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ABSTRACT 

 
The power generated by wind turbines depends on several factors. One of them is the power factor 
also known as blade efficiency. In this study, the power factor is predicted using Artificial Neural 
Networks (ANN) and comparisons made with conventional model approach for the selected turbine 
profiles mostly used in practice. The study has shown that the prediction of power factors from seven 
input parameters by ANN yields better results than those of the conventional model. 
 
Keyword::  wind turbine, power factor, artificial neural networks. 
 
1. INTRODUCTION 
Sustainability of power supplies is one of the 
most challenging issues that the world faces 
today since the conventional sources of energy, 
mainly the fossil fuels, are coming to an end[1]. 
On the other hand, demand for energy increases 
not only in developing countries but all over the 
world. Energy wars may already be observed in 
many parts of the world. To this end, renewable 
energy sources such as sun, wind and wave are 
being discovered as life-saving jackets. Actually 
some renewable sources such as sun, wind and 
wave energy have already been in use.  
 
Wind energy is the fastest developing renewable 
energy resource because of its several advantages 
such as ease of development, environmental 
friendliness, cost effectiveness and the existence 
of several feasible sites to establish wind farms. 
Therefore, design of wind power plants receives 
much more attention than ever before. The most 
important part of a wind power plant is the wind 
turbine which transforms the wind’s kinetic 
energy into mechanical or electric energy. The 
system is basically comprised of a blade, a 
mechanical part and an electric engine connected 

to each other. The energy of wind is the function 
of wind speed, the specific mass of air, the area 
of air space where the wind is captured and the 
height at which the rotor is placed. Since wind 
power is proportional to the third power of wind 
speed, wind speed is the most important factor 
that affects wind energy. Hence the location of 
the wind farm is crucial in order to exploit winds 
of enough speed.  
 
The power generated by each wind turbine 
depends on parameters such as turbine type, the 
number of blades and the power factor. The 
power factor is also called blade yield and can be 
obtained from blade and wind properties. In this 
study, power factor is predicted using artificial 
neural networks (ANN) from eight input 
variables. A Back Propagation Algorithm is used 
to train the network for NACA 4415 and LS-1 
profile types with 3 and 4 blades. Characteristic 
values of the two profiles are given in Figures 1, 
2 and 3 [2-4]. Appropriate momentum and 
training coefficients used during the training 
process are selected through several trials [4]. 
Comprehensive reviews of ANN applications in 
energy systems in general [5] and in renewable 
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energy systems in particular [6] are available. 
Regarding the use of wind energy, there are 
several applications of ANN such as a 

classification mechanism for determining 
average wind speed and power [7]. 

 
Figure 1. Plot of the values of the profile type NACA 4415. 

 

 
Figure 2. Plot of the values of the profile type LS-1 
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Figure 3. Cpschmitz - λA curve 

 
2. ARTIFICIAL NEURAL 
NETWORKS 
Suppose that a three-layer neural network as 
shown in Figure 4 as ni input neurons, nh hidden 
neurons and no output neurons. If o j

m represents 
the output of the j - th  neuron in the m - th  layer 

and Wij
m  the weight on connection joining the 

i - th  neuron in the (m - 1) - th  layer to the j - th  
neuron in the m - th  layer, then  
 
                 (1) 
where the function f(.) can be any differentiable 
function. Usually the sigmoid function is used as 
follows: 
f(x) 1 1 e x= + −             (2) 

This function limits the outputs Oj
m  among 0 and 

1. It is possible to shift the function f(.) along x-
axis by adding a threshold value to the 
summation term of (1) before the function f(.) is 
applied [8].  

 
Figure 4. A three layer feed forward ANN 

 
To achieve the required mapping capability, the 
neural network is trained by repeatedly 
presenting a representative set of input/output 
patterns with back propagation error and weight 
adjustment calculation in order to minimize the 
global error Ep  of the network, i.e.; 

E
1
2

 (t o )p pj pj
m 2

j 1

n0
= −

=
∑                  (3) 

where t pj  is the target output of neuron j  and 

opj
m  is the computed output from the neural 

network corresponding to that neuron. Subscript 



   
Neural Prediction Of Power Factor In Wind Turbines 

 

 
Rasit ATA, Numan Sabit CETIN 

434

 

p indicates that the error is considered for all 
input patterns.  
      
The minimization of this average sum-squared 
error is carried out over the entire training 
patterns. As the outputs opj

m  are functions of the 

connection weights wm and the outputs opj
m−1  of 

the neurons in layer m - 1  which are functions of 
the connection weights wm−1 , the global error 

Ep  is a function of wm  and wm−1 . Here 

w with superscript refers to the connection 
matrix. A backpropagation algorithm is used in 
the optimization [9]. 
 
3. FORMULATION OF THE 
PROBLEM   
The power factor can be defined as the ratio 
between the power in turbine shaft (Pp) and the 
wind power (Pr) due to its kinetic energy right 
before the turbine plane, which yields  

r

P
P P

PC =              (4) 

     The wind power, Pr, in the air flow passing 
through the circle with a radius of R immediately 
before the turbine plane can be defined as; 

32

2
1

rr VRP ρπ=             (5) 

where ρ is the density of the air and Vr is the 
wind speed. The maximum power factor is 
59.26% which is called Betz limit and the real 
value obtained in practice can be 45 % at the 
maximum [4]. The reason why the real value is 
less than the theoretical one is that there are the 
losses not considered in theory. These losses are 
[1-3,9]: 
profile losses 
end losses 
eddy losses 
blade number losses 
  
3.1. Profile losses 
This can be considered using  

)/(1 Aprofile ελη −= ,                              (6)  

where λA is tip speed ratio and  ε is the number 
of slip(slide) and can be expressed as 

D

L

C
C

=ε ,    (7) 

where CL  is the coefficient of lift force of chosen 
profile  and  CD  is the coefficient of drag 
force[1-3].  
 
3.2 End losses 
In the end of a blade, airflow from the lower side 
of the profile to the upper side takes place. 
Coupling with the airflow coming towards the 
blade, this airflow widens gradually. In the 
calculations, this can be considered as 
ηend = 1-(1,84/z.λA),    (8) 
where z is the number of turbine blade[1-3,9]. 
 
3.3 Eddy losses 
According to the Betz theory the wind does not 
change before and after the turbine plate. 
However the air mass encountering the blade 
changes its direction. The eddy losses can be 
calculated by Cpschmitz -λA diagram (Figure 3) [3] 
if the same profile is used throughout the blade 
[1-3].   
 
3.4. Blade number losses 
In a turbine with more than four blades, the air 
movement through blades gets complicated and 
its theoretical analysis can not easily be made. 
Therefore, the theory of Glauert-Shmitz 
previously mentioned applies to the turbines with 
four our less wind turbine blade [1-3, 9]. 
Condisering the losses mentioned, the power 
factor can be re-expressed as 
Cp= f(A, λA, Cpschmitz, ηend, ηprofile, ηeddy, ηblade 

number),  
         (9) 
where A represents the type of profile used, λA is 
the tip speed ratio, Cpshmitz  is Shmitz coefficient 
and the η values are the associate losses. As seen 
from Eqn. (9), assessment of the power factor is 
quite cumbersome, for which an effective 
procedure is needed. The procedure is designed 
to estimate optimum power factors for 3-blade 
and 4-blade turbines. The profile types 
considered are LS-1 and NACA 4415. The 
properties of these profiles are presented in Figs. 
1, 2 and 3 [2]. The input parameters are taken as 
those included in Eq. (9) except for the eddy 
losses. The blade number losses are not directly 
taken us an input parameter but considered 
during the preparation of training data. The 
design procedure for such a network is described 
in the next section. 
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4. DESIGN OF THE ANN 
The design process includes the following steps: 
  (i) Preparation of suitable training data 
 (ii) Selection of a suitable ANN structure 
(iii) Training of the ANN 
 (iv) Evaluation of the trained network 
 
It is important to appreciate that the design 
process is iterative. It is possible that a particular 
structure chosen in step (ii) may not train the 
neural network to a designer’s satisfaction. In 
this situation, the structure has to change and the 
ANN should be retrained. Also the trained 
network may not perform satisfactorily on test 
data. In that situation the network structure 
should be changed and network is retrained and 
tested. 
 
The training patterns should contain all the 
necessary information to generalize the problem.  
Having been collected the data values, they are 
normalized between [0, 1]. The test data is 
randomly selected from the training data set. The 
same normalization procedure should be applied 
to the test data. 
 
The selection of neural network includes the 
selection of number of layers, choice of transfer 
function, number of inputs and number of 
neurons in each layer. Alternative architectures 
including different number of layers and the 
neurons should be tried to find the best 
performing structure.  As already mentioned, a 
three-layer feed-forward network can model 
complex-mapping functions reasonably well and, 
therefore, is adopted for this application. A 
sigmoid non-linear mapping function helps in 
modeling functions of arbitrary shape and is 
employed in this application. The number of 
neurons in the input layer and hidden layers are 
decided by experimentation which involves 
training and testing different network 
configurations. The neural network literature 
[10-12] provides guidelines for selecting the 
number of neurons for a starting network.  
      
Training of the selected network is done using 
the training patterns and back propagation 
algorithm. Training is stopped when the mean 
squared error between actual outputs and desired 
outputs stops improving. However, at that point, 
if the designer is not satisfied with the training 
and performance of the ANN, the training data 
and structure of the ANN are modified and the 
design process is repeated. 

5. ESTIMATION OF THE OPTIMAL 
POWER FACTOR 
The proposed approach is applied to profile types 
for LS-1 ve NACA4415. The number of input 
neurons was chosen as seven inputs. The input 
variables are given by  
x(t)= [ A, λA, Cpschmitz,ηend3, ηend4, ηprofile1, 
ηprofile2],            (10) 
where A is an integer number representing the 
type of profile, 1 for LS-1 and 2 for NACA4415; 
λA is the tip speed ratio, Cpschmitz is the schmitz 
coefficient mentioned previously; ηend represents 
the end losses for 3 and 4 blade turbines. ηprofile is 
the profile type losses for the type of profiles 
considered, LS-1 and NACA4415. On the other 
hand, the output variables take the form: 
 y(t)= [Cpopt3, Cpopt4 ],           (11) 
where Cpopt3, Cpopt4 are the power factors for the 
wind turbines with 3 and 4 blades. Once the 
ANN structure is formed the next step is to train 
the network to check whether the structure is 
capable of producing the output variables from 
the inputs satisfactorily. To carry out this 
process, a set of data is normally needed. To this 
end, for all input and output variables 30 training 
samples were formed from the characteristic 
values given in Figures 1, 2 and 3 and given in 
Table 1 and 2 for the two profile types 
considered. The performance of training process 
is measured according to whether the training 
error is minimal. The structure of the network 
(number of layers and neurons) training and 
momentum coefficients were altered to minimize 
the error to find the best architecture. 
  
The variation of training error with respect to the 
number of neurons in the hidden layer is 
presented in Figure 5. As seen from Figure 5, the 
training error is minimal when the number of 
neurons is 4. Therefore, the number of neurons in 
hidden layer is chosen as 4. Therefore, an 
artificial neural network comprising an input 
layer with seven neurons, a hidden layer with 
four neurons and an output layer with two 
neurons have been selected. 
 
The three-layered network trained above was 
then tested. The testing process was carried out 
using nine different (from the training samples) 
samples and the outputs are presented in Table 3. 
As seen from Table 3, the performance of the 
network is satisfactory with small deviation from 
the values obtained from the curves given in 
Figs. 1, 2 and 3. The conventional values given 
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in Table 3 are obtained from Figs. 1, 2 and 3 and 
included in Tables 1 and 2. Therefore, it can be 
stated that the proposed methodology provides 
more detailed values in an attempt to obtain the 

optimal power factor wind turbines rather than 
using the small number of data obtained from the 
curves whose derivations require rather 
complicated process. 
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Figure 5. The effect of number of nodes in hidden layer 

 
Table 1. Calculated Values for the Profile Type NACA 4415 

λA CPSchmitz ηend 
(z=1) 

ηend 
(z=2) 

ηend 
(z=3) 

ηend 
(z=4) 

ηprofile 

(α=00) 
ηprofile  
(α=50) 

ηprofile  
(α=100) 

CP opt3 CP opt4 

0,5 0,238 -2,6800 -0,8400 -0,2267 0,0800 0,9878 0,9922 0,9908 -0,0534 0,0189
1.0 0,400 -0,8400 0,0800 0,3867 0,5400 0,9756 0,9845 0,9816 0,1523 0,2127
1,5 0,475 -0,2267 0,3867 0,5911 0,6933 0,9633 0,9767 0,9724 0,2742 0,3217
2.0 0,515 0,0800 0,5400 0,6933 0,7700 0,9511 0,9690 0,9632 0,3460 0,3843
2,5 0,531 0,2640 0,6320 0,7547 0,8160 0,9389 0,9612 0,9540 0,3852 0,4165
3.0 0,537 0,3867 0,6933 0,7956 0,8467 0,9267 0,9535 0,9448 0,4073 0,4335
3,5 0,538 0,4743 0,7371 0,8248 0,8686 0,9144 0,9457 0,9355 0,4196 0,4419
4.0 0,541 0,5400 0,7700 0,8467 0,8850 0,9022 0,9380 0,9263 0,4296 0,4491
4,5 0,544 0,5911 0,7956 0,8637 0,8978 0,8900 0,9302 0,9171 0,4371 0,4543
5.0 0,547 0,6320 0,8160 0,8773 0,9080 0,8778 0,9225 0,9079 0,4427 0,4582
5,5 0,550 0,6655 0,8327 0,8885 0,9164 0,8655 0,9147 0,8987 0,4470 0,4610
6.0 0,553 0,6933 0,8467 0,8978 0,9233 0,8533 0,9070 0,8895 0,4503 0,4631
6,5 0,556 0,7169 0,8585 0,9056 0,9292 0,8411 0,8992 0,8803 0,4528 0,4646
7.0 0,559 0,7371 0,8686 0,9124 0,9343 0,8289 0,8915 0,8711 0,4547 0,4656
7,5 0,562 0,7547 0,8773 0,9182 0,9387 0,8166 0,8837 0,8619 0,4560 0,4662
8.0 0,565 0,7700 0,8850 0,9233 0,9425 0,8044 0,8760 0,8527 0,4570 0,4665
8,5 0,568 0,7835 0,8918 0,9278 0,9459 0,7922 0,8682 0,8435 0,4576 0,4665
9.0 0,570 0,7956 0,8978 0,9319 0,9489 0,7800 0,8605 0,8343 0,4570 0,4654
9,5 0,572 0,8063 0,9032 0,9354 0,9516 0,7677 0,8527 0,8250 0,4563 0,4641
10.0 0,574 0,8160 0,9080 0,9387 0,9540 0,7555 0,8450 0,8158 0,4553 0,4627
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Table 2. Calculated Values for the Profile Type LS-1 

λA CPSchmitz 
ηend 

(z=1) 
ηend 

(z=2) 
ηend 

(z=3) 
ηend 

(z=4) 
ηprofile 

(α=00)
ηprofile  
(α=50)

ηprofile  
(α=100)

ηprofile  
(α=150) CP opt3 CP opt4 

0,5 0,238 -2,680 -0,840 -0,227 0,080 0,986 0,994 0,996 0,994 -0,054 0,019
1,0 0,400 -0,840 0,080 0,387 0,540 0,971 0,989 0,991 0,988 0,153 0,214
1,5 0,475 -0,227 0,387 0,591 0,693 0,957 0,983 0,987 0,981 0,277 0,325
2,0 0,515 0,080 0,540 0,693 0,770 0,943 0,978 0,983 0,975 0,351 0,390
2,5 0,531 0,264 0,632 0,755 0,816 0,929 0,972 0,978 0,969 0,392 0,424
3,0 0,537 0,387 0,693 0,796 0,847 0,914 0,967 0,974 0,963 0,416 0,443
3,5 0,538 0,474 0,737 0,825 0,869 0,900 0,961 0,970 0,956 0,430 0,453
4,0 0,541 0,540 0,770 0,847 0,885 0,886 0,956 0,965 0,950 0,442 0,462
4,5 0,544 0,591 0,796 0,864 0,898 0,871 0,950 0,961 0,944 0,452 0,469
5,0 0,547 0,632 0,816 0,877 0,908 0,857 0,945 0,957 0,938 0,459 0,475
5,5 0,550 0,665 0,833 0,888 0,916 0,843 0,939 0,952 0,931 0,465 0,480
6,0 0,553 0,693 0,847 0,898 0,923 0,829 0,934 0,948 0,925 0,471 0,484
6,5 0,556 0,717 0,858 0,906 0,929 0,814 0,928 0,944 0,919 0,475 0,488
7,0 0,559 0,737 0,869 0,912 0,934 0,800 0,923 0,939 0,913 0,479 0,491
7,5 0,562 0,755 0,877 0,918 0,939 0,786 0,917 0,935 0,906 0,482 0,493
8,0 0,565 0,770 0,885 0,923 0,943 0,771 0,912 0,931 0,900 0,486 0,496
8,5 0,568 0,784 0,892 0,928 0,946 0,757 0,906 0,926 0,894 0,488 0,498
9,0 0,570 0,796 0,898 0,932 0,949 0,743 0,901 0,922 0,888 0,490 0,499
9,5 0,572 0,806 0,903 0,935 0,952 0,729 0,895 0,918 0,881 0,491 0,499
10,0 0,574 0,816 0,908 0,939 0,954 0,714 0,890 0,913 0,875 0,492 0,500
10,5 0,574 0,825 0,912 0,942 0,956 0,700 0,884 0,909 0,869 0,491 0,499
11,0 0,574 0,833 0,916 0,944 0,958 0,686 0,879 0,905 0,863 0,490 0,498
11,5 0,574 0,840 0,920 0,947 0,960 0,671 0,873 0,900 0,856 0,489 0,496

 
Table 3. Comparison of Power Factor as Obtained by ANN and Conventional Method (CM). 

Test 
No 

By ANN 
 Cpopt3           Cpopt4 

By CM 
        Cpopt3              Cpopt4  

Error (%) 
 

1 0.4531 0.4664 0.4528 0.4646 -0.06 -0.38 
2 0.4576 0.4676 0.4576 0.4665 0.00 -0.23 
3 0.4566 0.4649 0.4553 0.4627 -0.28 -0.47 
4 0.3525 0.3888 0.3510 0.3900 -0.42 0.30 
5 0.4505 0.4702 0.4520 0.4690 0.33 -0.25 
6 0.4637 0.4808 0.4650 0.4800 0.27 -0.16 
7 0.4890 0.4991 0.4890 0.4960 0.00 -0.62 
8 0.3689 0.3916 0.3700 0.3890 0.29 -0.66 
9 0.3298 0.3374 0.3320 0.3390 0.66 0.47 

 

6. CONCLUSIONS 
An ANN-based approach estimation of power 
factor in wind turbines is presented in this paper. 
Because of the capabilities of parallel 
information processing and generalization of the 
ANN, the proposed algorithm is found to be fast 
and accurate. The proposed algorithm can be 

used for computations of power factor with the 
use of state variables in wind turbines.  
 
The proposed approach is illustrated in this paper 
by using selected wind turbine types (LS-1 and 
NACA4415). Test results have demonstrated that 
the trained ANN can accurately predict power 
factor for different profile types through its 
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generalization and adaptability capabilities. The 
further applications to the other mostly used 
profile types such as Clark Y, NACA 2412, 
RAF-15, C-80, Göttingen 398, and M-6 can be 
achieved in the same manner as introduced in 
this paper. 
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