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ABSTRACT 
 
A new high rate binary linear block code construction technique, named as Geometric Construction 
(GC) codes, was proposed recently [1]. It generates all the even full information rate (optimal) 
Hamming distance – 4 codes. In this paper, we have enhanced the construction of GC codes with 
respect to code rate and derived a code family of hamming distance-8 GC codes.  
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1.  Introduction 
   The goal of channel coding is to find a code 
that is easy to encode and decode, and at the 
same time gives a high code rate for the 
largest minimum distance [2]. Binary codes of 
optimal or near optimal sizes can be used for 
power limited or bandwidth limited 
applications. Constructing long and powerful 
codes from small and simple codes is an old 
and popular technique. The |u|u+v| 
construction [3], squaring construction [4], 
block turbo codes [5], augmented product 
codes [6, 7] are some of these sorts of codes. 
They are advantages from encoding and 
decoding point of view as they have 
decomposable structure. 
   A similar type of binary linear block code 
construction technique, Geometric 
Construction (GC) codes were proposed 
recently [1], which are capable of generating 
all the even length and optimal binary linear 
block codes of Hamming distance-4, and that 
can also generate some higher distance good 
codes. GC technique basically uses simple 
component generator matrices to form (in a 
specified fashion) a larger generator matrix. In 
[1], the component generator matrices were 
specified for Hamming distance-4 codes. 
Additionally, some component generator 
matrices were specified for Hamming 

distance-8 and Hamming distance-16 codes 
but they are not able to generate neither 
mostly good codes nor a code family. In other 
words, the GC technique did not define a 
general way to find the necessary component 
generator matrices for higher Hamming 
distances. This was the week point of the 
construction in [1]. 
   In this paper, we enhance the GC method of 
[1] for Hamming distance-8 code construction 
and derive an optimal or near optimal 
Hamming distance-8 linear block code family. 
The optimal sizes of block codes can be 
looked up from the table of best known codes 
[8]. The codes constructed by the proposed 
GC technique have great flexibility with 
respect to adjusting the length of a code. 
Additionally, the constructed generator 
matrices of GC codes contain the lowest 
density of ones (that is k*d where k and d are 
the code dimension and length, respectively) 
since each row of a GC generator matrix 
contains binary 1’s of size equal to the desired 
Hamming distance of the code. The rows of a 
GC generator matrix have also quasi-cyclic 
property and it is known that a code with 
cyclic or quasi-cyclic property can be encoded 
with less complexity [9, 10] in a similar way 
of cyclic codes. The GC codes also 
incorporates the advantages of low-density, 
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quasi-cyclic, regular structure generator 
matrices and therefore practical for encoding 
and decoding.  
 
2. Hamming distance-8 GC code 
construction  
   The generic binary generator matrix G of the 
Hamming distance-8 GC codes C is proposed 
as in (1). 
 

 
(1) 

 
Where we specify the component matrices as 
G1=[1 1 1 1 ], G2=[1 1 0 0], G3=[1 0 1 0] and 
G4=[1 0 0 0]. The placement of these 
component generator matrices in GC 
generator matrix is similar to GC construction 
of [1]; but here, we need to set some 
additional placement rules. We modify the 
construction in [1] to obtain higher code rate 
GC codes of Hamming distance-8. The 
difference between the construction of 
existing GC codes of [1] and the proposed 
construction of (1) of this paper is pointed out 
by writing the enhanced part in italic character 
in (1). After illustrating the construction we 
proceed by describing it in detail.   
   For all the GC codes the ultimate generator 
matrix structure can only be formed basically 
as in (2).  
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Here, D1, D2, …, Dt are the group generator 
matrices of the component generator matrices     
(G1, G2, G3, G4). Each group generator matrix, 
Di (i=1,2,…,t), is separated with respect to the 
placements of the component generator 
matrices Gj (j=1,…,4). As seen in (2), the 
ultimate generator matrix of Hamming 
distance-8 GC codes is obtained by 
augmenting group generator matrices, Dis. 
The reason for grouping the component 
matrices is because, otherwise, the whole 
matrix G looks quite complex and so 
confusing to realise. The number of group 
generator matrices (t), depends on the size of 
code ( n, k, 8 ), where n, k and 8 is the code 
length, dimension and distance, respectively. 
The length of the GC code can be chosen as 
multiple of 4 and greater than or equal to 16. 
   Construction continues as follows: Each 
group generator matrix Di is obtained by 
placing a number of an identical component 
matrices ( Gj ) , which means each group 
contains only one of Gjs. An important 
condition that needs to be satisfied in all the 
group generator matrices is that the 
number of component matrices, which are 
placed in a row of Di, is adjusted so that the 
Hamming weight of the row becomes 8. As 
an example, if a Di is formed using the G4, 
then we must place 8 of G4s in the rows of Di. 
By doing so, the ultimate generator matrix of 
the GC code contains the least possible binary 
1’s in it, which is k×8, and becomes the lowest 
density generator matrix for a binary linear 
block code of Hamming distance 8. For the 
ease of descriptions, we denote the number of 
component generator matrices, in a row of a 
group matrix, as ‘m’, where m varies for 
different groups.    
   Keeping the described constraints in mind, 
placing and shifting of Gjs in Dis can be 
expressed more easily. Firstly, 2 of G1s are 
placed consecutively in (1), without interval, 
into the first row of D1. From above 
expressions, it is easy to know that 2 of G1s 
should be placed so that the Hamming 
distance of the row becomes 8. Note that the 
length of columns is n and 8 is less than n, so 
the rest of columns are filled by binary zeros. 
The columns of the first row is shifted to the 
right by a scale of one G1 and placed to the 
second row. This cyclic process is repeated for 
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the following rows of the group matrix D1 
until the G1 matrices arrive to the last column 
of a row. When D1 is constructed, it is placed 
in G as shown in (2). The rest of the process is 
slightly different than of D1 but all of them 
have the similar rule as follows.     
   We start from G2 and continue until G4. G2 
and G3 are placed in exactly the same way 
since they contain the same number of ones in 
them, whereas G4 is placed in a slightly 
different way as will be explained later. Let’s 
start constructing from D2; we place m 
(obviously m = 4) of G2s consecutively 
without interval in the first row of the group 
D2. The columns of the first row is shifted to 
the right by a scale of m/2 G2s and placed to 
the second row of D2. For the first group of 
G2s, the number of shifting is calculated as 21. 
It is important to emphasize the rule that 
the scale of shifting must be arranged to 
satisfy that the number of overlapping G2s 
between the consecutive rows is m/2 and 
also component matrices must not overlap 
between non-consecutive rows of the same 
group. The process of shifting to the right and 
placing the G2 matrices, which is also a cyclic 
process, is performed as long as there is room 
to place m of G2 matrices in the row of G. If 
there are not enough columns to place m of 
G2s, then we stop placing G2s. When the 
placement of the group D2 is complete, then 
we start placing the same G2s of group D3, if 
there is room to place them. In this case, there 
will be 1 interval among m of G2s in a row. At 
the second row of D3, the shifting to the right 
will be by 4 times. For this second group of 
G2s, the number of shifting is calculated as 22 
and for the following groups of G2s the 
number of shifting is calculated as 2i 
(i=1,2,…). The number of intervals can be 
calculated as the power of 2 minus 1 in order. 
Similarly, this process is performed until there 
will be no room left for placing G2s in a row. 
After the placement for D3 is ended, if there is 
still room for placing G2s of the group D4, 
then, m of G2s are placed with 3 intervals 
among them. In this group, shifting to right 
interval will be by 8 times (23) the scale of G2. 
This process continues for other groups {D4, 
D5,…} and the whole process is ended when 
there is no room left to place m of the same 
G2s in a row. Since G3 is placed in exactly the 
same way as G2 and augmented under them as 
in (2), we continue by describing the 
placement of G4 that is one of the new 
enhancement parts of GC construction 
introduced by this paper. 
   When placing m of (In this case clearly m = 
8) G4 matrices, they are placed consecutively 
without interval among them and shifted to 

right by m/2 of G4 matrices for a group Di. 
When this group is complete similar to the 
previous ones, we proceed by placing double 
G4s with initially 2 intervals and cyclically 
shift them such that the number of overlapping 
G4s between consecutive rows becomes m/2. 
Then for the following groups of double G4s, 
the interval becomes 6 and so on as the 
number of shifting of previous group minus 2. 
When the groups of double G4s are complete, 
we proceed by placing single G4s with one 
interval among them and by shifting to right 
for the following rows, regarding the general 
rule, such that the number of overlapping Gjs 
between the consecutive rows is m/2 and also 
component matrices must not overlap between 
non-consecutive rows of the same group. For 
other groups the interval becomes 3, 7,… as 
the power of 2 minus 1. At the end, all the 
constructed group matrices are placed in the 
ultimate GC code generator matrix G as 
shown in (2). In order to give a utility to the 
reader for verifying the above explanations of 
GC codes, we demonstrate some examples 
below.   
Example 1. We construct (64, 42, 8) GC code 
as shown in (3). This GC code is in the table 
of best-known codes [8] and is considered as 
optimal. For making the illustration simpler, 
we denote G1 = a, G2 = b, G3 = c and G4 = d in 
the GC generator matrix. 
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           aa 
                     ...  
                                   aa 
                                     aa   (D1 has 15 rows)         
        bbbb 
             bbbb    
                     . .  .  
                                 bbbb  (D2 has 7 rows) 
        b   b  b  b  
                 b  b   b   b             
G =                    b   b  b  b                               (3) 
        b       b        b       b 
        c ≡ b (same type) 
         dddddddd 
                 dddddddd    
                         dddddddd    
        dd    dd    dd    dd       
        d  d  d  d  d  d  d  d    {42×64} 
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In Example 2 we illustrate the construction for 
a bigger GC code in order to support the 
description of the construction. 
Example 2. We plot the constructed generator 
matrix of (128, 98, 8) GC code regarding their 
1’s in the matrix as below. In the figure of the 
matrix, the nonzero elements in the matrix are 

denoted by a square and the rest is left empty. 
The ranges of component matrices, Gjs, are 
pointed out by arrows. Here the number of 
ones in the matrix is 128×8=784, which is the 
least possible number for the generator matrix 
of a (128, 98, 8) block code.  

 

 
We continue by proving Theorem 1, which 
will be useful in finding the minimum 
Hamming distances of a GC code family. 
Theorem 1: Let G be the binary generator 
matrix of the code C that is constructed using 
(1). Then the minimum Hamming distance of 
the code C is 8. 
Proof: Recall firstly, the row vectors of the 
generator matrix of (1) have even weight 8 
and the number of ones in common is at most 
4. The codewords of C are obtained by linear 
combination of row vectors ai of G, ( i=1, 2 ... 
s, where s ≤ k). Then the minimum 
(Hamming) distance of C can be written as, 
             
wmin(a1 + a2 + … + as ) = w = d               (4)                                                                                                     
where at least one of ai’s is not a zero vector 
and d denotesthe Hamming distance of the 
code and also w denotes the Hamming weight 
of a vector. 
Case 1: If any two rows do not have 1 in 
common, then clearly w ≥ 8 since each vector 
has weight 8. 
Case 2:  Since we look for the minimum value 
for w, then there must be common 1’s among 
the rows. 
   Now consider the case (where the maximum 
overlapping occurs) there are 4 locations that 
have 1’s in common. In this case if there are 
even number of rows then w becomes           
w=j× 4  ( j ≥ 2 ) and if there are odd number  
 

 
of rows then w= (j+1)×4 where j is an integer 
greater than 2. 
    In order to obtain the minimum value for w 
the other 4 locations should be in different 
places. The best situation occurs between the 
rows following one another, i.e. ai and ai+1 for   
i = 1, 2,…s-1.       
wmin(  a1    +    a2    + …     +  as-1   +  as  ) =  w                                    
                                                 
                                 
                   4       4    … 4             4  (5) 
  
 
  In this case, each common 1’s are cancelled 
and so the summation in (4) is minimized. 
Therefore w is calculated as w = s × 8 – (s-1) 
× 4 = (s +1) × 4 where s ≥ 1. The minimum 
value is obtained when s = 1. Therefore w = d 
= 8. 
 
We constructed some of distance-8  GC codes 
utilizing a computer program and 
demonstrated them in Table 1.  
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Table 1. Some of the codes of the Hamming distance-8 GC code family. Codes are denoted as C = (n, 
k ,8) where n, k, 8 are the code length, dimension and distance, respectively. 
 

(16,5,8) (40,20,8) (68,43,8) . . . . . . . . . 

(20,6,8) (44,23,8) (72,46,8) (256,214,8) (2048,1882,8) (16384,15310,8) 

(24,9,8) (48,27,8) (76,49,8) . . . . . . . . . 

(28,12,8) (56,35,8) (80,53,8) (512,450,8) (4096,3798,8) (32768,30666,8) 

(32,16,8) (60,38,8) . . . . . . . . . . . . 

(36,17,8) (64,42,8) (128,98,8) (1024,926,8) (8192,7634,8) . . . 

 
 
2. CONCLUSION 
In this paper, we have enhanced and 
generalized the GC codes of [1] for Hamming 
distance-8 binary linear block codes. Some of 
the newly constructed codes have been 
demonstrated in Table 1 as a code family. As 
GC codes generator matrices have some useful 
properties like low density, regular and quasi-
cyclic structure and also grouping utility. They 
are also practical for encoder and decoder 
design of very long length block codes. We 
currently work on finding efficient decoding 
algorithm for the proposed codes. A future 
work includes generalizing the method for 
higher distance GC codes.  
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