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ABSTRACT 
 

Harmonic resonances in the grid network, both the parallel resonance and the series resonance, have 
been given more and more attention in modern power system operation and study. The modal analysis 
approach that based on the node impedance matrix has shown a promising way for the parallel 
resonance assessment in recent years. With regard to the series resonance, a novel approach, 
combining the modal analysis and the dummy branch method, is proposed in this paper to compute 
the series resonance frequency and the corresponding branch information. It is found here that the 
loop impedance matrix should be used in assessing the series resonance problem rather than the node 
impedance matrix that we used in assessing the parallel resonance. It is also illuminated that since the 
network topology changes constantly when analyzing the series resonance phenomenon, the dummy 
branch method should be embedded into this approach. The tests results and practical application 
show the correctness and effectiveness of this method. The results of this paper can serve as a parallel 
approach which can provide more sufficient information of harmonic resonance than the conventional 
widely used frequency scan analysis do, and this can also be used for the checkout of resonance 
frequency of filters. 
 
Keywords:  Power system, Harmonic resonance, Series resonance, Modal analysis, Dummy branch 
method 
 
 
1. INTRODUCTION 
Most components and devices in power system 
are inductive. But due to the charging 
capacitance of high voltage transmission lines 
and the application of shunt capacitors for 
voltage support and power factor correction, the 
system appears to be an extremely complicated 
circuit consisted of numerous series or parallel 
connected inductive and capacitive elements.  
 
Thus, different impedance characteristics and 
values are shown according to various 
frequencies, and even seriously, series and 

parallel harmonic resonances will happen under 
the excitements of certain harmonic resources. 
With the proliferation of harmonic-producing 
loads and the increasing awareness of harmonic 
effects, the possibility of system harmonic 
resonance has become a routine concern [1-2].  
 
Although the cause of harmonic resonance is 
well understood, tools available to analyze the 
phenomenon are very limited. Frequency scan 
analysis is probably the only practical applicable 
method at present to identify the existence of 
resonance and to determine the resonance 
frequency [3-4]. Unfortunately, the tool cannot 
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offer adequate information needed to solve the 
problem effectively. Reference [5-6] presented a 
novel harmonic resonance assessment method 
based on modal analysis. The Resonance Modal 
Analysis (RMA) technique obtains the 
information of resonance mechanics and degrees 
through analysis on the eigenvalues of network 
admittance matrix. RMA brings new approach 
for the analysis of harmonic resonance 
phenomenon. But, the RMA proposed in [5] and 
[6] are mainly concerned on parallel resonance 
problem with little consideration of the analysis 
of series resonance. Both series resonance and 
parallel resonance problem are the two important 
branches of power system harmonic resonance 
phenomenon. The RMA, as a novel method for 
resonance analysis, can be an integrated 
methodology only when it can explain both the 
two resonance problems effectively. Although 
parallel resonance occupies a large proportion in 
power system, the bad consequences brought by 
series cannot be neglected [7]. Especially in the 
stage of planning, it is important for electrical 
engineers to grasp the possibility and extent of 
series resonance. 
 
In this paper, a novel method combined modal 
analysis and dummy branch method is proposed 
for obtaining series resonance frequency and 
corresponding branch information through 
analyzing loop impedance matrix. Firstly, simple 
RMA is pointed out not to be applicable for 
solving series resonance since the reason lies in 
the close relationship between loop impedance 
and the occurrence of series resonance.  
Furthermore, causation why the results are 
incomplete when the simple loop impedance 
matrix and RMA are applied for series resonance 
is analyzed. The truth is illuminated that the 
network topological structure varies while 
analyzing series resonance problem. A new 
means called “Dummy Branch Method” which 
traverses all possible network structures is 
presented to get accurate and integrated result of 
resonance problem when it is combined with 
RMA. Simulation example and practical 
application results have confirmed the validity 
and practicability of proposed approach. This 
method inherits modal analysis and perfects it, 
making which as the coordinate method with 
frequency scan that can solve harmonic 
resonance problem completely. The results of 
this paper can be used as the basic method for 
harmonic resonance problems and also for the 
checkout of resonance frequency of filters. 

2. CONCEPT OF RESONANCE 
MODES 
Imagine a system experiencing a sharp parallel 
resonance at frequency f according to the 
frequency scan analysis. This means that some 
elements of the voltage vector calculated from 
the following equation have large values at f. 

1
f f f

−=U Y I                    (1) 
where Yf is the network admittance matrix at 
frequency f. Uf is the nodal voltage and If the 
nodal current injection respectively. To simplify 
notation, the subscript f will be omitted 
hereinafter. 
A sharp harmonic resonance means that some 
nodal voltages are very high. This will occur 
when the Y matrix approaches singularity. The 
well-established theory of eigen-analysis can be 
applied for investigating of how the Y matrix 
approaches singularity [8]. According to the 
theory, the Y matrix can be decomposed into the 
following form: 

=Y L TΛ                                                         (2) 
where Λ  is the diagonal eigenvalue matrix, L  
and T  are the left and right eigenvector matrices 
respectively. 1=  −L T . 
Substituting (2) into (1) yields 

1−=U L TIΛ  
or 
 1−=TU TIΛ                                                    (3) 
Defining =V TU  as the modal voltage vector 
and =J TI  as the modal current vector 
respectively, the above equation can be 
simplified as 

1−=V JΛ  
or 
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               (4) 

The inverse of the eigenvalue has the unit of 
impedance and is named modal impedance Zm. 
From (4), it is clear that if λ1=0 or is very small,  
a small injection of modal 1 current J1 will lead 
to a large modal 1 voltage V1. On the other hand, 
the other modal voltages will not be affected 
since they have no ‘coupling’ with the mode 1 
current. In other words, one can easily identify 
the ‘location’ of resonance in the modal domain. 
The implication is that the resonance actually 
takes place for a specific mode. It is not related 
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to or caused by a particular bus injection. 
Therefore, the smallest eigenvalue is called the 
critical mode of harmonic resonance and its left 
and right eigenvectors the critical eigenvectors. 
The have the following two characteristics: 
1) The bus that has the highest observability 
level (i.e., largest left eigenvector entry) for a 
mode is also the one that has the highest 
excitability level (i.e., largest right eigenvector 
entry). It implies that if a harmonic current 
matching the resonance frequency is injected into 
this bus, the bus will see the highest harmonic 
voltage level. If the current is injected into a 
different bus, the distortion level is likely to be 
amplified in the system. 
2) The participation factors are equal to the 
square of the eigenvectors. As a result, one 
index, eigenvector or participation factor is 
sufficient for resonance modal analysis.  The 
magnitude of the index characterizes how far the 
resonance will propagate. The bus with the 
highest participation factor can be considered as 
the center of resonance. 
 
3. LOOP IMEDANCE MATRIX 
BASED MODAL ANALYSIS 
A small injection of harmonic current will lead to 
a large harmonic voltage in the system while 
parallel resonance, where there is a large 
eigenvalue in corresponding Y -1matrix. With a 
simple test system shown in Fig. 1, the difference 
between series resonance and parallel resonance 
solved by RMA is analyzed in this section. The 
per-unit frequency is based on the fundamental 
frequency and is equal to harmonic number. 
There are three buses in the system where 
harmonic resonance could be excited or 
observed. The impedance frequency scan results 
and modal impedance curve of the test system 
are shown in Fig. 2 and Fig. 3 respectively, 
which obviously show the equality of harmonic 
resonance frequencies obtained by the two 
methods. This validates the RMA for parallel 
resonance problem. 

 
Fig. 1:  3-bus test system 

 
Fig. 2:  Impedance frequency scan results of the 
test system 
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Fig. 3:  Modal impedance curve of the test 
system 
 
The emphasis of this paper is on an 
implementation of RMA approach to solve 
harmonic series resonance problems. While 
series resonance, a small applied harmonic 
voltage on a bus will lead to a large current. In 
frequency scan, it performs as a small value of 
harmonic impedance or a large value of 
harmonic admittance. As shown in Fig. 4, peaks 
in the admittance frequency curve mean that 
there are 6 frequencies may have the possibility 
of series resonance. 
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Fig. 4:  Admittance frequency scan results of the 
test system 



   
Power System Series Harmonic Resonance Assessment Based 

On Improved Modal Analysis 
 

 
Hui ZHOU, Yaowu WU, Suhua LOU, Xinyin XIONG 

 

426

 

0 20 40 60

Mode 1
Mode 2
Mode 3

12

10

 8

 4

 0

 6

 2

Frequency(pu)

M
od

al
 A

dm
itt

an
ce

(p
u)

 
Fig. 5:  Series resonance analysis results by 
using harmonic node impedance matrix 
 
Applying RMA for series resonance problem, the 
first thing come to mind is the inverse of 
harmonic admittance matrix Z=Y−1. The 
eigenvalue λi of Z matrix (where i=1, 2, …n, n is 
the total number of buses) can be obtained by 
eigen-analysis technology, and then it is easy to 
determine which bus can experience a particular 
series resonance more easily through analysis on 
the large values in 1/λi. According to the above 
clew, the discussion of the test system is made 
and the result is shown in Fig. 5. However, the 
inverse of the eigenvalues of the Z matrix shown 
in the figure doesn’t have large values at all. This 
is a surprising finding. If one analyzes the 
problem further, however, the phenomenon 
becomes understandable. A series resonance 
means that the circuit has a loop with very small 
loop impedance. If the loop is applied with a 
voltage, a large loop current will be produced. 
The occurrence of series resonance is closely 
related to loops, rather than simple nodes and 
branches. The correct formulation to identify 
series resonance should, therefore, be the Zloop 
matrix defined in loop equation. 

loop loop =Z I E                                                  (5) 
where Zloop is the loop impedance matrix. Iloop is 
the loop current matrix and E is the loop voltage 
matrix respectively. The subscript loop will be 
omitted hereinafter. 
According to RMA method, similar equations 
can be defined for series resonance problem. The 
Z matrix can be decomposed into the following 
form: 

=Z L TΛ                                                        (6) 
where Λ  is the diagonal eigenvalue matrix, L  
and T  are the left and right eigenvector matrices 
respectively. 1=  −L T . 
Substituting (6) into (5) yields 
 
 
 

1−=I L TEΛ  
or 
 1−=TI TEΛ                                                    (7) 
Defining =J TI  as the modal current vector and 

=V TE  as the modal voltage vector 
respectively, (7) can be simplified as 

1−=J VΛ  
or 
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               (8) 

The inverse of the eigenvalue, 1/λ, has the unit 
of admittance and is named modal admittance. 
Form (8), it can be easily found that if λ1=0 or is 
very small,  a small applied modal 1 voltage V1 
will lead to a large modal 1 current J1. On the 
other hand, the other modal currents will not be 
affected since they have no ‘coupling’ with the 
mode 1 voltage. By now, one can implement the 
above method to solve series resonance problem. 
The loop reference direction is clockwise, as 
marked in Fig. 1. Analysis result is shown in Fig. 
6. The number of peaks in the modal admittance 
curve is only 3, which is 3 less than the result of 
frequency scan. This phenomenon indicates that 
there is still something wrong with the 
application of RMA for series resonance. 
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Fig. 6:  Series resonance problem results by 
using basic modal analysis 
 
4. DUMMY BRANCH METHOD 
By theoretical analysis and experimental 
investigation, the cause and solution of above 
phenomenon is discussed in this section. 
Analyzing parallel resonance, the frequently used 
method is to inject an ideal unit harmonic current 
resource to obtain the frequency response of 
corresponding node. The branch impedance of an 
ideal current resource is infinite and the current 
resource branch is open circuit. Thus, the 
introduction of injection current branch doesn’t 
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alter the structure of studied network. Things are 
different with series resonance problem. 
Investigating a series resonance case, an ideal 
unit harmonic voltage resource is commonly 
applied to obtain the frequency response of a 
certain bus. The branch impedance of an ideal 
voltage resource is considered to be zero, hence 
it is equivalent to add a short circuited branch 
between the reference node and the bus that ideal 
voltage resource added. As a result, the loop 
impedance matrix is modified. This is the 
causation why only partial solutions are obtained 
when the single fixed loop impedance matrix is 
applied to solve series resonance problem. 
Therefore, all the scenarios with the different 
loop impedance matrixes when there is a dummy 
short circuited branch between each bus and the 
reference node respectively must be analyzed 
and integrated to get the accurate solution. 
 
According to above analysis, a new method 
called dummy branch method is proposed in this 
paper to simulate the scenarios when the studied 
bus and reference node is short-circuited. The 
detailed steps are listed as follows. Assume that a 
branch is added between each bus and reference 
node. The impedance of added branches is 
generally set to be infinite, and these branches 
can be considered to be open circuit and have no 
effect on the network structure. When the ith 
scenario is being analyzed, the impedance of 
corresponding dummy branch i is set to be zero 
for short circuit simulation. After the ith scenario 
is finished and the (i+1)th one is being studied, 
the impedance of dummy branch i is set back to 
be infinite and the (i+1)th branch impedance is 
set to be zero. By this means, every loop 
impedance matrix of the scenarios can be 
generated. The eigenvalues characteristics of all 
these harmonic loop impedance matrixes are 
analyzed by modal approach. Finally, synthesis 
of all the analysis results will reflect all the 
positions and frequencies of series resonance 
points. The technique that combines RMA and 
dummy branch method can be called as the 
Improved Resonance Modal Analysis (IRMA). 
The detailed flowchart of IRMA is shown in Fig. 
7.  
 
Suppose the total number of studied network 
nodes and branches are n+1 and b respectively, 
the number of independent nodes and tree 
branches are both n, and the number of 
fundamental loops and are both b-n. If n dummy 
branches are added into the network, the total 

number of branches increases to n+b and 
fundamental loops to b, which indicates that the 
dimension of the new loop impedance matrix is 
b. Thanks to the existing well developed 
algorithms for eigenvalue analysis technology, 
the CPU time consumed for achieving final 
results is few, even for those large networks, 
though the dimension of loop impedance matrix 
rises. This is also confirmed by the practical 
experience of program tests. 
 

 
Fig. 7:  Flowchart of modal analysis combined 
with dummy branch method 
 
The test system in Fig. 1 is used for experiment. 
Loop reference direction is clockwise. Three 
dummy branches Ri (where i=1,2,3), whose 
impedances are set to be 0Ω or 1×106Ω, are 
added into the system while the other parameters 
of the circuit are unaltered. Due to the added 
dummy branches, the total number of 
fundamental loops increases to 6. Applying 
IRMA for the system, test results can be 
obtained, which are shown in Fig.8. All of the six 
series resonance frequencies are found out. In 
order to make the contrast more obviously, Fig. 9 
gives the comparison of results from frequency 
scan and IRMA method, which are indicated by 
dotted lines and solid lines respectively. As 
shown in Fig. 9, it is clear that the peak positions 
obtained by the two methods match well. Tab. 1 
documents the information, such as resonance 
frequencies, peak values of modal admittances, 
and corresponding branches that induce 
resonance, of the 6 series resonance points. All 
the results are identical to the results of 
frequency scan analysis. For examples, the 
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capacitor B is in series with XT. The approximate 
series resonance frequency is 

( )1/ 7.559Tf BX= = p.u., which coincides the 
resonance frequency of 7.6p.u. obtained from 
IRMA. Capacitor B is also in series with the Xsys, 
XL and XT, the approximate series resonance 
frequency is 

( )1/ 4.099sys L Tf B X X X= + + = p.u., which 

is very close to with the resonance frequency of 
3.9p.u. gotten by IRMA. The results therefore 
confirm that the information provided by the 
IRMA can indeed reveal the locations easiest to 
excite harmonic series resonance. 
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Fig. 8:  Series resonance problem results by 
using IMRA 
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Fig. 9:  Results contrast of Frequency Scan and 
IMRA 

 
Table 1:  Modal analysis results of the test system 

Resonance frequency(pu) Peak value of modal admittance Corresponding capacitor branches Corresponding reactive branches 

3.9 5.7252 B Xsys+XL+XT 
7.6 147.7398 B XT 
15.6 117.2630 BL2 XT 
21 3.6555 BL1 Xsys‖XL 

22.8 8.2946 BL2 XL‖XT 
26.2 3.5338 BL1 Xsys‖XL‖XT 

 
 
5. PRACTICAL APPLICATION 
A real power network is used to show the 
validity of the proposed IRMA approach for 
series resonance analysis. This network is part of 
a city’s network in Hunan Province, China, and 
the topology of this network is shown in Figure 
10. 
 
The harmonic in this network is mainly 
contributed from three resources, including the 
metallurgic load, the chemical load, and the 
system on the 500 kV side. According to the 
released Harmonic Working Report from Hunan 
Power Grid Technical Committee [9], there are 4 
groups of parallel compensating capacitors with 
capacity of 6000 kVar per group connected to the 
10 kV bus of the 220 kV substation D (shown in 
Fig. 10). The commissioning test results show: 
the 3rd harmonic component is seriously 

amplified with a current of 550 A, which 
occupies 56% of the fundamental current; the 
maximum voltage distortion rate reaches 8.6%, 
which far exceeds the allowable value (4%) set 
in the national standards.  Because there is no 
harmonic source directly connected to the 10kV 
bus of the substation D and the main transformer 
in this substation is three-winding, the 
compensator branches connected to the 10kV bus 
are easily looped in a series circuit together with 
the background harmonic sources in system. 
Thus, series harmonic resonance, rather than 
parallel resonance, is easily to take place if the 
impedances selecting for capacitors and reactors 
doesn’t match well. Hence, the proposed IRMA 
approach is applicable to this case analysis. 
 
By adopting the IRMA approach, the modal 
admittance-frequency characteristic of the 
compensator branches is obtained and illustrated 
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in Figure 11. According to numerical results, the 
two calculated series harmonic resonance 
frequencies corresponding to the capacitors are 
2.8p.u. and 4.0 p.u.. The 2.8 p.u. frequency 
component can be considered as the frequency of 
the 3rd harmonic resonance, and this is consistent 
with the commissioning test result. The presence 
of the 4.0 p.u. component shown in Fig. 11 
represents that the physical parameters of the 
substation capacitor branches may lead to the 
occurrence of 4th series resonance. But generally, 
only 3rd, 5th, 7th harmonic resources are mainly 
concerned in actual public electric network, and 
hence the 4th series resonance can be considered 
not to be excited because there is no enough 
excitation of 4th harmonic resources in the 
system. 
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Fig. 10:  Single line diagram of part of a city’s 
network 
 

 
Fig. 11:  Series resonance curves of capacitors 
in part of a city’s network 
 
 
6. CONCLUSIONS 
The parallel resonance and the series resonance 
constitute the two aspects of harmonic 
resonances problem. As explained in this paper, 
the original RMA approach, which only analyzes 
the node admittance matrix, is not applicable for 
assessing the series resonance problem. This 
work presents an IRMA approach, which 

combines the modal analysis and the dummy 
branch method. The main findings of this paper 
are: 
 
1) The series resonance is taking a loop form in 
the network. The characteristic of this kind of 
resonance is closely related with the loop 
impedance, rather than the node impedance. 
Thus the loop impedance matrix is adopted for 
analysis in this work. 
 
2) With regard to the parallel resonance, the ideal 
harmonic current source branch is equivalent to 
an open circuit, and thus the original network 
topology won’t change. However, when 
analyzing the series resonance, the ideal 
harmonic voltage source branch is equivalent to 
a short circuit, and thus both the network 
topology and the corresponding loop impedance 
matrix will change. 
 
3) Purely analyzing the fixed loop impedance 
matrix can not reach an accurate solution for 
series harmonic resonance problem. All the 
different loop impedance matrixes obtained by 
adopting the dummy branch method should be 
used in analysis. 
Both test system research and practical 
application validate the proposed method. 
Combining this IRMA approach with the work 
described in [5, 6], a complete solution scheme 
can be formed to assess harmonic resonance 
problems. The results of this paper can be used 
as the basic method for harmonic resonance 
problems and also for the checkout of resonance 
frequency of filters. 
 
7. FUTURE WORK 
The proposed modal analysis method is a new 
tool for harmonic resonance assessment. Thus, 
some cues for a further approach from IRMA 
application to theory background research are 
provided in this section. The physical meaning of 
modes in harmonic resonance is still needed to 
be discussed. What’s more, the definitions of 
eigenvectors and participation factors for 
different modes should be established to describe 
the observability and excitability of different 
modes and the resonance propagation status. 
Unlike the parallel resonance problem, it is hard 
to determine the corresponding branch 
information, due to the complicated variety of 
impedance matrixes when analyzing harmonic 
series resonance problem, especially for large-
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scale networks. In the future work, the above 
problems should be studied to perfect the modal 
analysis approach for power system harmonic 
resonance phenomenon. 
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