optimal command to be applied to 
the process. The implementation of the nonlinear 
predictive control algorithms becomes very 
difficult for real-time control because the 
minimization algorithm must converge at least to 
a sub-optimal solution and the operations 
involved must be completed in a very short time 
(corresponding to the sampling period). This 
paper analyzes an artificial neural network based 
nonlinear predictive controller for a heat 
exchanger, which is a highly nonlinear process. 
 
The procedure is based on construction of a 
neural network model for the process and the 
proper use of that in the optimization process. 
The method eliminates the most significant 
obstacles for nonlinear MPC implementation by 
developing a nonlinear model, designing a neural 
predictor and providing a rapid, reliable solution 
for the control algorithm. Using the proposed 
controller, the output temperature tracking 
behavior of the plant is studied. Also, the 

performance of the proposed neural network 
based predictive controller is compared with that 
of LOLIMOT , which the latter leads to better 
performance. 
 
The organization of this paper is as follows: In 
Section II the structure of a heat exchanger pilot 
plant is briefly presented. Sections III and IV 
present the predictive control methodology based 
on MLP and the simulation results in heat 
exchanger using MLP. Section VI and VII 
present the predictive control methodology based 
on LOLIMOT and online learning of neural 
predictors. The simulation results are presented 
in section VIII. Finally, the paper is concluded in 
Section IX. 
 
 
2.HEAT EXCHANGER PILOT 
PLANT 

 
The problem of heat-exchanger control with 
sensors and actuators limitation represents a 
serious problem from the point of optimal energy 
consumption [16-18]. The problem lies in the 
nonlinearity of the system behavior [19-22]. 
There are a large number of phenomena 
associated with flow and heat transfer that are 
perhaps simple to solve singly, but when 
combined result in a system that is impossible to 
compute. Some of these are: complicated heat 
and fluid flow geometries, turbulence in the 
flow, existence of hydrodynamic and thermal 
entrance regions, non-uniform local heat transfer 
rates and fluid temperatures, secondary flows in 
the tube bends, vortices in the neighborhood of 
the tube-fin junctions, air-side flow development 
in fin passages, heat conduction along tube walls, 
natural convection within the tubes and between 
fins, and temperature dependence of fluid 
properties. 
 
The objective of our investigation, a real 
temperature plant, consists of a plate 
heatexchanger, a reservoir with heated water, 
two thermocouples, and a motor driven valve. 
The plate heat exchanger, through which hot 
water from an electrically heated reservoir is 
continuously circulated in the counter-current 
flow to cold process fluid (cold water). The 
thermocouples are located in the inlet and outlet 
flows of the exchanger; both flow rates can be 
visually monitored. Power to the heater may be 
controlled by time proportioning control using 
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the external control loop. The flow of the heating 
fluid can be controlled by the proportional motor 
driven valve. A schematic diagram of the plant is 
shown in figure (1). 

 
Fig. 1: The heat-exchanger pilot plant. 

 
 
3. PREDICTIVE CONTROL 
METHODOLOGY BASED ON 
MULTI-LAYER  PERCEPTRON 
This section presents the role and architecture of 
the neural predictors resulting from the following 
nonlinear modeling techniques based on neural 
network principles.[26-28] 
 
A network with k+1 layers and n0,n1,… nk points 
in each layer is recognized . Where,

kθ  is the bias 
in the weigh vector of kth layer. In zero and first 
layers, we mention x as input layer vector, w1 as 
weight vector, z1 as state vector and yk as output 
vector. Thus we obtain: 
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f is a function which is considered to be: 
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to implement BP algorithm we have to minimize 
the following cost function: 
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w is a vector including bias and weights. Using 
steepest descent algorithm to minimize that cost 
function, we have: 
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∂
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where μ   is the learning rate. 

In a Multi Layer Perceptron (MLP) with Back 
propagation as training method with just one 
hidden layer, h neurons in hidden layer and p 
neurons in input layer, the output of MLP 
network becomes: 
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and y(i) is the output of the ith neuron, fj output 
function of jth neuron in hidden layer, z(j) 
 
Output function of jth neuron, h the neuron 
number in hidden layer, p the number of input 
neurons, wj the connecting weigh of jth neuron of 
hidden layer to output neuron, wj,k connecting 
weigh of ith input neuron to jth neuron of hidden 
layer, bj the bias of jth neuron in hidden layer and 
b as the bias in output neuron. 
 
A quadratic cost function is utilized to compute 
the prediction error and to derive the optimal 
predictive control strategy. 
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Where λ andλ′  are weighting matrixes 
and uNNN ,, 21  are the minimum, maximum of 
prediction horizon and control horizon , 
respectively. 
 
Minimization of the cost function (j) occurs in 
each sampling time and ends in a control signal. 
But with the aim of receding horizon only the 
first element of it will be used as control 
signal..Using steepest descent strategy we have: 
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Where  +∈ Rα  is the optimization step. 
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This algorithm is continued until the variation of 
u(t) becomes less than a small value of  ε . The 
derivation of the cost function (j) in time 
of ),...,2,1(, uNhht =+   is as follows: 
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Possibly we write 
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Fig. 2:  The scheme of neural network based 
predictive control 
 
4. SIMULATION RESULTS Of 
PREDICTIVE CONTROL IN THE 
HEAT-EXCHANGER WITH USE 
MLP 
In this system we recognize flow as input and 
temperature as output. The input and output data 
[24] are shown in figure (3). 
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Fig. 3: Input and output signal 
 
The set point tracking results of the simulation 
on the plant and the corresponding input signal 
are depicted in Figures 4 and 5. Clearly the 
system could track the set points with 
satisfactory performance using a numerical 
optimization the prediction and control horizons 

are 7 and 3, respectively also 
′

iλ  is 0.01 .  
Next, the cost function J is constructed 

 

 (20) 
The minimization algorithm gives the control 
input vector U=[u(t),u(t-1),u(t-2),y(t),y(t-1),y(t-
2)] to be applied to the plant .  
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Fig. 4: Tracking 

 

 
 

Fig. 5: Control signal 

Clearly the system could track the set points with 
satisfactory performance. 
 
5. AN INTRODUCTION TO LOCAL 
LINEAR MODEL TREE 
(LOLIMOT) 
The network structure of a local linear 
neurofuzzy model is depicted in Fig.6. Each 
neuron realizes a local linear model (LLM) and 
an associated validity function that determines 
the region of validity of the LLM. The validity 
functions form a partition of unity, i.e., they are 
normalized such that 
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Fig. 6: Network structure of a local linear neuro 

fuzzy model with M neurons for nx LLM 
inputs x and nz validity function inputs z., 

for any model input z. The output of a local 
linear neuro-fuzzy model is calculated as 
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where the local linear models depend on 
T

nzxxxx ],...,,[ 21= and the validity functions 

depend on T
nzzzzz ],...,,[ 21= . Thus, the 

network output is calculated as a weighted sum 
of the outputs of the local linear models where 
the Φi(·) are interpreted as the operating point 
dependent weighting factors. The network 
interpolates between different LLMs with the 
validity functions. 
 
The weights wi,j are linear network parameters. 
 
The validity functions are typically chosen as 
normalized Gaussians. If these Gaussians are 
furthermore 
axis-orthogonal the validity functions are 

 

 
(22) 

 
The centers and standard deviations are 
nonlinear network parameters. 
 
In the fuzzy system interpretation each neuron 
represents one rule. The validity functions 
represent the rule premise and the LLMs 
represent the rule consequents. One-dimensional 
Gaussian membership functions: 
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can be combined by a t-norm (conjunction) 
realized with the product operator to form the 
multidimensional membership functions in (5). 
One of the major strengths of local linear neuro-
fuzzy models is that premises and consequents 
do not have to depend on identical variables, i.e. 
z and x can be chosen independently. 
 
6. PREDICTIVE CONTROL 
METHODOLOGY BASED  
ON LOIMOT ALGORITHM 
The prediction output can be written as: [25] 
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iΦ   and 
ijΦ   are basis functions, we can possibly 

define the weight and basis function vectors as: 
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to define how well the predicted process output 
tracks the reference trajectory, a number of cost 
functions are employed for predictive control , 
here we use a cost function which is of the 
following quadratic form: 
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LdtR ++ , LdtY ++  and LtU +   are  the future 
reference input, predicted output and control 
input vectors, respectively, L is the control 
horizon, L+D is the prediction horizon, and  

0>α    is the weight. 
 
The optimal controller output sequence over the 
prediction horizon is obtained by minimizing the 
performance index npJ  with respect to LtU + . 
This can be carried out by taking the derivative 
of the performance function npJ with respect to 

the control input vector LtU +  and results  in: 

  (28) 
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It is clear that the controller input vector LtU +  
can be calculated by 
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performance function npJ  is given by: 
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7. On-LINE LEARNING  
OF NEURAL PREDICTORS 
Here we consider the online adjustment of the 
weights of the ith predictor.[25] The weight 
estimation of the other predictors are the same . 
It will be assumed that the basis functions which 
are used in the predictors are given and the 
required prediction accuracy can be achieved by 
adjusting the corresponding weights to those 
functions. 
Using the available output data and the input 
data, the output of the ith predictor at time t   can 
be written as 
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approximation error of the predictor using the 
neural network and is assumed to be bounded by 
a positive number of   for all time, that is 
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Based on the recursive least squares algorithm, 
an on-line weight learning algorithm is 
developed for affine nonlinear predictors. The 
algorithm is given by the following theorem. 
 
THEOREM: consider the ith predictor and the 
learning algorithm: 
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where  tt WWW −= ∗~     (41) 

(.)maxλ and (.)minλ denote the maximum and 
the minimum eigenvalues of the matrix (.), 
respectively, and ∗W is the optimal estimate of 
the weight vector tW  . 
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Property (i) of the theorem above shows that if  

1111 −−− ΦΦ+ tt
T
t P  is finite for all time, which is 

true if the closed-loop system is stable, the 
estimation error te converges toδ . Also, it can 
be seen from property (ii) that the weights 
converge as time t approaches infinity. In 
addition, Property (iii) implies that the weights 
will never drift to infinity over time. 
8. SIMULATION RESULTS Of 
PREDICTIVE CONTROL IN THE 
HEAT-EXCHANGER WITH USE 
OF LOLIMOT 
The set point tracking results of the simulation 
on the plant and the corresponding input signal 
are depicted in Figures7 and 8 .One and two step 
ahead predictors are depicted in figure9  as well. 
Clearly the system could track the set points with 
satisfactory performance. T o implement the 
algorithm, 4 neurons have been used and the 
prediction and control horizon are both set at 2 
with the control weight which is equal to 2500 
and 
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Fig. 7: System output and reference signal 
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Fig. 8: Control signal 
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Fig. 9: 1 and 2 step ahead predictors 
 

Based upon the above simulations, the following 
table is presented and we can conclude that 
LOLIMOT algorithm provides a better 
performance. 
 

Table 1: Comparison between MLP and 
LOLIMOT 

Method Mean 
square 
error 

Over 
shoot 
percentage 

Settling 
time 

MLP 0.6433 %6.66 22 
LOLIMOT 0.3646 %2.4 27 

 
It can be concluded from the table that the mean 
square error and overshoot percentage has been 
significantly decreased in LOLIMOT comparing 
with MLP resulting from the fact that in 
LOLIMOT an analytical optimization is used 
however a numerical optimization is used in 
MLP due to the fact of Sub- optimality problem. 
 

9. CONCLUSIONS 
A neural network based predictive control 
strategy was applied to a heat exchanger pilot 
plant. Heat exchanger is a highly nonlinear 
process; therefore, a nonlinear prediction 
method, e.g. neural network based methods, 
should be a better match in a predictive control 
strategy. Using the neuro predictive controller, 
the outlet liquid temperature of the plant tracked 
the desired set points by applying the liquid flow 
rate as a control signal. A neural network model 
for the plant was constructed. Once having such 
a model, i-step ahead predictions were obtained 
and a quadratic form cost function was utilized to 
compute the prediction error and to derive the 
optimal predictive control strategy. The 
performance of the proposed control strategy was 
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compared with that of LOLIMOT strategy when 
dealing with the tracking problem of output 
temperature, simulation results showed that the 
latter strategy performs much better than the 
former one in case of mean square error and the 
percent overshoot  
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