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ABSTRACT 

 
As the importance of information increases, many various methods are being used for  keeping this 
information and trasfering confidently. One of these methods is cryptographic algorithms. These 
algorithms have to be adequately powerful.Thus far,various algorithms have been proposed and used. 
In this paper,a survey of elliptic curve cryptography,which is thought as the best method for future 
applicatons, has been studied 
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1. INTRODUCTION 2. ELLIPTIC CURVES  
 
The vast majority of the products and standarts 
that use public-key cryptography for encryption 
and digital signatures use RSA. The bit length 
for secure RSA usage has increased over recent 
years, and this has put  a heavier precessing load 
on applications using RSA. This burden has 
ramifications, especially for electronic commerce 
sites that conduct large numbers of secure 
transactions. Recently, a competing system has 
begun to challenge RSA: elliptic curve 
cryptography(ECC). In the mid-1980s, Miller 
and Koblitz introduced elliptic curves into 
cryptography[1] , and Lenstra showed how to use 
elliptic curves to factor integers. Since that time, 
elliptic curves have played an increasingly 
important role in many cryptographic situations. 
One of the advantages is that they seem to offer a 
level of security comparable to classical 
cryptosystems that use much larger key sizes.  
Already, ECC is showing up in standardization 
efforts, including the IEEE P1363 Standard for 
Public -Key Cryptography[1,2]. 

 
An Elliptic Curve E is the graph of an equation 
E: y2 = x3 + ax + b  , where a, b are in whatever 
is the appropriate set(rational numbers, complex 
numbers, integers mod n, etc.), together with a 
special point O called the point at infinity.  
Elliptic curves are not ellipses. They are so 
named because they are described by cubic 
equations, similar to those used for calculating 
the circumference of an ellipse. In general, cubic 
equations for elliptic curves take the form E: y2 + 
a1xy + a3y = x3 + a2x2 + a4x + a6    where a1, a3, 
a2, a4 and a6  are real numbers that satisfy some 
simple conditions. If we are working mod p, 
where p>3 is prime, or if we are working with 
real, rational, or complex numbers, then simple 
changes of variables transform the present 
equation into the form y2 = x3 + ax + b. 
However, if we are working mod 2 or mod 3, or 
with a finite field of characteristic 2 or 3(that is 
1+1=0 or 1+1+1=0), then we need to use the 
more general form. We begin by looking briefly 
at elliptic curves defined over the real numbers, 
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because some of the basic concepts are easier to 
motivate in this setting[3]. 
 
2.1 Elliptic Curves Groups over the Reals 
Let a, b∈  be constants such that  

 A non-singular elliptic  
curve is the set E of solutions (x,y)∈ x

ℜ
.0b2

  

27a4 3 ≠+
ℜ ℜ  to 

the equation;  y2 = x3 + ax + b, together with a 
special point O called the point at infinity. It can 
be shown that the condition 4  
is necessary and sufficient to ensure that the 
equation x

0b27a 3 + 2 ≠

3 + ax + b=0 has three distinct 
roots(which may be real or complex numbers). If 

, then the corresponding 
elliptic curve is called a singular elliptic 
curve[3]. 

0b27a4 23 =+

 
2.1.1 Elliptic Curve Addition 
Elliptic curve groups are additive groups; that is, 
their basic function is addition. Suppose E is a 
non-singular elliptic curve and P,Q∈E, where 
P=(x 1 ,y ) and Q=(x ,y 2 ). The negative of a 

point P =(x 1 ,y 1 ) is its reflection in the x-axis: 

the point -P is (x ,-y 1 ). Notice that for each 
point P on an elliptic curve, the point -P is also 
on the curve[3].  

1 2

1

 
i. Adding distinct points P and Q 
Suppose that P and Q are two distinct points on 
an elliptic curve, and the P is not -Q. To add the 
points P and Q, a line(L) is drawn through the 
two points. This line will intersect the elliptic 
curve in exactly one more point, call -R. The 
point -R is reflected in the x-axis to the point R. 
The law for addition in an elliptic curve group is 
P + Q = R where 
λ= (y -y 1 ) / (x - x 1 ) ,   x  =2 2 3 λ 2 - x 1 - x  

and y = ( x - x
2

3 λ 1 3 )- y 1  Note that  is the 
slope of the line through P and Q[3].  
 

λ

ii. Adding the points P and –P 
The line through P and -P is a vertical line which 
does not intersect the elliptic curve at a third 
point; thus the points P and -P cannot be added 
as previously. It is for this reason that the elliptic 
curve group includes the point at infinity O. By 
definition, P + (-P) = O. As a result of this 
equation, P + O = P in the elliptic curve group . 
O is called the additive identity of the elliptic 

curve group; all elliptic curves have an additive 
identity[3].  
 
iii. Doubling the point P  
To add a point P to itself, a tangent line to the 
curve is drawn at the point P. If y  is not 0, then 
the tangent line intersects the elliptic curve at 
exactly one other point, -R. -R is reflected in the 
x-axis to R. This operation is called doubling the 
point P; the law for doubling a point on an 
elliptic curve group is defined by  P + P = 2P = 
R. The slope of L can be computed using implicit 
differentiation of the  equation of  

1

E:   2dy ax3
dy
dx 2 += .  Substituting x=x , 

y=y 1 , we see that the slope of the tangent is  

1

λ=(3x )/(2y ),   x  =a2
1 + 1 3 λ 2 - x - x  and 

y =
1 2

3 λ ( x 1 - x 3 )- y[3] 
 
iv. Doubling the point P if y  = 0 1

If a point P is such that y =0, then the tangent 
line to the elliptic curve at P is vertical and does 
not intersect the elliptic curve at any other point.  
By definition, 2P = O for such a point P. If one 
wanted to find 3P in this situation, one can add 
2P + P. This becomes P + O = P Thus 3P = P. 3P 
= P, 4P = O, 5P = P, 6P = O, 7P = P, etc.  

1

 
 
  
 
 
 
 

 
 
 
 
 
 
 
 

Fig.1. Example of  EC Addition 
 
At this point the following properties of the 
addition operation, as defined above, should be 
clear: 
• addition is closed on the set E, 
• addition is associative, 
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Finally define  P+O=O+P=P for all P∈E. Note 
that the addition of points on an elliptic curve 
over Z  does not have the nice geometric 
interpretation that it does on an elliptic curve 
over the reals. However; the same formulas can 
be used to define addition, and the resulting pair 
(E,+) still forms an abelian group. 

p

• addition is commutative 
• O is an identity with respect to addition, and 
• Evey point on E has an inverse with respect 

to addition. 
In order to show that (E,+) is an abelian group. 
 
A disadvantage of using the real numbers for 
cryptography, is that it is very hard to store them 
precisely in computer memory, and  to predict 
how much storage we will need for them. This 
problem can be solved by using finete fields. i.e. 
fields with a finite number of elements. Since the 
number of elements is finite, we can find a 
unique representation for each of them, which 
allows us to store and handle the elements in a 
manageable way. Two types of finite fields are 
popular for use in Elliptic Curve Cryptography: 
fields of the form GF(p), with p prime, and fields 
of the form GF(2 ), with n a positive integer. 
GF(p) is the same things as Z [3,4].  

n

p

For example, let p=23 and consider the elliptic 
curve E: y2 ≡ x3 + x + 4 defined over Z (a=1 

and b=4). Note that (mod 23)= 
4+432=436(mod 23)= 22

23
23 b27a4 +

≠ 0,which satisfies the 
condition for an elliptic group mod 23.  For the 
elliptic group, we are only interested in the 
nonnegative integers in the quadrant form (0,0) 
to (p,p) that satisfy the equation mod p. Table 1 
lists the points(othet than O) that are part of 
Z (1,4). In general, the list is created in the 
following manner: 

23

 
• For each x such that 0≤ x<p, calculate x3 + 

ax + b(mod p) 
 
2.2. Elliptic Curves Groups over Finite 
Fields  • For each result from the previous step, 

determine if it has a square root mod p. If 
not, there are no points in Z (a,b) with this 
value of x. If so, there will be two values of 
y that satisfy the square root 
operation(unless the value is the single y 
value of 0). These (x,y) values are points in 
Z (a,b) .  

p

p

Let p>3 be prime. Elliptic curves over Z  can 
be defined exactly as they were over the reals 
(and the addition operation is also defined in an 
identical fashion) provided that all operatşons 
over  are replaced by analogous operations in 
Z . The elliptic curve y

p

ℜ
p

2 ≡ x3 + ax + b(mod p),  

where a,b∈  Z p  are constants such that  

(mod p)23 b27a4 + ≠ 0, together with a 
special point O called the point at infinity.  The 
addition operation on E is defined as follows 
(where all arithmetic operations are performed in 
Z ). p

 
For a given x, we can test to see if z= x3 + x + 4 
mod23 is an quadratic residue by applying 
Euler's criterion. There is an explicit formula to 
compute square roots of quadratic residues 
modulo p for primes p≡3(mod 4). Applying this 
formula, we have that the square roots of a 
quadratic residue z are ± z = 

[3]. The 
results of these computations are tabulated in 
Table 1. 

p41p mod/)( +

23z23z 64123 modmod/)( ±=± +

Suppose P=(x ,y ) and Q=(x ,y ) are points 

on E. If  x = x 1  and y = - y , then P+Q=O; 

otherwise P+Q=(x ,y ), where x

1 1 2 2

2 2 1

3 3 3  =λ  -x 1 -

x ,  y =λ (x 1 -x

2

2 3 3 )-y  and P Q  = (y -

y ) / (x - x 1 ),  P=Q⇒
1 ≠ ⇒ λ 2

1 2 λ=(3x )/(2y 1 ).  a2
1 +
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Table 1. Points on the elliptic curve y2 ≡ x3 + x + 4 
x x +x+4  mod 23 3 Quadratic residue? y 
0 4 yes 2,21 
1 6 yes 11,12 
2 14 no  
3 11 no  
4 3 yes 7,16 
5 19 no  
6 19 no  
7 9 yes 3,20 
8 18 yes 8,15 
9 6 yes 11,12 

10 2 yes 5,18 
11 12 yes 9,14 
12 19 no  
13 6 yes 11,12 
14 2 yes 5,18 
15 13 yes 6,17 
16 22 no  
17 12 yes 9,14 
18 12 yes 9,14 
19 5 No  
20 20 No  
21 17 No  
22 2 Yes 5,18 

 
 

 
Example 1:   
1-) Let P=(4,7) and Q=(13,11). Then 
P+Q=(x ,y ) is computed as follows: 3 3

λ ≡ (11-7)/(13-4) 3(mod 23)  ≡
x =3 -4-13=-8≡15 (mod 23), and  3

2

y =3(4-15)-7=-40 6 (mod 23).  3 ≡
P+Q=(15,6). 
2-) Let P=(4,7). Then 2P=P+P=(x ,y ) is 
computed as follows: 

(3(4 )+1)/14 15(mod 23) 

3 3

λ ≡ 2 ≡
x =15 -8=217 10 (mod 23), and  3

2 ≡
y =15(4-10)-7=-97 18 (mod 23).  3 ≡
Hence 2P=(10,18). 
 
E has 29 points on it. Since any group of prime 
order is cyclic, it follows that E is isomorphic to 
Z , and any point other than the point at 
infinity is a generator of E. Suppose we take the 
generator α =(4,7). Then we can compute the  

29

 

 
"powers" of α (which we will write as multiples 
of α , since the group operation is additive). 
2α =(10,18). The next multiple would be 
3α =2α +α =(10,18)+(4,7)=(13,11). 
Continuing in this fashion, the remaining 
multiples can be computed to be the following: 
 
α =(4,7)    2α =(10,18)   3 =(13,11)   
4

α
α =(15,6) 5α =(8,8) 6 =(1,11)    

7
α

α =(7,20)  8α =(18,9)   9 =(9,12)     
10

α
α =(11,9)    11α =(17,9)     12 =(14,18)   

13
α

α =(0,2) 14α =(22,5) 15 =(22,18) 
16

α
α =(0,21)  17α =(14,5)   18 =(17,14) 

19
α

α =(11,14) 20α =(9,11)  21 =(18,14)  
22

α
α =(7,3)  23α =(1,12)   24 =(8,15)   

25
α

α =(15,17) 26α =(13,12)   27 =(10,5)       
28

α
α =(4,16)     29α =O          

Hence, as we already knew, =(4,7) is indeed a 
primitive element. 

α

 
2.2.1 Basic Facts 
GROUP ORDER: Let E be an elliptic curve over 
a finete field Zp. More precisely, a well-known 
theorem due to Hasse asserts that the number of 
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points on E, which we denote by #E, satisfies the 
following inequality : 

p+1-2 p ≤ #E p+1+2≤ p  .  
In other words, the order of an elliptic curve 
E(Zp) is roughly equal to the size p of the 
underlying field. If p is large  , say around 10 , 
it is infeasible to count the points on an elliptic 
curve by listing them.  

20

 
More sophisticated algorithms have been 
developed by Schoof, Atkin, Elkies, and others 
to deal with this problem. Now, given that we 
can compute #E, we further want to find a cyclic 
subgroup of E in which the discrete log problem 
is intractible. So we would like to know 
something about the structure of the group E. 
The following definition gives a considerable 
amount of information on the group structure of 
E[3]. 
 
GROUP STRUCTURE: Let E be an elliptic 
curve defined over Zp, where p is prime, p > 3. 
Then there exist integers n1 and n2 such that E is 
isomorphic to Z xZ . Further; n | n 1  and 

n | (p - 1). Hence, if the integers n 1  and n  can 
be computed, then we know that E has a cyclic 
subgroup isomorphic to Z , that can potentially 
be used as a setting for an ElGamal 
Cryptosystem. Note that if n =1, then E is a 
cyclic group. Also, if #E is a prime, or the 
product of distinct primes, then E must be a 
cyclic groupindexcyclic group. For example; 
consider the elliptic curve E(Z )  defined 

above. Since #E(Z )=29, which is prime, 

E(Z ) is cyclic and any point other than O is a 

generator of E(Z ).  

1n 2n 2

2 2

n

2

23

23

23

23

 
For example, =(4,7) is a generator as shown in 
example 1. The Shanks and Pohlig-Hellman 
algorithms apply to the elliptic curve logarithm 
problem, but there is no known adaptation of the 
index calculus method to elliptic curves. 
However, there is a method of exploiting an 
explicit isomorphism between elliptic curves and 
finite fields that leads to efficient algorithms for 
certain classes of elliptic curves. This technique, 
due to Menezes, Okamoto and Vanstone, can be 
applied to some particular examples within a 
special class of elliptic curves called 

supersingular curves that were suggested for use 
in cryptosystems[5,6]. If the supersingular curves 
are avoided, however, then it appears that an 
elliptic curve having a cyclic subgroup of size 
2  will provide a secure setting for a 
cryptosystem, provided that the order of the 
subgroup is divisible by at least one large prime 
factor (again, to guard against a Pohlig-Hellman 
attack). 

α

160

 
2.3. Elliptic Curve Groups over GF(2 )  n

Elliptic Curve groups over F have a finite 
number of points, and their arithmetic involves 
no round off error. This combined with the 
binary nature of the field, F  arithmetic can be 
performed very efficiently by a computer. An 
elliptic curve E over F  is defined by an 
equation of the form  y

n2

n2

n2
2 + xy = x3 + ax2 + b , 

where a,b ∈  F , and bn2
≠ 0. The set E(F ) 

consists of all points (x,y), x∈F , y∈F ,  
together with a special point O called the point at 
infinity[7,8]. 

n2

n2 n2

 
Example 2 : As a very small example, consider 
the field F24, defined by using polynomial 
representation with the irreducible polynomial 
f(x) = x4 + x + 1.   
The element g = (0010) is a generator for the 
field.  
The powers of g are: 
g0=(0001)  g1 = (0010)  g2 = (0100) 
g3 = (1000)  g4 = (0011)  g5 = (0110) 
g6 = (1100)  g7 = (1011)  g8 = (0101) 
g9 = (1010)  g10 = (0111)  g11 = (1110) 
g12 = (1111)     g13 = (1101)    g14 = (1001) 
g15=(0001)  
 
In a true cryptographic application, the parameter 
m must be large enough to preclude the efficient 
generation of such a table otherwise the 
cryptosystem can be broken. In today's practice, 
n = 160 is a suitable choice. The use of generator 
notation (ge) rather than bit string notation, as 
used in the following example. Also, using 
generator notation allows multiplication without 
reference to the irreducible polynomial  f(x) = x4 
+ x + 1.   
 
Consider the elliptic curve  
y2 + xy = x3 + g4x2 + 1.   
Here a = g4 and b = g0 =1.  
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The point (g5, g3) satisfies this equation over  
F : yn2

2+xy=x3+g4x2+1 ,  (g3)2 + g5g3 = (g5)3 + 
g4g10 + 1 g6 + g8 = g15 + g14 + 1  
(1100)+(0101)=(0001)+(1001)+(0001) 

(1001)=(1001)  

⇒

⇒
 
The fifteen points which satisfy this equation are:  
(1,g13)  (g3,g13)  (g5,g11)  (g6,g14)  (g9,g13) 
(g10,g8)  (g12,g12)  (1,g6)  (g3,g8)  (g5,g3)  
(g6,g8)  (g9,g10)   (g10,g)   (g12,0)  (0,1) 
 
ADDITION FORMULA: As with elliptic curves 
over Z , there is a chord-and-tanget rule for 

adding points on an elliptic curve E(F ) to give 
a third elliptic curve point. Together with this 
addition operation, the set of points E(F ) 
forms a group with  O serving as its identity. The 
algebraic formula for the sum of two points and 
the double of a point are the following[4]. 

p

n2

n2

  

• P+O=O+P=P for all P∈  E(F ) n2

• If P=(x,y) ∈  E(F ), then 
(x,y)+(x,x+y)=O.(The point (x,x+y) is 
denoted by -P, and is called the negative of 
P; observe that -P is indeed a point on the 
curve.) 

n2

• (Point addition) Let P=(x ,y 1 )∈  E(F ) 

and Q=(x ,y 2 )
1 n2

2 ∈  E(F ), where Pn2
±≠ Q. 

Then P+Q=(x ,y ), where x 3 =(( y + 

y )/( x 1 + x )) +( y + y )/( x + x )+ 

x + x +a   and y 3 =(( y + y )/( x + 

x ))( x + x )+ x 3 + y 1  

3 3 1

2 2
2

1 2 1 2

1 2 1 2 1

2 1 2

• (Point doubling) Let P=(x ,y )∈  E(F ), 

where P -P. Then 2P=(x 3 ,y ), where 

x =x +b/x  and y 3 = x +( x + y / x 1 ) 

x + x  

1 1 n2

≠ 3

3
2
1

2
1

2
1 1 1

3 3

 
Example 3: Consider the elliptic curve defined 
in before example 
1-) Let P=(g 6 ,g ) and Q=(g ,g ). Then 
P+Q=(x ,y ) is computed as follows: 

8 3 13

3 3

x =((g +g )/(g 6 +g )) +( g + g 13 )/( g + 

g )+ g + g +g =( g /g ) + g /g + g + 
g +g =1 

3
8 13 3 2 8 6

3 6 3 4 3 2 2 3 2 6

3 4

 
y =(g +g 13 )/(g +g )(g 6 +1)+1+ g = 

(g /g ) g + g = g 13 .  Hence  P+Q=(1, g ) 
3

8 6 3 8

3 2 13 2 13

 
2-) Let P=(g 6 ,g ). Then 2P=P+P=(x ,y ) is 
computed as follows: 

8
3 3

 
x =(g 6 ) +(1/(g 6 ) )=g + g =g     and 

y =(g 6 ) +(g + g / g 6 ) g + g = 

g +g +g 10 = g . Hence 2P=( g 10 , g ). 

3
2 2 12 3 10

3
2 6 8 10 10

12 13 8 8

 
3. ELLIPTIC CURVE 
CRYPTOSYSTEMS 
 
Elliptic curves versions exist for many 
cryptosystems, in particular those involving 
discrete logarithms. An advantage of elliptic 
curves over working with integers mod p is the 
following. In the integers, it is possible to use the 
factorization into primes(especially small 
primes) to attack the discrete logarithm problem. 
More specifically, the ECC relies upon the 
difficulty of the Elliptic Curve Discrete 
Logarithm Problem (ECDLP). Recall that we 
examined two geometrically defined operations 
over certain elliptic curve groups. These two 
operations were point addition and point 
doubling. By selecting a point in a elliptic curve 
group, one can double it to obtain the point 2P. 
After that, one can add the point P to the point 2P 
to obtain the point 3P. The determination of a 
point nP in this manner is referred to as Scalar 
Multiplication of a point. The ECDLP is based 
upon the interactability of scalar multiplication 
products. Specifically, consider the operation 
called "scalar multiplication" under additive 
notation: that is, computing kP by adding 
together k copies of the point P. Using 
multiplicative notation, this operation consists of 
multiplying together k copies of the point P, 
yielding the point P*P*P*P&.*P = Pk[3,9]. 
In the multiplicative group Zp*, the discrete 
logarithm problem is: given elements r and q of 
the group, and a prime p, find a number k such 
that r = qk mod p.  
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If the elliptic curve groups is described using 
multiplicative notation, then the elliptic curve 
discrete logarithm problem is: given points P and 
Q in the group, find a number that Pk = Q; k is 
called the discrete logarithm of Q to the base P. 
When the elliptic curve group is described using 
additive notation, the elliptic curve discrete 
logarithm problem is: given points P and Q in the 
group,  find a number k such that Pk = Q  
 
Example 4: In the elliptic curve group defined 
by y2=x3+9x+17 over F23, What is the discrete 
logarithm k of Q=(4,5) to the base P=(16,5) ? 
 
One  way to find k is to compute multiples of P 
until Q is found.  
The first few multiples of P are: P = (16,5) 2P = 
(20,20) 3P = (14,14) 4P = (19,20) 5P = (13,10) 
6P = (7,3) 7P = (8,7) 8P = (12,17) 9P = (4,5) 
Since 9P = (4,5) = Q, the discrete logarithm of Q 
to the base P is k=9.  
 In a real application, k would be large enough 
such that it would be infeasible to determine k in 
this manner. 
 
In the following subsections, three elliptic curve 
versions of classical algorithms are 
described[3,4]. 
 
3.1. An Elliptic Curve ElGamal 
Cryptosystem 
ElGamal Cryptosystem : Alice wants to send a 
message x to Bob, so Bob chooses a large prime 
p and an integer α  mod p. He also chooses a 
secret integer a and computes 

  ).(mod paα=β
Bob makes p, ,  public and keeps a secret. 

Alice chooses a random k and computes y  and 

y , where  y 1  and y   (mod p). 

She sends  (y 1  ,y ) to Bob, who then decrypts 

by calculating x y y (mod p).   

α β

1

2
kα≡ 2

kxβ≡

2

≡ 2 1
a−

 
The elliptic curve version : Bob chooses an 
elliptic curve E (mod p), where p is a large 
prime. He chooses a point on E and a secret 
integer a. He computesβ =a

α
α  

(= + +...+ ). The points α  and  β  are 
made public, while a is kept secret. Alice 
expresses her message as a point x  on E. She 
chooses a random integer k, computes y =k

α α α

1 α  

and y =x+k2 β , and sends the pair y 1  ,y  to 

Bob. Bob decrypts by calculating  x=y - ay 1   
2

2
 
Example 5:   E: y2 ≡ x3 + x + 4 over Z . 
Suppose that  

23

α =(4,7) and Bob's private key is 
3, so  β =3α =(13,11). Thus the encryption 

operation is e (x,k)=(k(4,7),x+k(13,11)), where 
x

k

∈E and 0≤ k≤ 28, and the decryption 
operation is d ( y , y )= y - 3y 1 .  Suppose 
that Alice wishes to encrypt the plaintext 
x=(1,11)(which is a point on E). If she chooses 
the random value k=5,  then she will compute 
y 1 =5(4,7)=(8,8) and   y = (1,11)+ 5(13,11)= 
(1,11)+ (22,18)= (18,14).  

k 1 2 2

2

 
Hence, y=((8,8),(18,14)). Now, if Bob receives 
the ciphertext y, he decrypts it as follows:  
 
x = (18,14) - 3(8,8) = (18,14) - (22,18) = 
(18,14) + (22,5) = (1,11).  
 
Hence, the decryption yields the correct 
plaintext. There are some practical difficulties in 
implementing an ElGamal Cryptosystem on an 
elliptic curve. This system, when implemented in 
Z  (or in GF(p n ) with n > 1) has a message 
expansion factor of two, An elliptic curve 
implementation has a message expansion factor 
of (about) four. This happens since there are 
approximately p plaintexts, but each ciphertext 
consists of four field elements. A more serious 
problem is that the plaintext space consists of the 
points on the curve E, and there is no convenient 
method known of deterministically generating 
points on E. 

p

 
3.2. Elliptic Curve Menezes-Vanstone 
Cryptosystem 
A more efficient variation has been found by 
Menezes and Vanstone. In this variation, the 
elliptic curve is used for “masking,” and 
plaintexts and ciphertexts are allowed to be 
arbitrary ordered pairs of (nonzero) field 
elements (i.e., they are not required to be points 
on E). This yields a message expansion factor of 
two, the same as in the original ElGamal 
Cryptosystem.  
 
The Menezes-Vanstone Cryptosystem: Let E be 
an elliptic curve defined over iz, (p > 3 prime) 
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such that E contains a cyclic subgroup H in 
which the discrete log problem is intractible. 
P=Z * xZ * ,C=ExZ * x Z * , and define 

K={(E, ,a,β ): =a
p p p p

α β α }, where , E. The 
values ,  and p are public, and a is secret. For 
K=(E, ,a,β )  for a (secret) random number 

k∈Z ,  and for x=(x 1 , x )  Z *
p xZ ,  

define e (x,k)=(y , y 1 , y ), where    y =k

α∈
α
α

||H 2 ∈ *
p

k 0 2 0 α ,  

(c ,c )=kβ , 1 2

y = c 1  x 1  mod p,   and y = c  x mod p.     1 2 2 2
 
For a ciphertext y =(y , y , y ), define  

d (y)=( y c mod p, y 2 c mod p),   where  a 

y =(c 1 ,c ). 

0 1 2

k 1
1

1
− 1

2
−

0 2

 
If we return to the curve  y2 x≡ 3 + x + 4 over 
Z , we see that the Menezes - Vanstone 
Cryptosystem allows 20x20=400 plaintexts, as 
compared 29 in the original system.  

23

 
Example 6: As in the previous example, suppose 
that  α =(4,7) and Bob's secret "exponent" is 3, 
so  =3α =(13,11).   β
Suppose  Alice wants  to encrypt the plaintext 
x=(9,1) (note that x is not a point on E), and she 
chooses the random value k=5.  First, she 
computes y 0 =k =5(4,7)=(8,8)  and 

k =5(13,11)=(22,18), so c =22 and c =18.  

Next, she calculates y 1 =c 1 x  mod p=22x9 mod 

23=14,   and y =c x mod p=18x1 mod23 = 
18.  

α
β 1 2

1

2 2 2

The ciphertext she sends to Bob is y = 
(y 0 ,y 1 ,y ) =((8,8),14,18). When Bob receives 

the ciphertext y, he first computes (c 1 ,c )= a 

y =3(8,8)=(22,18), and then 

x=(y c modp,y c modp)=(14x22 mod23,

18x18 mod23)=(14x22mod23, 18x9mod23 
=(9,1).     

2

2

0

1
1

1
−

2
1

2
− 1−

1−

Hence, the decryption yields the correct 
plaintext. 
 
 
 

3.3. Elliptic Curve Diffie-Hellman Key 
Exchange 
Diffie-Hellman Key Exchange: Alice and Bob 
want to establish a key  for communicating. The 
Diffie-Hellman scheme for accomplishing this is 
as follows: 
• Either Alice or Bob selects a large, secure 

prime number p and a primitive root   
(mod p). Both p and  

α
α can be made public. 

• Alice chooses a secret random x with 
1≤ x≤ p-2, and Bob selects a secret random 
y with 1≤ y≤ p-2. 

• Alice sends  (mod p) to Bob, and Bob 
sends  (mod p) to Alice. 

xα
yα

• Using the messages that they each have 
received, they can each calculate the session 
key K. Alice calculates K by 
K , and Bob calculates 

K by K . 

)(mod)( pxyα≡
)(mod)( pyxα≡

 
Elliptic Curve Diffie-Hellman Key Exchange: 
Alice and Bob want to exchange a key. In order 
to do so, they agree on a public basepoint  on 
an elliptic curve y

α
2 ≡ x3 + ax + b(mod p). Let's 

choose p=23 and a=1 an  α =(4,7). This gives us 
b=4.  Alice chooses N  randomly and Bob 

chooses N  randomly. Let's suppose N =12 

and N =5. They keep these private to 

themselves but publish N

A

B A

B

A α  and N .  B α
In our case, we have N =(14,18)  and 

N
A α

B α =(8,8). Alice now takes N  and 

multiplies by  N  to get the key: N ( 

N

B α

A A

B α )=12(8,8)=(10,18) Similarly, Bob takes 

N A α  and multiplies by N  to get the key: N  

(N
B B

A α )=5(14,18)=(10,18). Notice that they 
have the same key. 
 
3.4. Elliptic Curve Digital Signature 
Algorithm 
In 2000, the Elliptic Curve Digital Signature 
Algorithm(ECDSA) was approved as FIPS 186-
2. Let p be a prime or a power of two, and let E 
be an elliptic curve defined over Z .  p

Let α  be a point on E having prime order q, 
such that the Discrete Logarithm problem in 
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< >  is infeasible. Let P={0,1}* ,  α =Z*
q x 

Z * ,      and   define  K={(p, q, E, α , m, 

α

q β ):  

=mα },   where  0β .1qm −≤≤  

  

Ta

The values p, q, E,  and α β  are  the public key, 
and m is the private key. For K=(p, q, E, α , m, 

), and for a (secret) random number k, 1β ≤  k 

 q-1, define sig≤ ),,(),( srkxK =         
 where   k =(u,v), r = u mod q  and   α
s = k  .mod))((1− qmrx1SHA +−
(If either r = 0 or s = 0 , a new random value of k 
should be chosen.)   
 
For x∈{0,1}*  and r, s∈  Z ,  verification is 
done by performing the following computations: 

*
q

qsw 1 mod−= , qx1wSHAi mod)(−= , 
, qwrj mod= β+α= jivu ),( ,  

.mod)),(,( rqutruesrxverK =⇔=  
 
Example 7:  We will base our example on the 
same elliptic curve that was used previous 
example, namely, E: y2 ≡ x3 + x + 4 over Z . 
The parameters of the signature scheme are 
p=23, q=29, Suppose that  =(4,7),  and Bob's 
private key is m=3, so  

23

α
β =3 =(13,11).  α

 
Suppose we have a message x with SHA-1(x)=4, 
and Alice wants to sign the message x using the 
random value k = 5. She will compute (u,v) = 
5(4,7) = (8,8),    r = u mod 29 = 8,  and  s = 
5 . Therefore (8, 
23) is the signature. 

23298x341 =+− mod)(

 
Bob verifies the signature by performing the 
following computations:   
w = ,  242923 1 =− mod

,mod 9294x24i ==   
18298x24j == mod , 

),,(),( 88189vu =β+α=   
 .mod r829u ==

Hence, the signature is verified. 
 
 
 
 
 

4. SECURITY OF ELLIPTIC 
CURVE CRYPTOGRAPHY 
 
Because of the apparent difficulty of the ECDLP, 
highly secure systems can be designed that 
require much smaller key sizes than RSA or 
DSA in order to achieve comparable levels of 
security. ECC demands less resources. On the 
server, no particular performance need for 
switching to ECC. In the client, there are good 
reasons. Table 2 gives approximate parameter 
sizes for comparable strength elliptic curve 
systems and RSA. Table 3 gives the key size 
estimate values of RSA and ECC. This is based 
on current best techniques for solving the 
ECDLP and factorising large integers. 
Consequently, using elliptic curves, we can 
define highly secure systems that use much 
smaller keys compared with equivalent 
“traditional” systems, such as RSA or DSA. In 
particular, such systems require relatively modest 
computing capability and memory - ideal, for 
example, for a smart card or mobile 
phone[10,11]. 
 

Table 2. Comparative Bit-Lengths 
Elliptic curve system 

(order of base point P) 
RSA (length of 

modulus n) 
106 bits 512 bits 
132 bits 768 bits 
160 bits 1024 bits 
224 bits 2048 bits 

 
Table 3. Key Size-Estimates 

Year RSA ECC 
2002 1028 135 
2005 1149 139 
2010 1369 146 
2015 1613 154 
2020 1882 160 

 
The security of ECC depends on how difficult it 
is to determine k given kP and P. This referred to 
as the elliptic curve logarithm problem. The 
fastest known technique for taking the elliptic 
curve logarithm is known as the Pollard rho 
method. Table 4 compares the efficiency of this 
method with factoring a number into two primes 
using the general number field sieve. As can be 
seen, a considerably smaller key size can be used 
for ECC compared to RSA is. Futhermore, for 
equal key lengths, the computational effort 
required for ECC and RSA is comparable. Thus, 
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there is a computational advantage to using ECC 
with a shorter key length than a comparably 
secure RSA[10,11]. 
 
Table 4. Computational Effort for Cryptanalysis 
of Elliptic Curve Cryptography Compared to 
RSA 

Key Size MIPS-Years 
150 3.8x10 10  
205 7.1x10 18  
234 1.6x10  28

(a) Elliptic Curve Logarithms Using the Pollard 
rho Method 

Key Size MIPS-Years 
512 3x10  4

768 2x10  8

1024 3x10  11

1280 1x10  14

1536 3x10  16

2048 3x10  20

  

(b) Integer Factorization Using the General 
Number Field Sieve 

 
5. SOME PROBLEMS AND ISSUES 
WITH ELLIPTIC CURVE 
SYSTEMS 
5.1. Security 
The main issue is that the true difficulty of the 
ECDLP is not fully understood. Recent research 
has shown that some elliptic curves that were 
believed suitable for elliptic curve cryptography 
are in fact not appropriate. For example, if the 
order of the base point P is equal to the prime p 
then it turns out that the ECDLP can be solved 
efficiently[10,11].  
 
5.2. Curve Generation 
When defining an elliptic curve system, a curve 
and a base point (P) are required. Note that these 
elements are not secret (and may be the same for 
all system users). For a given curve and base 
point, it is trivial to generate public and private 
keys for users (the private key is simply a 
random integer k and the public key is the point 
kP on the curve). The difficulty of the ECDLP 
means that it is infeasible to deduce the private 
key from the public key. However, it is an 
extremely difficult problem to generate a suitable 
curve and base point in the first place. The main 
problem is how to count the number of points on 

the curve. Having done this, it is then necessary 
to select a suitable base point P, which must have 
a large order to ensure the difficulty of the 
ECDLP. But the order of P must divide the 
number of points on the curve (remember that 
the points on the curve, together with the point at 
infinity form a finite group). So, having found 
the number of points on the curve, it is quite 
likely that a suitable base point cannot be found. 
There are a variety of other restrictions that must 
be satisfied when generating curves[12].  
 
5.3. Incompatible Systems 
The “odd” and “even” elliptic curve 
implementations are similar, but sufficiently 
different to ensure that an “odd” system will be 
incompatible with an “even” system. 
Furthermore, within the even case there are a 
number of ways to represent curves and base 
points and a user with a system appropriate for 
one representation may not be able to 
communicate successfully with a user with a 
different representation. This is different to the 
case of RSA, where (in theory) all 
implementations are compatible. Ignoring issues 
of compatibility, there are good reasons to use 
“even” elliptic curve systems, mainly to do with 
speed of processing, but here again users need to 
be wary. A number of experts in this area believe 
that the ECDLP may be easier to solve for the 
even case than the odd case, although it must be 
admitted that the evidence for such assertions is a 
little flimsy[11,12]. 
 
5.4. Royalties and Patents 
The issue of royalties and patents relevant to 
elliptic curve cryptosystems is somewhat 
unclear. There are a number of patents in this 
area, mainly applicable to the even case[10].  
 
5.5. Processing 
We have already mentioned that because elliptic 
curve systems use small key sizes then less 
computing power is required than  for RSA. How 
does this translate into speed of processing? 
Table 5 provides comparative figures for RSA 
and ECDSA (odd case) signature generation and 
verification, where both algorithms were 
implemented using two parallel Motorola 56303 
Digital Signal Processors (66 MHz). Note that 
the RSA signature verify figures assume the use 
of a public exponent e = 65537[12]. 
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Table 5. Comparative Processing Times 

  

 
 

Generate 
Signature 

Verify 
Signature 

RSA (1024 bits) 25 ms 2 ms 
ECDSA (160 bits) 32 ms 33 ms 
RSA (2048 bits) 120 ms 5 ms 
ECDSA (216 bits) 68 ms 70 ms 

 
Clearly, different implementations will yield 
different timings, but the pattern is clear. As key 
sizes increase, signature generation for ECDSA 
becomes significantly faster than comparable 
RSA systems. This difference would be 
magnified even further if only a single processor 
were available. On the other hand, signature 
verification using ECDSA is much slower than 
for RSA and again this difference would be even 
greater if only a single processor were available. 
Note that ECDSA processing times could be 
improved somewhat if the even case were 
implemented.The time taken for signature 
verification when using  ECDSA may have an 
adverse impact on system performance. Many 
systems have a large number of remote devices 
communicating with a central server. The time 
taken by the remote device to generate a 
signature may not be important (several seconds 
may be acceptable), but the server must be able 
to validate signatures quickly. RSA based 
systems (even using large keys) may be more 
applicable in some circumstances than elliptic 
curve systems. 
 
6. CONCLUSIONS 
 
Elliptic curve systems are increasingly seen as an 
alternative to RSA, rather than a replacement. 
There are potential advantages, especially when 
used in devices with limited processing 
capability and/or memory. Typical applications 
include: - m-commerce (e.g. WAP mobile phone, 
hand-held devices);    - smart card systems (e.g. 
EMV);  - e-commerce and banking applications 
(e.g. SET); - internet based applications (e.g. 
SSL)[10,11,12]. 
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