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ABSTRACT 
 In this article an attempt is made to study the applicability of a general purpose, supervised feed 
forward neural network, namely multilayer perceptron (MLP) neural network and finite element 
method (FEM) to solve the inverse problem of defect identification. The approach is used to identify 
unknown defects in metallic walls. The methodology used in this study consists in the simulation of a 
large number of defects in a metallic wall, using the finite element method. Both variations in with 
and height of the defects are considered. Then, the obtained results are used to generate a set of 
vectors for the training of MLP neural network model. Finally, the obtained neural network is used to 
identify a group of new defects, simulated by the finite element method, but not belonging to the 
original dataset. Noisy data, added to the probe measurements is used to enhance the robustness of 
the method. The reached results demonstrate the efficiency of the proposed approach, and encourage 
future works on this subject. 
 
Keywords: Inverse problem, MLP neural network, defect identification, FEM. 
 

1. INTRODUCTION 
 

Inverse problems in electromagnetic are usually 
formulated and solved as optimization problems, 
so iterative methods are commonly used 
approaches to solve this kind of problems [1]. 
These methods involve solving well behaved 
forward problem in a feedback loop. The 
numerical models such as finite element model 
are used to represent the forward process. 
However, iterative methods using the numerical 
based forward models are computationally 
expensive. Recently, artificial neural networks 
(ANNs) are introduced to solve the inverse 
problems in most of the research applications in 
industrial nondestructive testing, mathematical 
modeling, medical diagnostics, geophysical 
prospecting for petroleum and minerals, and 
detection of earthquakes [2-6]. 

 
Electromagnetic inverse problems can 
sometimes be stated as simply as the following: 
if there is an electromagnetic device, it is easy to 
calculate the magnetic induction in any region of 
the device. What, about taking some values of 
magnetic induction to predict defects in a region 
of the electromagnetic device. Since, the inverse 
problem is highly nonlinear and without 
formulations to follow, it is very difficult to 
construct an effective inversion algorithm. An 
artificial neural network, however, has the 
following properties: nonlinearity, input-output 
mapping, fault tolerance and most important, 
learning from examples. The need for learning 
from examples is closely related to the difficulty 
of formulating explicit rules. 
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ANNs are based on abstracting from the 
complex details of human thought and building a 
simple model using a network of simple 
processors. ANNs consist of a large number of 
simple processing elements called neurons or 
nodes. Each neuron is connected to other 
neurons by means of directed links, each with an 
associated weight [7]. The weights represent 
information being used by the network to solve a 
problem. The ANN essentially determines the 
relationship between input and output by looking 
at examples of many input-output pairs. In 
learning processes, the actual output of the ANN 
is compared to the desired output. Changes are 
made by modifying the connection weights of 
the network to produce a closer match. The 
procedure iterates until the error is small enough 
[8]. 
 
In this paper we present a new method for the 
robust estimation of defect dimensions. The 
method is based on the use of FEM and ANN 
scheme. The network is trained by a large 
number of defects in a metallic wall simulated 
using the FEM. The obtained results are then 
used to generate the training vectors for ANN. 
The trained network is used to identify new 
defects in the metallic wall, which not belong to 
the original dataset. The network weights can be 
embedded in an electronic device, and used to 
identify defects in real pieces, with similar 
characteristics to those of the simulated ones. 
 
For the methodology presented here, the 
measured values are independent of the relative 
motion between the probe and the piece under 
test. In other words, the movement is necessary 
only to change the position of the probes, to 
acquire the field’s values, which are necessary 
for the identification of new defects. 
Furthermore, the use of neural network in 
conjunction with the FEM permits a very good 
determination of both, width and height of the 
defect. To show stability of the proposed 
method, we add one percent noise to the inputs 
values of the network.  
 
2. NEURAL NETWORKS 
ARCHITECTURE 
 
ANNs, also called artificial neural systems. 
neurocomputers, parallel distributed processors 

or connectionist models are an attempt to mimic 
the structure and functions of brains and nervous 
systems of living creatures. Generally speaking, 
an ANN is an information processing systems 
composed of a large number of simple 
processing elements, called artificial neurons or 
simply nodes. Neurons are interconnected by 
direct links called connections with an 
associated weight, which cooperate to perform 
parallel distributed processing in order to solve a 
desired computational task. One of the attractive 
features of ANNs is their capability to adapt 
themselves to special environmental conditions 
by changing their connection strengths or 
structure. Years of studies have shown that 
ANNs exhibit a surprising number of the brain's 
characteristics. For example, they learn from 
experience, generalize from previous examples, 
and abstract essential characteristics from inputs 
containing irrelevant data. In this paper we 
choose the back-propagation method to 
demonstrate the potential of ANNs to solve 
electromagnetic inverse problems of defects 
identifications [9]. 
 
One of the most influential developments in 
ANN was the invention of the backpropagation 
algorithm, which is a systematic method for 
training multilayer ANNs [10]. The standard 
backpropagation learning algorithm for 
feedforward networks aims to minimize the 
mean squared error defined over a set of training 
data. In feedforward ANNs neurons are arranged 
in a feedforward manner, so each neuron may 
receive an input from the external environment 
or from the neurons in the former layer, but no 
feedback is formed. The network architecture for 
a feed forward network consists of layers of 
processing nodes. The network always has an 
input layer, an output layer and at least one 
hidden layer. There is no theoretical limit on the 
number of hidden layers but typically there will 
be one or two. In our case, there is only one 
hidden layer. Every neuron in each layer of the 
network is connected to every neuron in the 
adjacent forward layer. A neuron's activity is 
modeled as a function of the sum of its weighted 
inputs, where the function is called the activation 
function, which is typically nonlinear, thus 
giving the network nonlinear decision capability. 
Each layer is fully connected to the succeeding 
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layer. The arrows indicate flow of information (Fig.1) [11, 12]. 
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Fig. 1. Feed forward neural network 
 

Where ln  is the number of neurons in the input 

layer, Hn  is the number of neurons in the 

hidden layer, On  is the number of neurons in 

the output layer, lx  are the inputs to the input 
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where the activation function f  is traditionally 
the Sigmoid function but can be any 
differentiable function. The Sigmoid function is 
defined as 

)1(
1)( xe

xf
−+

=  (3) 

This activation function is depicted in Fig. 2. 
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Fig. 2. Sigmoid activation function 

 
The backpropagation method is based on finding 
the outputs at the last (output) layer of the 
network and calculating the errors or differences 
between the desired outputs and the current 
outputs. When the outputs are different from the 
desired outputs, corrections are made in the 
weights, in proportion to the error. 
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where md  represent the desired output, 
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The update rule for the weights from the hidden 
layer to the output layer is 
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where Hnk ,...,1= , Onm ,...,1=  and η  is 
the learning rate. The update rule for the weights 
from the input layer to the hidden layer is 
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where lnl ,...,1= , Hnk ,...,1= . 
 
3. ELECTROMAGNETIC FIELD 
COMPUTATION 
 
In this study, the magnetic field is calculated 
using the FEM. This method is based on the A  
representation of the magnetic field [13]. The 
calculations are performed in two steps. First, 
the magnetic field intensity is calculated by 
solving the system of equations: 

( )  J H rot =  (10) 

( ) 0div   B =  (11) 
where H  is the magnetic field, B  the 
magnetic induction and J  the electric current 
density. This system of equations is coupled 
with relations associated to material property, 
material being assumed to be isotropic, 

( )H|H| B μ=  (12) 
The magneto-static field analysis for a Cartesian 
electromagnetic system is carried out by the 
FEM [14]. The equation of the electromagnetic 
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field is expressed by the magnetic vector 
potential A  as, 

( ) JAgrad −=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
μ
1div  (13) 

where μ  is the magnetic permeability. 
Equation (13) is discretized using the Galerkin 
FEM, which leads to the following algebraic 
matrix equation: 
[ ] [ ] [ ]FAK =  (14) 
with: 

( )∑α=
j

jj AA yx,  (15) 

∫∫=
Ω

jiij dydxαα
μ
1 gradgradK  (16) 

∫∫=
Ω

ii dydxαJF  (17) 

where iα  and jα  are the projection function 
and the interpolation function respectively. 
In the second step, the field solution is used to 
calculate the magnetic induction B . More 
details about the finite element theory can be 

found in [14]. 
 
4. METHODOLOGY FOR 
DEFECTS IDENTIFICATION 
 
First of all, an electromagnetic device was 
idealized to be used as an electromagnetic field 
exciter (Fig. 3). In this paper, we have 
considered direct current in the coils. So, the 
material of the metallic wall must be 
ferromagnetic. To increase the sensitivity of the 
electromagnetic device a magnetic core with a 
high permeability is used and the air gap 
between the core and the metallic wall is 
reduced to a minimum. Deviations of the 
magnetic induction at equally stepped points in 
the region of the device are taken, on the 
external surface of the metallic wall. 
 
In order to generate the training vectors for the 
neural networks, a large number of defect shapes 
must be simulated. In this work, 300 defects 
have been simulated, each one corresponding to 
one simulation with the finite element program. 
 

xxxxxxx

Coil 

Sensors 

Metallic Wall 

Magnetic Core 

Fig. 3. Arrangement for the measurements 
 
Fig. 4 show the steps of the methodology used in 
this work. Steps 1-4 correspond to the finite 
element analysis of the defects. In this work we 

used a 2D finite element program to simulate the 
defects in a metallic wall. 
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 Generation of the initial 
finite element mesh 

 
Modifications in the finite 
element mesh, changing 
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Finite element solutions 
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inductions values at 
the sensor position 

Analysis of the data, in 
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Generation of the neural 
network training vectors 
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Validation tests 
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Fig. 4. Flowchart of the used methodology 
 
The problem was solved on a PC with P4 2.4G 
CPU under Matlab® 6.5 workspace using the 
Partial Differential Equation Toolbox and Neural 
Network Toolbox for the finite element meshes 
generation and neural networks architecture 
definition respectively [15, 16]. For the finite 
element problem resolution and the inverse 
problem solution, we use programs developed by 
us. The simulations were done for a hypothetic 
metallic wall with 1 mm height and 15 mm 

length. The material of the wall is 1006 Steel (a 
magnetic material). The relative permeability of 
the core is supposed to be 2500 and the 
permeability of the defects was set to the  
permeability of the air. The air gap is 0.1 mm. 
Finite element meshes with 17000 elements and 
8000 nodes, approximately, were used in the 
simulations. Fig. 5 shows a field distribution for 
one of these simulations. 
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Fig. 5. Solution in magnetic potential vector A for a  
defect with 0.15 mm height and 1.18 mm width 

 
During the phase of finite element simulations, 
errors can appear, due to it’s massively nature. 
So, the results of the simulations must be 
carefully analyzed. This can be done, for 
instance, plotting in the same graphic the 
magnetic induction deviations for a set of 
defects. Fig. 6 shows the deviation on the 
magnetic induction in the region of the device at 
the sensor position for four defects having the 
same height (0.15 mm), and width ranging from 
0.26 mm to 3.23 mm. A similar graphic, with 
height equal to 0.3 mm, is shown in Fig. 7. Fig. 

8 shows the graphics for a fixed width (1.8 mm), 
and four different heights ranging from 0.05 mm 
to 0.43 mm. Fig. 9 shows a similar graphic, for 
the width equal to 3.6 mm. In this graphics the 
magnetic inductions deviations are at vertical 
axes and length are at horizontal axes. 
  
The coherence of the curves in these graphics 
allows us to infer if there are or not errors in the 
dataset. 
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Fig. 7. Magnetic induction deviation for a set of 

defects with the same height (0.3 mm) 
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Fig. 8. Magnetic induction deviation for a set of 

defects with the same width (1.8 mm) 
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Fig. 9. Magnetic induction deviation for a set of 
defects with the same width (3.6 mm) 

 
5. FORMULATION OF NETWORK 
MODELS FOR DEFECTS 
IDENTIFICATION 
 
In the step 5, we generate the training vectors for 
neural networks. In this work, we generated 300 
vectors for neural networks training. Each of the 
vectors consists of 11 inputs valus, which 
represent the deviation of magnetic induction, 
and two output values, which represent the 
height and width of defect. Of the 300 vectors, a 
random sample of 225 cases (75 %) was used as 
training, 75 (25 %) for validation. Training data 
were used to train the application and the 
validation data were used to monitor the neural 
network performance during training. 
To show stability of the proposed approach, the 
measured values, which intrinsically contains 
errors in the real word, is obtained by adding a 
random perturbation to the exact inputs values of 
the network, such that 

λσ+= exactInnI~  (18)   
where σ is the standard deviation of the errors 
and λ is a random variable taken from a 
Gaussian distribution, with zero mean and 
unitary variance. 
Twin numerical experiments were performed. In 
the first one, noiseless data where employed 

(σ=0). The second numerical experiment was 
carried out using 1% of noise (σ=0.01).   
 
The MLP neural network architecture considered 
for this application was a single hidden layer 
with sigmoid activation function. The learning 
rate initially is 0.5 but as the root mean squared 
error gets smaller it decreases to 0.3. This is the 
experience from the training which also matches 
the idea of learning rate annealing in [7, 17]. A 
back propagation algorithm based on Levenberg-
Marquardt optimization technique [18, 19] was 
used to model MLP for the above data. 
 
The Levenberg-Marquardt technique was 
designed to approach second order training 
speed without having to compute the Hessian 
matrix [19]. This matrix approximated with use 
of the Jacobian matrix which can be computed 
through a standard back propagation algorithm 
that is much less complex than computing the 
Hessian matrix. The performance function will 
always be reduced on each iteration of the 
algorithm.  
 
For the MLP neural network, several network 
configurations were tried, and better results have 
been obtained by a network constituted by one 
hidden layers with 18 neurons. The MLP 
architecture had 11 input variables, one hidden 
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layer and two output nodes. Total number of 
weights present in the model was 254. The best 
MLP was obtained at lowest mean square error 
of 10-6. Percentage correct prediction of the 
MLP model was 96.7 % and 96.1% for noiseless 
and noise data respectively. 

Fig. 10 shows the performance of the MLP 
neural network during a training session. Table I 
show some results for the validation of the 
network, for this session. 

Fig. 10. Performance of the MLP network during 
a training session 

 
Table. I. Expected and obtained values during a training session 
 

 Height (mm) Width (mm) 
Expected Obtained Expected Obtained 

 0 % Noise 1 % Noise  0 % Noise 1 % Noise 
0.0710 0.0714 0.0703 5.9484 5.9479 5.9472 
0.1988 0.1983 0.1974 6.4670 6.4652 6.4587 
0.2418 0.2423 0.2409 1.5133 1.5171 1.5189 
0.3378 0.3372 0.3367 4.5790 4.5767 4.5708 
0.5169 0.5164 0.5155 3.3280 3.3295 3.3351 
0.6840 0.6843 0.6836 2.1720 2.1743 2.1827 

 
As we can see, the results obtained in the 
validation are very close to the expected ones. 
The worse identification defect was obtained 
with MLP network, because this network has 
some drawbacks such as slow convergence and 
the possibility that the network converges to a 
local minimum. 
 

 
6. NEW DEFECT DENTIFICATION 
 
After the neural networks training and respective 
validations, new defects were simulated by the 
FEM, for posteriori identification by the 
networks. Table II shows the dimensions of the 
defects (height and width), and the obtained 
dimensions, by the neural networks. 
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Table. II. Simulation results for new defects 
 

Defect Height (mm) Width (mm) 
 Expected Obtained Expected Obtained 
  0 % Noise 1 % Noise  0 % Noise 1 % Noise 
1 0.0750 0.0751 0.0754 3.910 3.909 3.903 
2 0.1250 0.1248 0.1236 2.462 2.471 2.480 
3 0.2150 0.2153 0.2110 4.850 4.843 4.837 
4 0.5750 0.5755 0.5686 1.080 1.082 1.090 

As we can see, the results obtained in the 
identification of new defects, obtained by the 
neural networks agree very well with the 
expected ones, demonstrating that the 
association of the FEM and ANNs in very 
powerful in the solution of inverse problems like 
defects identifications in metallic walls. 
 
7. CONCLUSION 
 
In this paper we presented an investigation on 
the use of the FEM and MLP neural network for 
the identification of defects in metallic walls, 
present in industrial plants. For a given metallic 
wall characteristics, defects can be simulated by 
the FEM, and the magnetic fields results are 
used in the preparation of the training vectors for 
neural network. The network can be embedded 
in electronic devices in order to identify defects 
in real metallic walls. This study indicates the 
good and stable predictive capabilities of MLP 
neural network in the presence of noise.  
 
The association of FEM and ANN techniques 
seems to be a useful alternative for identification 
of defects trough inverse analysis. Future works 
are intended to be done in this field, such as the 
use of more realistic FEM, computer parallel 
programming, in order to get quickly solutions. 
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