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ABSTRACT 

 
This paper deals with identification and predictive control of a nonlinear chaotic discrete plant. The 
main difficulties for identification and control of this plant arise from the strongly nonlinear center 
and its chaotic behavior. First, an internal feedback is applied to suppress the chaotic behavior. Then, 
a neural network based predictive controller using Multi Layer Perceptron (MLP) is designed to 
govern the dynamics of this plant.  The effectiveness of the purposed methodology is shown through 
simulation results.  

 
Keywords: Neural network control, Multi Layer Perceptron, Local Linear Model Tree, predictive 
control, Chaos. 
 
1. INTRODUCTION 
The analysis and control of chaotic behavior in 
dynamical systems has been widely investigated 
in recent years [29-32] and the predictive control 
is now widely used in industry and a large 
number of implementation algorithms. Most of 
the control algorithms use an explicit process 
model to predict the future behavior of a plant 
and because of this, the term model predictive 
control (MPC) is often utilized [1-2]. The 
inclusion of the constraints is the feature that 
most clearly distinguishes MPC from other 
process control techniques, leading to a tighter 
control and a more reliable controller. Another 
important characteristic, which contributes to the 
success of the MPC technology, is that the MPC 
algorithms consider plant behavior over a future 
horizon in time. Thus, the effects of both 
feedforward and feedback disturbances can be 
anticipated and eliminated, which permits the 
controller to drive the process output more 
closely to the reference trajectory. 
 

Although more practical plants usually contain 
complex nonlinearities or chaotic behavior, most 
of the MPC algorithms are based on a linear 
model of the process. Linear models such as step 
response and impulse response models derived 
from the convolution integral are preferred, 
because they can be identified in a 
straightforward manner from process test data. In 
addition, the goal for most of the applications is 
to maintain the system at a desired steady state, 
rather than moving rapidly between different 
operating points, so a precisely identified linear 
model is sufficiently accurate in the 
neighborhood of a single operating point. As 
linear models are reliable from this point of 
view, they will provide most of the benefits with 
MPC technology. Even so, if the process is 
highly nonlinear and subject to chaotic behavior, 
a nonlinear model will be necessary to describe 
the behavior of the process. Also, in servo 
control problems where the operating point is 
frequently changing, a nonlinear model of the 
plant is indispensable [3-5]. 
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The key issue in this work is to propose an 
internal feedback loop based on time delayed 
state feedback to suppress the chaotic behavior in 
the system, then the appropriate MPC controller 
is applied as shown in figure 1. In situations like 
the ones mentioned above, the task of obtaining a 
high-fidelity model is more difficult to build for 
nonlinear processes. Recently, neural networks 
have become an attractive tool in the 
construction of models for complex nonlinear 
systems [6-7]. A large number of control and 
identifications structures based on neural 
networks have been proposed [8-15]. 
 
Most of the nonlinear predictive control 
algorithms imply the minimization of a cost 
function, by using computational methods for 
obtaining the optimal command to be applied to 
the process. The implementation of the nonlinear 
predictive control algorithms becomes very 
difficult for real-time control because the 
minimization algorithm must converge at least to 
a sub-optimal solution and the operations 
involved must be completed in a very short time 
(corresponding to the sampling period). This 
paper analyzes an artificial neural network based 
nonlinear predictive controller for a nonlinear 
chaotic discrete plant. The procedure is based on 
construction of a neural network model for the 
process and the proper use of that in the 
optimization process. The method eliminates the 
most significant obstacles for nonlinear MPC 
implementation by developing a nonlinear 
model, designing a neural predictor and 
providing a rapid, reliable solution for the control 
algorithm and inserts an internal feedback based 
on delayed state feedback to suppress the chaotic 
behavior. Also, the performance of the proposed 
neural network based predictive controller is 
compared with that of LOLIMOT, which the 
latter leads to better performance. 
 
The organization of this paper is as follows: 
Sections II and III present the predictive control 
methodology based on MLP and the simulation 
results using MLP. Section IV, V, VI and VII 
present the predictive control methodology based 
on LOLIMOT and the simulation results. Finally, 
the paper is concluded in Section VIII.  

 
Figure (1): MPC Controller for a Chaotic Plant 
 
2. PREDICTIVE CONTROL 
METHODOLOGY BASED ON 
MULTI LAYER PERCEPTRON 
This section presents the role and architecture of 
the neural predictors resulting from the following 
nonlinear modeling techniques based on neural 
network principles [26-28]. 
 
A network with k+1 layers and n0,n1,… nk points 
in each layer is recognized . In zero and first 
layers, we mention x as input layer vector, w1 as 
weight vector, z1 as state vector and yk as output 
vector. Thus we obtain: 
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Where, R is the desired output vector and w is a 
vector including bias and weights. Using steepest 
descent algorithm to minimize that cost function, 
we have: 
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Where, μ   is the learning rate. 
In a Multi Layer Perceptron (MLP) with Back 
propagation as training method with just one 
hidden layer, h neurons in hidden layer and p 
neurons in input layer, the output of MLP 
network becomes: 
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and y(i) is the output of the ith neuron, fj output 
function of jth neuron in hidden layer, z(j) 
activation level of the output function of jth 
neuron, h the neuron number in hidden layer, p 
the number of input neurons, wj the connecting 
weight of jth neuron of hidden layer to output 
neuron, wj,k connecting weight of kth input neuron 
to jth neuron of hidden layer, bj the bias of jth 
neuron in hidden layer and b as the bias in output 
neuron. 
 
A quadratic cost function is utilized to compute 
the prediction error and to derive the optimal 
predictive control strategy. 
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Where λ andλ′  are weighting matrixes 
and uNNN ,, 21  are the minimum, maximum of 
prediction horizon and control horizon, 
respectively. 
Using steepest descent strategy we have: 
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Where  +∈ Rα  is the optimization step. 
The derivation of the cost function (J) in time 
of ),...,2,1(, uNhht =+   is as follows: 
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repetitive calculation but when 11 <−− mi  
the result will be zero. 
 
3. SIMULATION RESULTS OF 
PREDICTIVE CONTROL IN THE 
CHAOTIC PLANT WITH THE USE 
OF MLP 
Consider the following discrete chaotic plant 
which behaves chaotically as shown in figure 2. 
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Where, ky  is the scalar state variables, ku  is the 
predictive control effort, and ,...1,0=k is the 
number of the sampling instants.  
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Figure (2): The chaotic behavior 

 
To design the MPC controller, the chaotic 
behavior must be eliminated by an internal time-
delayed state feedback as follows: 
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 Where, K is the delayed state feedback gain and 
must be chosen appropriately. The set point 
tracking results of the simulation on the plant is 
depicted in Figure 3. Clearly the system could 
track the set points with satisfactory performance 
using a numerical optimization the prediction 
and control horizons are both 2 also ′

iλ  is 0.1  
Next, the cost function J is constructed 
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The minimization algorithm gives the control 
input vector U=[u(t),u(t-1),u(t-2), y(t),y(t-1),y(t-
2)]T to be applied to the plant.  
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Figure (3): Tracking 

 
Clearly the system could track the set points with 
satisfactory performance. 
 
4. AN INTRODUCTION TO LOCAL 
LINEAR MODEL TREE 
(LOLIMOT) 
The network structure of a local linear 
neurofuzzy model [6] is depicted in Figure 4. 
Each neuron realizes a local linear model (LLM) 
and an associated validity function that 
determines the region of validity of the LLM. 
The validity functions form a partition of unity, 
i.e., they are normalized such that 
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Figure (4):  Network structure of a local linear 
neuro fuzzy model with M neurons for nx LLM 

inputs x and nz validity function inputs z. 
 

 for any model input z. The output of a local 
linear neuro-fuzzy model is calculated as 
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where the local linear models depend on 

T
nzxxxx ],...,,[ 21= and the validity functions 

depend on T
nzzzzz ],...,,[ 21= . Thus, the 

network output is calculated as a weighted sum 
of the outputs of the local linear models where 
the Φi(.) are interpreted as the operating point 
dependent weighting factors. The network 
interpolates between different LLMs with the 
validity functions. The weights wi,j are linear 
network parameters. 
 
The validity functions are typically chosen as 
normalized Gaussians. If these Gaussians are 
furthermore axis-orthogonal the validity 
functions are 
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The centers and standard deviations are 
nonlinear network parameters. 
In the fuzzy system interpretation each neuron 
represents one rule. The validity functions 
represent the rule premise and the LLMs 
represent the rule consequents. One-dimensional 
Gaussian membership functions: 
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can be combined by a t-norm (conjunction) 
realized with the product operator to form the 
multidimensional membership functions in (22). 
One of the major strengths of local linear neuro-
fuzzy models is that premises and consequents 
do not have to depend on identical variables, i.e. 
z and x can be chosen independently. 
 
5.PREDICTIVE CONTROL 
METHODOLOGY BASED ON 
LOIMOT ALGORITHM 
The prediction output can be written as [25]: 
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to define how well the predicted process output 
tracks the reference trajectory, a number of cost 
functions are employed for predictive control , 
here we use a cost function which is of the 
following quadratic form: 
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 LdtR ++ , LdtY ++  and LtU +   are  the future 
reference input, predicted output and control 
input vectors, respectively, L is the control 
horizon, L+D is the prediction horizon, and  

0>α    is the weight.  
 
The optimal controller output sequence over the 
prediction horizon is obtained by minimizing the 
performance index npJ  with respect to LtU + . 
This can be carried out by taking the derivative 
of the performance function npJ with respect to 

the control input vector LtU +  and results in: 
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Using the mentioned predictor, the derivatives of  

LdtY ++   with respect to the control input 

vector LtU + are given by: 
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 It is clear that the controller input vector LtU +  
can be calculated by 
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performance function npJ  is given by: 
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6. ON-LINE LEARNING OF 
NEURAL PREDICTORS  
Here we consider the online adjustment of the 
weights of the ith predictor [25]. The weight 
estimation of the other predictors are the same. It 
will be assumed that the basis functions which 
are used in the predictors are given and the 
required prediction accuracy can be achieved by 
adjusting the corresponding weights to those 
functions. 
 
Using the available output data and the input 
data, the output of the ith predictor at time t can 
be written as 
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Where, )( iF∗ and )( ∗ijG are the optimal 

estimates of the weight  vectors  )( iF and )( ijG  

for    ,...2,1,0=j , respectively   tε  is the 

approximation error of the predictor using the 
neural network and is assumed to be bounded by 
a positive number of δ  for all time, that is: 
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Where, the number δ  represents the prediction 
accuracy, which is known by assumption. The ith 
estimated predictor can also be compactly 
expressed by: 
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Based on the recursive least squares algorithm, 
an on-line weight learning algorithm is 
developed for affine nonlinear predictors. The 
algorithm is given by the following theorem. 
 
THEOREM: Consider the ith predictor and the 
learning algorithm [1]: 
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the minimum eigenvalues of the matrix (.), 
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respectively, and ∗W is the optimal estimate of 
the weight vector tW  . 
 
Property (i) of the theorem above shows that if  

1111 −−− ΦΦ+ tt
T
t P  is finite for all time, which is true 

if the closed-loop system is stable, the estimation 
error te converges toδ . Also, it can be seen 
from property (ii) that the weights converge as 
time t approaches infinity. In addition, Property 
(iii) implies that the weights will never drift to 
infinity over time. 
 
7. SIMULATION RESULTS OF 
PREDICTIVE CONTROL IN THE 
HEAT-EXCHANGER WITH USE 
OF  LOLIMOT 
The set point tracking results of the simulation 
on the plant is depicted in Figure 5 .One and two 
step ahead predictors are depicted in figure 6 as 
well. Clearly the system could track the set 
points with satisfactory performance. To 
implement the algorithm, 3 neurons have been 
used and the prediction and control horizon are 
both set at 2 with the control weight which is 
equal to 2 and 
  )]1(),2(),1(),([)( −−−= tutytytytx  
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Figure (5): System output and reference signal 

 
Based upon the above simulations, the following 
table is presented and we can conclude that 
LOLIMOT algorithm provides a better 
performance. 
 
It can be concluded from the table that the mean 
square error and overshoot percentage has been 
significantly decreased in LOLIMOT comparing 
with MLP resulting from the fact that in 
LOLIMOT an analytical optimization is used 

however a numerical optimization is used in 
MLP. 
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Figure (6): 1 and 2 step ahead predictors 

 
Table (1): Comparison between MLP and 

LOLIMOT 
     

Settling 
time 

Over 
shoot 
percentage 

Method 

9 %7.18       
  

MLP 

14             
%2.33 

LOLIMOT 

 
8.  CONCLUSIONS 
A neural network based predictive control 
strategy was applied to a nonlinear chaotic 
discrete system; therefore, a nonlinear prediction 
method, e.g. neural network based methods, 
should be a better match in a predictive control 
strategy. To suppress the chaotic behavior an 
internal feedback control based on time delayed 
state feedback is proposed. Using the neuro 
predictive controller, the output of the plant 
tracked the desired set points by applying the 
control signal. A neural network model for the 
plant was constructed. Once having such a  
model, i-step ahead predictions were obtained 
and a quadratic form cost function was utilized to 
compute the prediction error and to derive the 
optimal predictive control strategy. The 
performance of the proposed control strategy was 
compared with that of LOLIMOT strategy when 
dealing with the tracking problem of output, 
simulation results showed that the later strategy 
performs much better than the former one in case 
of mean square error and the percent overshoot. 
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