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ABSTRACT 
 

The sliding mode controller is designed for a class of non linear dynamic systems to tackle the 
problems with model uncertainties, parameter fluctuations and external disturbances. By this design, 
the bounds of the uncertainties are not required to be known in advance. In this paper, we develop a 
sliding mode controller for the robust position control of synchronous motor. Also, the load torque 
disturbance affects directly the motor shaft. An observer is considered to overcome the problem of 
torque disturbance. An asymptotically stable observer gain can be obtained without affecting the 
overall system response. The simulation results show the effectiveness of the proposed control 
strategy with desired tracking accuracy and robustness. 
 
Keywords:  synchronous machine, sliding mode control, torque observer, position control. 
 
 
1. INTRODUCTION 
The control of the synchronous machine (SM) 
must take into account machine specificities: the 
high order of the model, the nonlinear 
functioning as well as the coupling between the 
different variables of control. Furthermore, the 
machine parameters depend generally on the 
operating point and vary either on the 
temperature (resistance), or with the magnetic 
state of the synchronous machine. These 
parametric variations modify the performances 
of the control system when we use a regulator or 
a control law with fixed parameters.  
 
Since the work of V. I. Utkin proposed in 1977 
[1], significant interest on variable structure 
systems (VSS) and sliding mode control (SMC) 
has been generated in the control research 
community worldwise. The variable structure 

control (VSC) possesses high robustness using 
the sliding mode control that can offer many 
good properties such as good performance 
against unmodelled dynamics, insensitivity to 
parameter variation, complete rejection of 
disturbances, and fast dynamic [2]. 
 
Variable structure control with sliding mode, is 
one of the effective non linear robust control 
approaches since it provides system dynamics 
with an invariance property to uncertainties once 
the system dynamics reach the sliding surface [1, 
3, 4]. The main disadvantage of this approach is 
the high switching frequency of the control 
action or chattering that VSC system exhibit. 
Chattering is undesirable since it can excite the 
unmodeled high frequency dynamics in the non 
linear system control. Introducing a boundary 
layer is one of the most common techniques 
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used, with the cost of an important degradation 
in tracking performance [5]. 
 
The new industrial applications necessitate speed 
variators having high dynamics performances, a 
good precision in permanent regime, and a high 
capacity of overload on all range of 
speed/position and a robustness to different 
perturbations. Thus, the recourse to robust 
control algorithms is desirable in stabilization 
and in tracking trajectories. The variable 
structure control possesses this robustness using 
the sliding mode control that can offer high 
performances against internal and external 
disturbance. These advantages of sliding mode 
control can be employed in the position and 
speed control of an alternative current servo 
system [1, 6-8]. 
 
In this paper the application of sliding mode 
control in synchronous position control is 
described. The organization of this work is as 
follows: first, the vector control principle for 
synchronous motor drive and model of the 
voltage source inverter are presented; next, the 
proposed controller is described, and used to 
control the position synchronous motor, and by 
the way, a torque observer is developed. 
Simulation results are given to show the 
effectiveness of this controller and finally 
conclusions are summarized in the last section. 
 
2. DYNAMİC MODEL OF 
SYNCHRONOUS MOTOR 
The dynamic model of synchronous motor in d-q 
frame can be represented by the following 
equations [9, 10]: 
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The mechanical equation of synchronous motor 
can be represented as: 

BΩΩ
d
dJ −−= le TT
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         (2) 

Where the electromagnetic torque is given in d-q 
frame: 

( )dsqsqsdse iiT φ−φ= P                 (3) 
In which: 
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Where sR  – stator resistance, fR  – field 

resistance, qsds L,L  – respectively direct and 

quadrature stator inductances, fL  – field 

leakage inductance, fdM  – mutual inductance 

between inductor and  armature, dsφ and qsφ  – 

respectively direct and quadrature flux, fφ  – 

field flux, eT  – electromagnetic torque, lT  – 
external load disturbance, P – pair number of 
poles, B  – is the damping coefficient, J  – is the 
moment of inertia, ω – electrical angular speed 
of motor. Ω  – mechanical angular speed of 
motor, θ  – mechanical rotor position, eθ  –
electrical rotor position. 
 
3. VOLTAGE SOURCE İNVERTER 
The power circuit of a three-phase bridge 
inverter using six switch device is shown in 
figure 1. The dc supply is normally obtained 
from a utility power supply through a bridge 
rectifier and LC filter to establish a stiff dc 
voltage source [11].  

 
Fig. 1. Voltage inverter 

The switch Tci ( { } { }2,1,3,2,1 ∈∈ ic ) is 
supposed perfect. The simple inverter voltage 
can be presented by logical function connexion 
in matrix form as [11]. 
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where the logical function connexion Fc1 is 
defined as: Fc1 = 1 if the switch Tc1 is closed, 
Fc1 = 0 if the switch Tc1 is opened, cU  is the 
voltage feed inverter. 
 
4. DESCRIPTION OF THE SYSTEM 
The schematic diagram of the speed control 
system under study is shown in figure 2. The 
field current fi  of the synchronous machine, 
which determines the field flux level is 
controlled by voltage fv . The parameters of the 
synchronous machine are given in the Appendix.  
The self-control operation of the inverter-fed 
synchronous machine results in a rotor field 
oriented control of the torque and flux in the 
machine. The principle is to maintain the 
armature flux and the field flux in an orthogonal 
or decoupled axis. The flux in the machine is 
controlled independently by the field winding 
and the torque is affected by the fundamental 

component of armature current qsi . In order to 
have an optimal functioning, the direct current 

dsi  is maintained equal to zero [10, 12].  
Substituting (4) in (3), the electromagnetic 
torque can be rewritten for fi =  constant and 

0=dsi  as follow: 

( ) ( )titT qse λ=        (6) 

where ffd ipM=λ  

In the same conditions, it appears that the dsv  

and qsv  equations are coupled. We have to 
introduce a decoupling system, by introducing 
the compensation terms demf  and qemf  in 
which 

.ML

,L

fafdsdsq

qsqsd

iiemf
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ω−ω−=

ω=
    (7) 

Figure (2) shows the proposed schematic 
diagram of the position control of the 
synchronous motor using sliding mode control. 

 

 
Fig.2. System configuration of field-oriented synchronous motor. 
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The blocks SMCθ, SMCids et SMCiqs are 
regulators, the first is the sliding mode controller 
for position, the second is the sliding mode 
regulator for the direct current and the third is the 
sliding mode regulator for the quadrature current. 
The load torque is estimated by the “Load torque 
observer”. To avoid the appearance of an 
inadmissible value of current, a saturation bloc is 
used.  
 
5. SLIDING MODE CONTROL 
Consider a nonlinear system which can be 
represented by the following state space model in 
a canonical form [3]: 

( ) ( ) ( )( ) ( )
( ) )(

,),()(

txty
tduttxgttxftx n

=
++=

     (8) 

Where ( ) ( ) ( )[ ]Tn txtxtxx )1(... −=  is the state 

vector, ( )( )ttxf ,  and ( )( )ttxg ,  are 
nonlinear functions, u is the control input, ( )td  
is the external disturbances.  
The objective of the control is to determine a 
control law u(t) to force the system output y(t) in 
(8) to follow a given bounded reference signal 
yd(t), that is, the tracking error 
( ) ( ) ( )tytyte d −=  and its forward shifted 

values, defined as  
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should be small. 
The design of SMC involves two tasks. The first 
one is to select the switching hyperplane to 
prescribe the desired dynamic characteristics of 
the controlled system. The second one is to 
design the discontinuous control such that the 
system enters the sliding mode ( ) 0, =txs and 
remains in it forever [3, 13]. 
In this paper, we use the sliding surface proposed 
par J.J. Slotine,  

( ) ( )te
dt
dtxs

n 1

λ,
−

⎟
⎠
⎞

⎜
⎝
⎛ +=                  (10) 

in which  ( ) ( )txtxe d −= , λ is a positive 
coefficient, and n is the system order.   
It remains to be shown that the control law can 
be constructed so that the sliding surface will be 
reached. Then, a sliding hyperplane can be 
represented as ( ) 0, =txs .  
Consider a Lyapunov function: 

2

2
1 sV =              (11) 

From Lyapunov theorem we know that if V  is 
negative definite, the system trajectory will be 
driven and attracted toward the sliding surface 
and remain sliding on it until the origin is 
reached asymptotically [6]: 

ssV =                           (12) 
The simplified 1st order problem of keeping the 
scalar ( )txs ,  at zero can be achieved by 
choosing the control law u(t). A sufficient 
condition for the stability of the system is  

ss
dt
d η−≤2

2
1

                 (13) 

where η  is a positive constant. 
The equation (13) is called reaching condition or 
sliding condition. s(t) verifying (13) is referred to 
as sliding surface, and the system’s behaviour 
once on the surface is called sliding mode. 
If the control input is so designed that the 
inequality (13) is satisfied, together with the 
properly chosen sliding hyperplan, the state will 
be driven toward the origin of the state space 
along the sliding hyperplane from any given 
initial state. This is the way of the SMC that 
guarantees asymptotic stability of the systems. 
 The process of sliding mode control can be 
divided in two phases, that is, the approaching 
phase and the sliding phase. The sliding mode 
control law u(t) consists of two terms, equivalent 
term ueq(t), and switching term us(t). 
In the sliding phase, where ( ) 0, =txs and 

( ) 0, =txs , the equivalent term ueq(t) is 
designed to keep the system on the sliding 
surface. In the approaching phase, 
where ( ) 0, ≠txs , the switching term us(t) is 
designed to satisfy the reaching condition (13). 
While in sliding phase we have: 
( ) 0, =txs        (14)  

By solving the above equation formally for the 
control input, we obtain an expression for u 
called the equivalent control ueq, which can be 
interpreted as the continuous control law that 
would maintain ( ) 0, =txs  if the dynamics 
were exactly known. 
 
 In order to satisfy sliding conditions (13) and to 
despite uncertainties on the dynamic of the 
system, we add a discontinuous term across the 
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surface ( ) 0, =txs , so the sliding mode control 
law u(t) has the following form:  

( )( )txsKu
uuu

fs

neq

,sgn−=
+=

   (15) 

where fK is the control gain.         
For a defined functionϕ : 
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⎪
⎩

⎪
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The controller described by the equation (15) 
presents high robustness, insensitive to parameter 
fluctuations and disturbances [1, 3, 4, 14, 15], 
but it will have high-frequency switching 
(chattering phenomena) near the sliding surface 
due to sgn function involved. These drastic 
changes of input can be avoided by introducing a 
boundary layer with width ε  [3, 4, 15]. Thus 
replacing ( )( )tssgn  by ( )( )ε/tssat  in (15), 
we have 

( )( )txssatKuu f
eq ,−=          

     (17) 
Where 
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5.1. POSITION CONTROL    
The position error is defined by:  

θ−θ= refe     (18) 
For n=2, the position control manifold equation 
can be obtained from equation (10) as follow: 

( ) e
dt
dees +λ= θ    (19) 

The equation of the motion (2) can be rewriten: 
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During the sliding mode and in permanent 
regime, we have  

( ) ( ) 0,0,0 ==θ=θ n
qsiss  

The current control iqs is defined by: 
n
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( )( )Ω= ω sKi n

qs sgn    (25) 
Kω– positive constant. 
 
5.2. DIRECT CURRENT 
CONTROLLER 
The direct current error is defined by: 

dsrefdsd iie −= _                   (26) 
For n=1, the direct current control manifold 
equation can be obtained by: 
( ) dsrefdsds iiis −= _    (27)  

Substituting the expression of ids given by 
equation (1) and (4) in equation (27) we obtain: 

( ) ds
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     (28) 
During the sliding mode and in permanent 
regime, we have  

( ) ( ) 0,0,0 === n
dsdsds iisis  

The control voltage vqref is defined by:  
n
ds
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( )( )dsd

n
ds isKv sgn=       (31) 

 Kd – positive constant. 
 
5.3. QUADRATURE  CURRENT 
CONTROL  
 
The quadrature current error is defined by: 

qsrefsqq iie −= _         (32) 
For n=1, the quadrature current control manifold 
equation can be obtained by: 

 ( ) qsrefqsqs iiis −= _    (33)   
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Then, we have  

( ) qsrefqsqs iiis −= _    (34) 
Substituting the expression of iqs given by 
equation (1) and (4) in equation (34) we obtain: 

( ) qs
qs

ffdds
qs

ds
qs

qs

s
refqsqs viiii

t
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p
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d
d
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     (35) 
During the sliding mode and in permanent 
regime, we have  

( ) ( ) 0,0,0 === n
qsqsqs iisis  

The control voltage  vqs_ref  is defined by:  
n
qs

eq
qsrefqs vvv +=_    (36) 
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n
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Kq – positive constant. 
 
6. LOAD TORQUE OBSERVER 
The motion equation of the synchronous motor 
(2) can be expressed in state space as follows: 
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It is well known that observer is available when 
input is unknown and inaccessible. For 
simplicity a 0-observer is selected. In this paper, 
the load torque Tl is estimated by using an 
observer. A linear asymptotic observer is 
designed in the same form as the original system 
(39) with an additional input depending on the 
mismatch between the real values and the 
estimated values of the output vector [16, 17]. 
The system equation can be expressed as: 

)( XYuXX CLBA −++=      (40) 

Where ⎥
⎦

⎤
⎢
⎣

⎡
=

2

1

L
L

L  

Where X  is an estimate of the system state 
vector, and L is the proportional gain vector to be 
chosen so as to achieve prespecified error 
characteristics.  
 
The motion equation with respect to mismatch 

XXX −=
~  is of form 

( )XX ~~ LCA −=           (41) 
The behavior of the mismatch governed by 
homogeneous equation is determined by the 
eigenvalues of the matrix (A+LC). For the 
observable system they may be assigned 
arbitrarily by a proper choice of the gain vector 
L. It means that any desired rate of convergence 
of the mismatch to zero or estimate  )(tX  to the 
state vector )(tX may be provided. To ensure 
that the observer is stable the instantaneous 
eigenvalues of the observer have to be placed in 
the left half side plane. The characteristics 
equation is given by: 

( )[ ] 0=−− LCAIpDet   (42) 
Where I is the identity vector, and p is the 
Laplace operator. 
 
The gain vector L is defined by imposing the 
poles in the characteristics equation. 
 
7. SIMULATION AND RESULTS 
In order to validate the control strategies as 
discussed above, digital simulation studies were 
made the system described in figure 2. The 
position and currents loops of the drive were also 
designed and simulated respectively with sliding 
mode control. The feedback control algorithms 
were iterated until best simulation results were 
obtained. 
The position loop was closed, and transient 
response was tested with both current controller 
and position control. The simulation of the 
starting mode without load is done, followed by 
reversing of the reference rad/s3±=θref  at 
t3=2s. 
The load ( lT ) is applied in two period: 

The reference rad3+=θ ref , the load 

( Nm8+=lT ) is applied at t1 = 1 s and 
eliminated at t2 = 1.5 s 
The reference rad3−=θ ref , the load 

( Nm8−=lT ) is applied at t4 = 3 s and 
eliminated at t5 = 3.5 s.  



    
   Position Control Of Synchronous Machine Using Sliding Mode Techniques 
 

 
Abdel Ghani AISSAOUI, Mohamed ABID, Hamza ABID, Ahmed TAHOUR 

477

 

The simulation is realized using the SIMULINK 
software in MATLAB environment.  
 

Figure 3 shows the performances of the sliding 
mode controller using the load torque observer. 

 

-a- 

 
-b-  

Fig. 3. Simulation results of position controller: a- Response of the system; b- Response of the 
observed load torque. 

 
The control presents the best performances, to 
achieve tracking of the desired trajectory. The 
sliding mode controller rejects the load 
disturbance rapidly with no overshoot and with a 
negligible steady state error. The current is 
limited in its maximal admissible value by a 

saturation function. The decoupling of torque-
flux is maintained in permanent mode. 
 
7.1. ROBUSTNESS TESTS 
In order to test the robustness of the used method 
we have studied the effect of the parameters 
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uncertainties on the performances of the position 
control.  
 
To show the effect of the parameters 
uncertainties, we have simulated the system with 
different values of the parameter considered and 
compared to nominal value (real value).  
Three cases are considered: 
1. The moment of inertia (±50%).  
2. The stator and rotor resistances (+50%). 
3. The stator and rotor inductances (+20%). 
 
To illustrate the performances of control, we 
have simulated the starting mode of the motor 
without load, and the application of the load 

( Nm8+=lT ) at the instance t1 = 1 s and it’s 
elimination at t2 = 2 s; in presence of the 
variation of parameters considered (the moment 
of inertia, the stator resistances, the stator 
inductances) with position step of +3 rad/s.  
 
Figure (4) shows the tests of robustness realized 
with sliding mode control for different values of 
the moment of inertia. 
 
Figure (5) shows the tests of robustness realized 
with sliding mode control for different values of 
stator resistances. 

 
Fig. 4. Test of robustness for different values of the moment of inertia:  

1) – 50%, 2) nominal case, 3) +50%. 

 
Fig. 5. Test of robustness for different values of stator resistances: 1) nominal case, 2) +50%. 
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Figure (6) shows the tests of robustness realized 
with sliding mode control for different values of 
stator inductances. 
 
The results of figures (4, 5, 6) show a decrease or 
increase of the moment of inertia J, the 
resistances or the inductances doesn’t have any 

effects on the performances of the technique 
used (figure 5 and 6). An increase of the moment 
of inertia gives best performances, but it presents 
a slow dynamic response (figure 4). The 
proposed control gives to our controller a great 
place towards the control of the system with 
unknown parameters. 

 
Fig. 6. Test of robustness for different values of stator inductances: 1) nominal case, 2) +20%. 

 
 
8. CONCLUSIONS 
In this study, hydroxyproline levels in the skin of 
A sliding mode control method has been 
proposed and used for the control of a 
synchronous machine using field oriented 
control. A simple observer of the load torque is 
presented. Simulation Results show good 
performances obtained with proposed control. It 
has been shown the robustness of proposed 
control in relation to the presence internal and 
external perturbations. With a good choice of 
parameters of control and the smoothing out 
control discontinuity, the chattering effects are 
reduced, and the torque fluctuations are 
decreased. The position control operates with 
enough stability and has strong robustness to 
parameter variations. Furthermore, this 
regulation presents a simple robust control 
algorithm that has the advantage to be easily 
implantable in calculator. 
 
APPENDIX  
Three phases SM parameters: 
Rated output power 3HP, Rated phase voltage 
60V, Rated phase current 14 A, Rated field 
voltage vf =1.5V, Rated field current if=30A, 

Stator resistance sR =0.325Ω, Field resistance 

fR =0.05Ω, Direct stator inductance dsL =8.4 

mH, Quadrature stator inductance qsL =3.5 mH, 

Field leakage inductance fL =8.1mH, Mutual 
inductance between inductor and  armature 

fdM =7.56mH, The damping coefficient 

B =0.005 N.m/s, The moment of inertia J =0.05 
kg.m2, Pair number of poles p = 2. 
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