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ABSTRACT 
 

In this paper, a new parallel hardware unit for interval multiplication is presented. Using the VHDL 
synthesis results, the area and delay estimates for the new design are given. Compared to previous 
hardware interval multipliers, our design is faster, but, requires more area.  
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1. INTRODUCTION 
 
As computer applications have led to rapid 
increase in computing power, reliable 
computation requires results to be highly 
accurate.  In most cases, computations that 
include real-valued numbers contain inaccuracy 
and results are almost unreliable due to 
catastrophic cancellations and rounding off. On 
the other hand, arithmetic errors in embedded 
systems can lead to disaster. For example, a 
plane may crash, a rocket may explode, or an 
engine may fail to operate. 

f = 333.75 b6 + a2 (11a2 b2 - b6 -121b4 – 2.0)            
+ 5.5 b8 + a / (2b)                                             (1) 

For a = 77617.0 and b = 33096.0, this equation 
yields f =  1.17260 when solved using single 
precision, double precision, and extended 
precision arithmetic. Increasing the precision 
seems to validate the results. However, the 
correct answer is actually f = -0.827396 x 10-17. 
 
As conventional real-valued computations 
contain inaccuracy that makes results unreliable 
due to catastrophic cancellation and rounding off 
results, for the reliable and accurate 
computations, interval arithmetic can produce 
good results. Interval arithmetic which deals with 
sets of intervals provides reliability and accuracy 
needed by computing the lower and upper 
bounds xl, xu in which the true result x-true 
relies. So,  the interval X = [xl, xu] bounds the 
true result such that:      xl < = x-true < = xu.  
When one or both end point could not be 
represented during computation, outward 

 
The fundamental problem with most real-number 
computations is that their accuracy is not 
guaranteed. Increasing precision does not prevent 
this. Small errors can accumulate rapidly and 
limitations in the representation of numbers may 
lead to totally wrong results. For example, 
equation (1) shows an equation causing 
numerical error: 
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rounding towards –infinity, +infinity for each xl, 
xu respectively, guaranties that the resulting 
interval includes the true result. For example, the 
interval [1.56, 2.34] is outward rounded to two 
decimal digits resulting the interval [1.5, 2.4].  
In the literature,  interval arithmetic (and interval 
analysis) was firstly defined by Ramon E. 
Moore[1].  Some software packages are 
developed to support interval arithmetic and can 
provide the method of bounding the true result 
like C-XSC [1], PROFL [2], INTLIB [3] and 
recently, a built-in support is added for interval 
arithmetic to FORTRAN [4], but yet, enough 
performance is not achieved yet. The 
performance is considered acceptable if it does 
not exceed a factor of five to conventional real-
world arithmetic [5]. Unfortunately software 
implementations achieve a factor of 20 to 100 of 
a conventional floating point arithmetic. 
 
Regarding to inefficiency in achieving 
performance in determining the suitable case and 
rounding process by software implementations 
for  interval arithmetic, it became necessary to 
search for hardware structures that can 
automatically select the interval endpoints and 
serve the rounding process correctly.  
 
In recent years, to improve the performance of 
interval arithmetic, some hardware designs are 
proposed [6-10]. In [2], the serial and parallel 
interval multipliers that lead to a considerable 
increase in performance were presented.  Many 
hardware structures, that improve interval 
multiplication and handle efficiently rounding of 
endpoints are implemented. An optimization of 
delay is achieved but with a slight overhead in 
area either by improving existing multiplication 
structures by adding some registers, multiplexers 
and some sort of comparing units, with some 
change in the previous logic or implementing 
new ones with their own hardware structure and 
logic. Selecting the right case by examining the 
sign bits in hardware units is based on the same 
method used in software. 
 
In this paper, a fast interval multiplier is 
designed.  It is the improved design of the 
parallel interval multiplier given in[2]. Section 2 
describes an interval multiplication analytically.    
In Section 3, the new interval multiplier is 
presented.  In Section 4, we give area and delay 
estimates for the new design and compare it to 
the previous interval multipliers in [2].  Section 5 
presents the conclusions.  

2. INTERVAL MULTIPLICATION 
Multiplication could be performed on computers 
that support either single or double precision. 
The result have to be outward rounded towards –
infinity, +infinity for both bounds. If double 
length is supported, the interval product can be 
computed as:  
 
Z=[▼(min(xl*yl, xl*yu, xu*yl, xu*yu)), 
      ▲(max (xl*yl, xl*yu, xu*yl, xu*yu))]       (2) 
 
This process needs four multiplications(for the 
endpoint products) and four comparisons (to get 
min and max values) to obtain the result.  
If double length is not supported, the interval 
product Z = X * Y can be computed as: 
 
Z=[min(▼(xl*yl), rd(xl*yu),▼ (xu*yl),   
rd(xu*yu)), max(▲ (xl*yl), ▲ (xl*yu),           (3)          
▲ (xu*yl), ▲ (xu * yu))].                
 
where▼and ▲ represent rounding downward 
toward negative infinity and upward toward 
positive infinity, respectively.   
 
This also needs eight multiplications for the 
rounded products and six comparisons to obtain 
the min and max values [11]. In order to reduce 
the number of multiplications, the sign bit of the 
endpoint xl, xu, yl, yu can be examined in 
advance to determine the product of the right 
result of zl, zu. 
 
The sign bits indicate weather multiplied 
intervals X, Y are greater than, less than or 
contain zero, so, 9 cases for multiplication can be 
classified. The first eight cases need only two 
rounded multiplications to determine zl, zu, 
where the last case when both intervals X, Y 
contain zero needs four rounded multiplications 
and two comparisons to determine zl, zu.  
 
All these procedures suffer from conditional 
statements for achieving the right choice of 
endpoints to be multiplied. The algorithm above 
declares the conditional branches needed to 
perform multiplication. which greatly increases 
the time. Rounding the results downward 
towards –infinity and upward towards +infinity 
in computation of results for each case  decrease 
performance of multiplication. 
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3.   THE INTERVAL MULTIPLIER 
DESIGN 

 
Shown in Table 1, the control bits Zc, tx1, tx2, 
ty1, ty2 select the endpoints to be multiplied at 
each multiplier. Fig. 1 shows the block diagram 
of the new design for the parallel interval 
multiplier that uses 4 IEEE standart multipliers, 2 
min/max units(fig.2), six registers, 6 multiplexers 
for choosing the inputs to be multiplied and 2 
multiplexers for selecting the results from the 
multipliers or the min/max units. 

 
In this paper, the method in [2], which provides a 
considerable increase in performance, is 
employed for deciding to the interval endpoints 
and rounding the results. To produce the 
multiplication results zl and zu  are determined 
the interval  endpoints {xl, xu, yl, yu} to be 
multiplied together by examining their sign bits 
(Sxl, Sxu, Syl, Syu), as shown in Table 1. 
 

let mn = min(▼(xl * yu),  ▼ (xu * yl)), mx = max(▼ (xl * yl),  ▼ (xu * yu)),  
if (xl >= 0) { if (yl >= 0) { zl = ▼ (xl * yl); zu = ▲ (xu * yu) ; } 
else  if (yu < 0){ zl = ▼ (xu * yl); zu = ▲ (xl * yu) 
else { zl = ▼ (xu * yl) ;  zu = ▲ (xu * yu) ; }   
else if (xu < 0){ if (yl >= 0){ zl = ▼ (xl * yu); zu = ▲ (xu * yl) ;} 
else if (yu < 0) { zl =▼ (xu * yu) ; zu = ▲ (xl * yl) ; } 
else { zl = ▼ (xl * yu) ; zu =▲ (xl * yl); }  
else { if (yl >= 0) { zl = ▼ (xl * yu) ; zu = ▲ (xu * yu) ;} 
else if (yu < 0) { zl = ▼ (xu * yl) ; zu = ▲ (xl * yl) ;}  
else {a = xl * yu ; b = xu * yl ; zl = min(a, b) ; c = xl * yl ; d = xu * yu ; zu = max(c, d) ;  

 
Table 1:  All Cases for  Interval  Multiplication 

Case Interval X Interval Y Sxl Sxu Syl Syu Z = X * Y zc tx1 tx2 ty1 ty2 

1 X>[0,0] Y>[0,0] 0 0 0 0 [ xl*yl, xu*yu ] 0 1 1 1 1 

2 X>[0,0] Y<[0,0] 0 0 1 1 [ xu*yl, xl*yu ] 0 0 0 1 1 

3 X<[0,0] Y>[0,0] 1 1 0 0 [ xl*yu, xu*yl ] 0 1 1 0 0 

4 X<[0,0] Y<.0,0] 1 1 1 1 [ xu*yu, xl*yl ] 0 0 0 0 0 

5 0 € X Y>[0,0] 1 0 0 0 [ xl*yu, xu*yu ] 0 1 1 0 1 

6 0 € X Y<[0,0] 1 0 1 1 [ xu*yl, xl*yl ] 0 0 0 1 0 

7 X>[0,0] 0 € Y 0 0 1 0 [ xu*yl, xu*yu ] 0 0 1 1 1 

8 X<[0,0] 0 € Y 1 1 1 0 [ xl*yu, xl*yl ]  0 1 0 0 0 

9 0 € X 0 € Y 1 0 1 0 *[ mn, mx ] 1 1 1 1 1 

*mn=min(▼(xl*yu), ▼(xu*yl)), mx=max(▲(xl*yl), ▲(xu*yu)) 
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Fig.1. Proposed structure for interval parallel multiplier 

 

Table 2.  Execution steps for Case 9. 

Cycle C Action 

1 0 r1 =▼(xl*yu),   r2 = ▼(xu*yl),   r3 =▲(xl*yl),   r4 =▲(xu*yu) 

2 1 Set  zl=min( r1, r2 ) ,    Set  zu=max( r3, r4 )   

 
 

Table 3.  Performance  comparisons of interval multipliers

Performance Metrics Serial (Schulte) Parallel (Schulte) Proposed Interval Multiplier 

Cycle_count1    (Zc=0) 2 1 1 

Cycle_count2    (Zc=1) 5 3 2 

Total Logic Cells 866 1373 2516 

Chip Area (Estm.)/mm2 60 96 173 

Clock Frequency/MHz.  75.75 80.65 77.65 

 Estm. Total Delay- ns 30.8 15.15 14.31 
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Fig. 2.    Min/Max unit 

The Boolean equations for the control and 
rounding mode bits are given as follows: 

ZcSyuSxlSyltx ++= *1 ,

ZcSyuSxlSyltx ++= *2 ,

ZcSxuSylSxlty ++= *1 ,                       (4)      

ZcSxuSylSxlty ++= *2 ,          

SyuSylSxuSxlZc ***= ,                       
,  

                          
crmrm == 21 crmrm == 43  

Where, the rm1, rm2 mode bits are for rounding 
towards – infinity and the rm3, rm4 are for 
rounding towards + infinity, also, c is for the 
clock cycle.  
 
If X and Y do not both contain zero (the first 8 
cases), a single cycle is required to compute the 
lower and upper interval endpoints of the 
product.  On the other hand, if X and Y both 
contain zero (Case 9), only two cycles are 
sufficient to perform the interval computation, as 
shown in Table 2.  On Case 9, at the first cycle, 
productions of the endpoints are done in parallel 
with the 4 multipliers. At the second cycle, the 
1st min/max unit determine the minimum value 
of the 1st and 2nd multiplier's output according to 
the min1 control signal, while the 2nd min/max 
unit determines the maximum value of the 3rd 
and 4th multipliers output due to min2, the output 
registers are loaded with products required for 
the lower and upper endpoints comprising the 
result.  Table 2 shows the steps for the parallel 
interval multiplier for Case 9. 
 
The lower bound zl  is selected from the 
multipliers' outputs r1, r2, according to the 
control bit min1. When min1=1, if r1< r2, then 
zl=r1 else zl = r2. The upper bound zu is selected 
from the multipliers' outputs r3, r4, according to 

the control bit min2. When min2=1, if r3 < r4, 
then zu = r3 else zl = r4. 
 
4. COMPARISON 
 
The all architectures and behaviors of serial, 
parallel and proposed interval multipliers are 
simulated for functionality at the logic level 
using using Model-Sim and synthesized for 
obtaining total logic cells, estimated chip areas, 
clock cycle frequency and total operation delays 
using the Quartus VHDL (Version II).  Here, the 
total operation delay is computed as follows: 
 
Estimated Total Delay= 
[Cycle_count1*(8/9)+Cycle_count2*(1/9)]   (5) 
/Clock_frequency   
 
As shown in Fig.3, compared to the serial and 
parallel interval multipliers our design requires 
roughly 190 and 80 percent more area, 
respectively. Also, the new interval multiplier 
has cycle time approximately 3 percent shorter 
than the serial, but 3 percent longer than the 
parallel multiplier. Fortunately, with respect to 
the estimated total delay, our interval multiplier 
is 6 and 105 percent faster than the parallel and 
the serial multipliers, respectively.  The total 
results obtained by VHDL simulations are given 
in Table 3. 

 

 
Fig.3.   Relative compares of the interval 
multipliers with respect to the number of total 
logic gates 
 
5.  CONCLUSIONS 
 
This paper proposes a hardware design for the 
interval multiplier. Serial interval multiplier 
consumes 2 cycles for executing cases 1-8 and 5 
cycles for case 9 to handle interval multiplica- 
tion, where parallel interval multiplier needs just 
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one cycle to execute the cases 1-8 and 3 cycles 
for case 9. The proposed parallel multiplier needs 
just 2 cycles for case 9, with a cycle not to be 
lost and only 1 cycle for cases 1-8. 
 
According to total logic elements, the serial 
interval multiplier is more than conventional 
floating point multiplier of 1.35 where the 
parallel is of 2.16 and the proposed interval 
multiplier is, the higher, of 3.95. but improved 
parallel is nearly like conventional usage with 
only 1.083, where parallel is 1.16 and the serial 
is 2.25. 
 
These estimations show that the new design 
gives a little more speedup (roughly 6 percent), 
but, 80 percent more area than the parallel 
interval multiplier referenced in [2].  Therefore, 
the proposed interval multiplier can be used for 
the need of fast interval computing.  By adjusting 
the selection bits of the multiplexers (tx1, tx2, ty1, 
ty2 and zc), the new interval multiplier can also 
perform the interval structures chosen to 
compare in this work.  
 
The next step, besides the search for efficient 
software implementations able to support 
interval arithmetic within permitable ranges of 
delay, is to work for monitoring other arithmetic 
functions like the exponent.  
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