

ISTANBUL UNIVERSITY –
JOURNAL OF ELECTRICAL & ELECTRONICS ENGINEERING

YEAR
VOLUME
NUMBER

: 2006
: 6
: 2

(169 - 174)

Received Date : 03.03.2005

A FAST MULTIPLIER HARDWARE DESIGN
FOR INTERVAL ARITHMETIC

1Ahmet SERTBAŞ 2Hani EL-ABDALLAH 3Fethullah KARABIBER

1,2,3Istanbul University, Engineering Faculty, Computer Engineering Department

34320, Avcilar, Istanbul, Turkey

1E-mail: asertbas@istanbul.edu.tr 2E-mail: hani956@yahoo.com

3E-mail: fetullah@istanbul.edu.tr

ABSTRACT

In this paper, a new parallel hardware unit for interval multiplication is presented. Using the VHDL
synthesis results, the area and delay estimates for the new design are given. Compared to previous
hardware interval multipliers, our design is faster, but, requires more area.

Keywords: Interval arithmetic, multipliers, VHDL synthesis, performance analysis

1. INTRODUCTION

As computer applications have led to rapid
increase in computing power, reliable
computation requires results to be highly
accurate. In most cases, computations that
include real-valued numbers contain inaccuracy
and results are almost unreliable due to
catastrophic cancellations and rounding off. On
the other hand, arithmetic errors in embedded
systems can lead to disaster. For example, a
plane may crash, a rocket may explode, or an
engine may fail to operate.

f = 333.75 b6 + a2 (11a2 b2 - b6 -121b4 – 2.0)
+ 5.5 b8 + a / (2b) (1)

For a = 77617.0 and b = 33096.0, this equation
yields f = 1.17260 when solved using single
precision, double precision, and extended
precision arithmetic. Increasing the precision
seems to validate the results. However, the
correct answer is actually f = -0.827396 x 10-17.

As conventional real-valued computations
contain inaccuracy that makes results unreliable
due to catastrophic cancellation and rounding off
results, for the reliable and accurate
computations, interval arithmetic can produce
good results. Interval arithmetic which deals with
sets of intervals provides reliability and accuracy
needed by computing the lower and upper
bounds xl, xu in which the true result x-true
relies. So, the interval X = [xl, xu] bounds the
true result such that: xl < = x-true < = xu.
When one or both end point could not be
represented during computation, outward

The fundamental problem with most real-number
computations is that their accuracy is not
guaranteed. Increasing precision does not prevent
this. Small errors can accumulate rapidly and
limitations in the representation of numbers may
lead to totally wrong results. For example,
equation (1) shows an equation causing
numerical error:

Accepted Date: 23.06.2006

mailto:asertbas@istanbul.edu.tr
mailto:hani956@yahoo.com

A Fast Multiplier Hardware Design For Interval Arithmetic

170

rounding towards –infinity, +infinity for each xl,
xu respectively, guaranties that the resulting
interval includes the true result. For example, the
interval [1.56, 2.34] is outward rounded to two
decimal digits resulting the interval [1.5, 2.4].
In the literature, interval arithmetic (and interval
analysis) was firstly defined by Ramon E.
Moore[1]. Some software packages are
developed to support interval arithmetic and can
provide the method of bounding the true result
like C-XSC [1], PROFL [2], INTLIB [3] and
recently, a built-in support is added for interval
arithmetic to FORTRAN [4], but yet, enough
performance is not achieved yet. The
performance is considered acceptable if it does
not exceed a factor of five to conventional real-
world arithmetic [5]. Unfortunately software
implementations achieve a factor of 20 to 100 of
a conventional floating point arithmetic.

Regarding to inefficiency in achieving
performance in determining the suitable case and
rounding process by software implementations
for interval arithmetic, it became necessary to
search for hardware structures that can
automatically select the interval endpoints and
serve the rounding process correctly.

In recent years, to improve the performance of
interval arithmetic, some hardware designs are
proposed [6-10]. In [2], the serial and parallel
interval multipliers that lead to a considerable
increase in performance were presented. Many
hardware structures, that improve interval
multiplication and handle efficiently rounding of
endpoints are implemented. An optimization of
delay is achieved but with a slight overhead in
area either by improving existing multiplication
structures by adding some registers, multiplexers
and some sort of comparing units, with some
change in the previous logic or implementing
new ones with their own hardware structure and
logic. Selecting the right case by examining the
sign bits in hardware units is based on the same
method used in software.

In this paper, a fast interval multiplier is
designed. It is the improved design of the
parallel interval multiplier given in[2]. Section 2
describes an interval multiplication analytically.
In Section 3, the new interval multiplier is
presented. In Section 4, we give area and delay
estimates for the new design and compare it to
the previous interval multipliers in [2]. Section 5
presents the conclusions.

2. INTERVAL MULTIPLICATION
Multiplication could be performed on computers
that support either single or double precision.
The result have to be outward rounded towards –
infinity, +infinity for both bounds. If double
length is supported, the interval product can be
computed as:

Z=[▼(min(xl*yl, xl*yu, xu*yl, xu*yu)),
 ▲(max (xl*yl, xl*yu, xu*yl, xu*yu))] (2)

This process needs four multiplications(for the
endpoint products) and four comparisons (to get
min and max values) to obtain the result.
If double length is not supported, the interval
product Z = X * Y can be computed as:

Z=[min(▼(xl*yl), rd(xl*yu),▼ (xu*yl),
rd(xu*yu)), max(▲ (xl*yl), ▲ (xl*yu), (3)
▲ (xu*yl), ▲ (xu * yu))].

where▼and ▲ represent rounding downward
toward negative infinity and upward toward
positive infinity, respectively.

This also needs eight multiplications for the
rounded products and six comparisons to obtain
the min and max values [11]. In order to reduce
the number of multiplications, the sign bit of the
endpoint xl, xu, yl, yu can be examined in
advance to determine the product of the right
result of zl, zu.

The sign bits indicate weather multiplied
intervals X, Y are greater than, less than or
contain zero, so, 9 cases for multiplication can be
classified. The first eight cases need only two
rounded multiplications to determine zl, zu,
where the last case when both intervals X, Y
contain zero needs four rounded multiplications
and two comparisons to determine zl, zu.

All these procedures suffer from conditional
statements for achieving the right choice of
endpoints to be multiplied. The algorithm above
declares the conditional branches needed to
perform multiplication. which greatly increases
the time. Rounding the results downward
towards –infinity and upward towards +infinity
in computation of results for each case decrease
performance of multiplication.

Ahmet SERTBAŞ, Hani EL-ABDALLAH, Fethullah KARABIBER

A Fast Multiplier Hardware Design For Interval Arithmetic

171

3. THE INTERVAL MULTIPLIER
DESIGN

Shown in Table 1, the control bits Zc, tx1, tx2,
ty1, ty2 select the endpoints to be multiplied at
each multiplier. Fig. 1 shows the block diagram
of the new design for the parallel interval
multiplier that uses 4 IEEE standart multipliers, 2
min/max units(fig.2), six registers, 6 multiplexers
for choosing the inputs to be multiplied and 2
multiplexers for selecting the results from the
multipliers or the min/max units.

In this paper, the method in [2], which provides a
considerable increase in performance, is
employed for deciding to the interval endpoints
and rounding the results. To produce the
multiplication results zl and zu are determined
the interval endpoints {xl, xu, yl, yu} to be
multiplied together by examining their sign bits
(Sxl, Sxu, Syl, Syu), as shown in Table 1.

let mn = min(▼(xl * yu), ▼ (xu * yl)), mx = max(▼ (xl * yl), ▼ (xu * yu)),
if (xl >= 0) { if (yl >= 0) { zl = ▼ (xl * yl); zu = ▲ (xu * yu) ; }
else if (yu < 0){ zl = ▼ (xu * yl); zu = ▲ (xl * yu)
else { zl = ▼ (xu * yl) ; zu = ▲ (xu * yu) ; }
else if (xu < 0){ if (yl >= 0){ zl = ▼ (xl * yu); zu = ▲ (xu * yl) ;}
else if (yu < 0) { zl =▼ (xu * yu) ; zu = ▲ (xl * yl) ; }
else { zl = ▼ (xl * yu) ; zu =▲ (xl * yl); }
else { if (yl >= 0) { zl = ▼ (xl * yu) ; zu = ▲ (xu * yu) ;}
else if (yu < 0) { zl = ▼ (xu * yl) ; zu = ▲ (xl * yl) ;}
else {a = xl * yu ; b = xu * yl ; zl = min(a, b) ; c = xl * yl ; d = xu * yu ; zu = max(c, d) ;

Table 1: All Cases for Interval Multiplication

Case Interval X Interval Y Sxl Sxu Syl Syu Z = X * Y zc tx1 tx2 ty1 ty2

1 X>[0,0] Y>[0,0] 0 0 0 0 [xl*yl, xu*yu] 0 1 1 1 1

2 X>[0,0] Y<[0,0] 0 0 1 1 [xu*yl, xl*yu] 0 0 0 1 1

3 X<[0,0] Y>[0,0] 1 1 0 0 [xl*yu, xu*yl] 0 1 1 0 0

4 X<[0,0] Y<.0,0] 1 1 1 1 [xu*yu, xl*yl] 0 0 0 0 0

5 0 € X Y>[0,0] 1 0 0 0 [xl*yu, xu*yu] 0 1 1 0 1

6 0 € X Y<[0,0] 1 0 1 1 [xu*yl, xl*yl] 0 0 0 1 0

7 X>[0,0] 0 € Y 0 0 1 0 [xu*yl, xu*yu] 0 0 1 1 1

8 X<[0,0] 0 € Y 1 1 1 0 [xl*yu, xl*yl] 0 1 0 0 0

9 0 € X 0 € Y 1 0 1 0 *[mn, mx] 1 1 1 1 1

*mn=min(▼(xl*yu), ▼(xu*yl)), mx=max(▲(xl*yl), ▲(xu*yu))

Ahmet SERTBAŞ, Hani EL-ABDALLAH, Fethullah KARABIBER

A Fast Multiplier Hardware Design For Interval Arithmetic

172

Fig.1. Proposed structure for interval parallel multiplier

Table 2. Execution steps for Case 9.

Cycle C Action

1 0 r1 =▼(xl*yu), r2 = ▼(xu*yl), r3 =▲(xl*yl), r4 =▲(xu*yu)

2 1 Set zl=min(r1, r2) , Set zu=max(r3, r4)

Table 3. Performance comparisons of interval multipliers

Performance Metrics Serial (Schulte) Parallel (Schulte) Proposed Interval Multiplier

Cycle_count1 (Zc=0) 2 1 1

Cycle_count2 (Zc=1) 5 3 2

Total Logic Cells 866 1373 2516

Chip Area (Estm.)/mm2 60 96 173

Clock Frequency/MHz. 75.75 80.65 77.65

 Estm. Total Delay- ns 30.8 15.15 14.31

Ahmet SERTBAŞ, Hani EL-ABDALLAH, Fethullah KARABIBER

A Fast Multiplier Hardware Design For Interval Arithmetic

173

Fig. 2. Min/Max unit

The Boolean equations for the control and
rounding mode bits are given as follows:

ZcSyuSxlSyltx ++= *1 ,

ZcSyuSxlSyltx ++= *2 ,

ZcSxuSylSxlty ++= *1 , (4)

ZcSxuSylSxlty ++= *2 ,

SyuSylSxuSxlZc ***= ,
,

crmrm == 21 crmrm == 43

Where, the rm1, rm2 mode bits are for rounding
towards – infinity and the rm3, rm4 are for
rounding towards + infinity, also, c is for the
clock cycle.

If X and Y do not both contain zero (the first 8
cases), a single cycle is required to compute the
lower and upper interval endpoints of the
product. On the other hand, if X and Y both
contain zero (Case 9), only two cycles are
sufficient to perform the interval computation, as
shown in Table 2. On Case 9, at the first cycle,
productions of the endpoints are done in parallel
with the 4 multipliers. At the second cycle, the
1st min/max unit determine the minimum value
of the 1st and 2nd multiplier's output according to
the min1 control signal, while the 2nd min/max
unit determines the maximum value of the 3rd
and 4th multipliers output due to min2, the output
registers are loaded with products required for
the lower and upper endpoints comprising the
result. Table 2 shows the steps for the parallel
interval multiplier for Case 9.

The lower bound zl is selected from the
multipliers' outputs r1, r2, according to the
control bit min1. When min1=1, if r1< r2, then
zl=r1 else zl = r2. The upper bound zu is selected
from the multipliers' outputs r3, r4, according to

the control bit min2. When min2=1, if r3 < r4,
then zu = r3 else zl = r4.

4. COMPARISON

The all architectures and behaviors of serial,
parallel and proposed interval multipliers are
simulated for functionality at the logic level
using using Model-Sim and synthesized for
obtaining total logic cells, estimated chip areas,
clock cycle frequency and total operation delays
using the Quartus VHDL (Version II). Here, the
total operation delay is computed as follows:

Estimated Total Delay=
[Cycle_count1*(8/9)+Cycle_count2*(1/9)] (5)
/Clock_frequency

As shown in Fig.3, compared to the serial and
parallel interval multipliers our design requires
roughly 190 and 80 percent more area,
respectively. Also, the new interval multiplier
has cycle time approximately 3 percent shorter
than the serial, but 3 percent longer than the
parallel multiplier. Fortunately, with respect to
the estimated total delay, our interval multiplier
is 6 and 105 percent faster than the parallel and
the serial multipliers, respectively. The total
results obtained by VHDL simulations are given
in Table 3.

Fig.3. Relative compares of the interval
multipliers with respect to the number of total
logic gates

5. CONCLUSIONS

This paper proposes a hardware design for the
interval multiplier. Serial interval multiplier
consumes 2 cycles for executing cases 1-8 and 5
cycles for case 9 to handle interval multiplica-
tion, where parallel interval multiplier needs just

Ahmet SERTBAŞ, Hani EL-ABDALLAH, Fethullah KARABIBER

A Fast Multiplier Hardware Design For Interval Arithmetic

174

one cycle to execute the cases 1-8 and 3 cycles
for case 9. The proposed parallel multiplier needs
just 2 cycles for case 9, with a cycle not to be
lost and only 1 cycle for cases 1-8.

According to total logic elements, the serial
interval multiplier is more than conventional
floating point multiplier of 1.35 where the
parallel is of 2.16 and the proposed interval
multiplier is, the higher, of 3.95. but improved
parallel is nearly like conventional usage with
only 1.083, where parallel is 1.16 and the serial
is 2.25.

These estimations show that the new design
gives a little more speedup (roughly 6 percent),
but, 80 percent more area than the parallel
interval multiplier referenced in [2]. Therefore,
the proposed interval multiplier can be used for
the need of fast interval computing. By adjusting
the selection bits of the multiplexers (tx1, tx2, ty1,
ty2 and zc), the new interval multiplier can also
perform the interval structures chosen to
compare in this work.

The next step, besides the search for efficient
software implementations able to support
interval arithmetic within permitable ranges of
delay, is to work for monitoring other arithmetic
functions like the exponent.

REFERENCES

[1] Moore R.E., 1966, Interval Analysis,
Englewood Cliffs: Prentice Hall.

[2] Schulte M.J., Bıckersatff K.C.,
Schwartzlander E.Jr., 1996, "Hardware Units for
Interval Multiplication" Proceedings of the 2nd
Workshop of Computer Arithmetic, Interval, and
Symbolic Computations, pp. 85-87.

[3] Williams G. S., “Processor Support For
Interval Arithmetic” thesis for master degree,
Lehigh University, May 1998.

[4] Goldberg D.,1991 "What Every Computer
Scientist Should Know About Floating Point
Arithmetic" ACM Computing Surveys, vol. 23,
pp. 5-48.

[5] Arnold D.N.,1997 “Disasters Caused by
Computer Arithmetic Errors" available from
Internet URL http://www.ima.umn.edu/~arnold/
455.f96/disasters.html February, 1997.

[6] Rumph S.M, 1988 "Algorithms for Verified
Inclusions: Theory and Practice" Reliability in
Computing, San Diego: Academic Press, 1988.

[7] Kearfott R.B. et al.,1996, "A Specific
Proposal for Interval Arithmetic in FORTRAN"
http://interval.louisiana.edu/F90/f96-pro.asc,
March 96.

[8] Walster G.W., 1996, "Stimulating Hardware
and Software Support for Interval Arithmetic"
Applications of Interval Computations, pp. 405-
416, 1996.

[9] Alefeld G. and Herzberger R.,1983 ,
Introduction to Interval Computations, New
York: Academic Press.

[10] Walster G.W., "Interval Arithmetic: The
New Floating-Point Arithmetic Paradigm,"
http://www.mscs.mu.edu/~globsol/readings.html,
March, 1998

[11] Coriliss G.F.,1993 "Comparing Software
Packages for Interval Arithmetic," in Abstracts of
the International Symposium on Scientific
Computing, Computer Arithmetic, and Validated
Numerics.

.

Ahmet SERTBAŞ, Hani EL-ABDALLAH, Fethullah KARABIBER

http://www.ima.umn.edu/%7Earnold/%20455.f96/disasters.html
http://www.ima.umn.edu/%7Earnold/%20455.f96/disasters.html
http://interval.louisiana.edu/F90/f96-pro.asc
http://www.mscs.mu.edu/%7Eglobsol/readings.html

	A FAST MULTIPLIER HARDWARE DESIGN
	FOR INTERVAL ARITHMETIC
	2. INTERVAL MULTIPLICATION

