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ABSTRACT 

In this study, we have presented Neuro-Fuzzy model for fault diagnosis of power transformer based on 
dissolved gas analysis (DGA). DGA is a very efficient tool for monitoring transformers in-service 
behavior to avoid catastrophic failures, costly outages and losses of production. Determination of the 
fault type with few key gases is a convenience for on-line gas-in-oil monitoring systems, used for detecting 
incipient faults. Three key gases Methane (CH4), Ethylene (C2H4) and Acetylene (C2H2) were chosen for 
this study. Neuro-Fuzzy is a reliable classification technique based on fuzzy and Artificial Neural 
Networks (ANN).  Total accumulated amount of these gases were calculated and 100 percents (%) of each 
gas used as inputs of Neuro-Fuzzy. The output is one of the fault types PD, D1, D2, T1, T2, and T3. 
Classification accuracy has reached up to 76.0 %.  
 
Keywords: Fault Diagnosis, ANFIS, Dissolved gas in oil analysis, Classification, Power transformer, 
Neuro-Fuzzy 

 
I. INTRODUCTION 
 
The basic function of power distribution 
system is to supply customers with electric 
energy as economically as possible and with 
an acceptable degree of reliability and quality. 
System reliability depends on components’ 
reliability. The condition of components and 
the environment directly affects system 
condition resulting in equipment failures. 
Power transformers are essential devices in a 
transmission and distribution system. As a 
major apparatus in a power system, the power 
transformer is vital to system operation. 
Failure of a power transformer may cause a 
break in power supply and  
loss of profits. Failure of these transformers is 
very costly to both the electrical companies 
and customers. Therefore, it is of great 
importance to detect incipient failures in 
power transformers as early as possible, so 

that we can switch them safely and improve 
the reliability of power systems. [1-4]  
 
To prevent the failures and to maintain 
transformers in good operating condition is a 
very important issue for utilities. 
Traditionally, routine preventative 
maintenance programs combined with regular 
testing were used. With deregulation, it has 
become increasingly necessary to reduce 
maintenance costs and equipment inventories. 
This has led to reductions in routine 
maintenance. The need to reduce costs has 
also resulted in reductions in spare 
transformer capacity and increases in average 
loading. [5] 
 
Neuro-Fuzzy were studied worldwide recently 
for pattern recognition such as fault diagnosis. 
In addition, ANFIS has also been successfully 
applied to a number of real-world problems 
such as handwritten characters recognition, 
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face detection, and medical diagnosis. The 
approach is systematic and properly motivated 
by statistical learning theory [6]. 
 
In this study, fault diagnosis in power 
transformers using Adaptive Neuro-Fuzzy 
Inference System (ANFIS) is presented. Three 
DGA criteria commonly used in industry was 
trained and tested with ANFIS classifier. The 
results of this study are useful in development 
of a reliable transformer automated diagnostic 
system. We determined best model choosing 
and reached 76.0 % diagnostic success. 
 
2. MATERIAL AND METHOD 
 
2.1. Dissolved Gas in Oil Analysis 
 
Dissolved gas analysis (DGA) is a very 
efficient tool for monitoring transformers in-
service behavior to avoid catastrophic failures, 
costly outages and losses of production. Like 
a blood test or a scanner examination of the 
human body it can warn about an impendent 
problem, give an early diagnosis and increase 
the chances of finding the appropriate cure. 
The operating principle is based on the slight 
albeit harmless deterioration of the insulation 
that accompanies incipient faults, in the form 
of arcs or sparks resulting from dielectric 
breakdown of week or overstressed parts of 
the insulation, or hot spots due to abnormally 
high current densities in conductors. Whatever 
the cause, these stresses will result in the 
chemical breakdown of some of the oil or 
cellulose molecules constituting the dielectric 
insulation. The main degradation products are 
gases, which entirely or partially dissolve in 
the oil where they are easily detected at the 
ppm level by DGA analysis. [7] 
 
The most significant fault gases produced by 
the decomposition of oil are hydrogen (H2), 
methane (CH4), acetylene (C2H2), ethylene 
(C2H4), and ethane (C2 H6). The 
decomposition of paper in addition to the 
preceding gases produces carbon monoxide 
(CO) and carbon dioxide (CO2). In analysis of 
the equipment condition, CO is considered a 
fault gas. C3 and C4 hydrocarbons are also 
formed, but experience has shown that a 
satisfactory diagnosis can be made without 
taking into account these gases. 
 

A number of methods are in use for the 
interpretation of the dissolved gas analysis. A 
qualitative and quantitative interpretation has 
a generally accepted list of gases and 
associated conditions are found [8]. The 
techniques include the conventional Key Gas 
Method, Ratio Methods, Graphical 
representation techniques and recently 
artificial intelligent methods. Key gas method 
uses characteristic “Key gases” to identify 
particular fault types. The suggested 
relationship between key gases and fault types 
is summarized as: 
 
H2----Corona 
O2 & N2----Non-fault related gases 
CO & CO2----Cellulose insulation breakdown 
CH4 & C2H6----Low temperature oil 
breakdown 
C2H4----High temperature oil breakdown 
C2H2----Arcing 
 
Rogers, Dornenberg and IEC [9] are the most 
commonly used ratio methods. They employ 
the relationships between gas contents. The 
key gas ppm values are used in these methods 
to generate the ratios between them. The 
ranges of the ratio are assigned to different 
codes which determine the fault types. Coding 
is based on experience and is always under 
modification. Ratio methods are limited in 
discerning problems when more than one type 
of fault occurs simultaneously [3]. 
 
2.2. Adaptive neuro-fuzzy inference 
system (ANFIS) 
 
ANFIS system as a combination of ANN and 
Fuzzy Inference System (FIS) [10] are used to 
determine the parameters of FIS.  ANFIS as 
shown in figure 1, which implements a Takagi 
Sugeno Kang (TSK) fuzzy inference system 
(figure 1) in which the conclusion of a fuzzy 
rule is constituted weighted linear 
combination of the inputs. 
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Figure 1. TSK type fuzzy inference system. 

 
 
 
 
2.2.1. Architecture of ANFIS 
 
The ANFIS is a fuzzy Sugeno model put in 
the framework of adaptive systems to 
facilitate learning and adaptation [11]. Such 
framework makes the ANFIS modeling more 
systematic and less reliant on expert 
knowledge. To present the ANFIS 
architecture, two fuzzy if–then rules based on 
a first order Sugeno model are considered [11-
14]. 
 
Rule 1: If (x is A1) and (y is B1) then (f1 =  
p1+ q1y + r1),      (1) 
Rule 2: If (x is A2) and (y is B2) then (f2 = p2x 
+ q2y + r2).   (2) 
 
where x and y are the inputs, Ai and Bi are the 
fuzzy sets, fi are the outputs within the fuzzy 
region specified by the fuzzy rule, pi; qi and ri 
are the design parameters that are determined 
during the training process.  
The ANFIS architecture to implement these 
two rules is shown in Figure 2, in 
which a circle indicates a fixed node, whereas 
a square indicates an adaptive node. 
In the layer 1 , All the nodes are adaptive 
nodes.  
The outputs of layer 1 are the fuzzy 
membership grade of the inputs, which are 
given by 

 
1
iO = µAi (x),     i= 1, 2, or  

     (3) 
1
iO i = µBi-2 (y),     i= 3, 4,   

     (4) 
 
where µAi (x),  µBi-2 (y) can adopt any fuzzy 
membership function. If the bell shaped 
membership function is used, (

iA xμ ) is  

( ) 2

1 ,
1 | ( ) / |i iA x b

i ix c a
μ =

+ −
 (5)

     
  
  
In the layer 2, the nodes are fixed nodes. They 
are labeled with M, indicating that they 
perform as a simple multiplier. The outputs of 
this layer can be represented as 
 

2 ( ) ( ), 1, 2
i ii i A BO w x y iμ μ= = =  (6)

      
 
which are the so-called firing strengths of the 
rules. 
 
In the layer 3, the nodes are also fixed nodes. 
They are labeled with N, indicating that they 
play a normalization role to the firing 
strengths from the previous layer. 
The outputs of this layer can be represented as 

w1 

w2 

f1 =  p1+ q1y + r1 

f2 = p2x + q2y + 

1 1 2 2

1 2

w f w ff
w w
+

=
+

 

A1 

A2 

B1

B2

x y
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Figure 2. ANFIS architecture. 

 
 
 

3

1 2

, 1, 2i
ii

wO w i
w w

= = =
+

   

     (7) 
 
which are the so-called normalized firing 
strengths. 
 
In the layer 4, the nodes are adaptive nodes. 
The output of each node in this layer is simply 
the product of the normalized firing strength 
and a first-order Sugeno model. Thus, the 
outputs of this layer are given by 
 

4 ( ), 1, 2i ii i i i iO w f w p x q y r i= = + + =
     
                                                       (8) 
 
In the layer 5, there is only one single fixed 
node labeled with S. This node performs the 
summation of all incoming signals. Hence, the 
overall output of the model is given by 
 

2
2

5 1

1 1 2

( )
.i ii

i i i
i

w f
O w f

w w
=

=

= =
+

∑∑   

     (9) 
 
It can be observed that there are two adaptive 
layers in this ANFIS architecture, namely the 

first layer and the fourth layer. In the first 
layer, there are three modifiable parameters 
{ai, bi, ci}, which are related to the input 
membership functions. These parameters are 
the so-called premise parameters. 
 
In the fourth layer, there are also three 
modifiable parameters {pi, qi, ri}, pertaining 
to the first order Sugeno model. These 
parameters are called consequent parameters 
[13-14]. 
 
2.2.2. Hybrid learning algorithm of 
ANFIS 
 
The task of the learning algorithm for this 
architecture is to tune all the modifiable 
parameters, namely {ai; bi; ci} and {pi; qi; ri}, 
to make the ANFIS output match the training 
data. When the premise parameters ai, bi and 
ci of the membership function are fixed, the 
output of the ANFIS model can be written as 
 

1 2
1 2

1 2 1 2

w wf f f
w w w w

= +
+ +

.          (10)
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1 21 2.f w f w f= +                (11)
     
  
 

1 21 1 1 2 2 2( ) ( ).f w p x q y r w p x q y r= + + + + +  
        
                                                                    (12) 
 

1 2 2 21 1 1 1 1 2 2 2( ) ( ) ( ) ( ) ( ) ( )f wx p w y q w r w x p w y q w r= + + + + +
.                                             (13) 
 
 
which is linear consequent parameters p1, q1, 
r1, p2, q2 and r2. When the premise parameters 
are not fixed, the search space becomes larger 
and the convergence of the training becomes 
slower. A hybrid algorithm combining the 
least squares method and the gradient descent 
method is adopted to solve this problem [15-
18].  The hybrid algorithm is composed of 
forward pass and backward pass. The least 
squares method (forward pass) is used to 
optimize the consequent parameters with the 
premise parameters fixed [16-18]. 
  
Once the optimal consequent parameters are 
found, the backward pass starts immediately. 
The gradient descent method (backward pass) 
is used to adjust optimally the premise 
parameters corresponding to the fuzzy sets in 
the input domain. The output of the ANFIS is 
calculated by employing the consequent 
parameters found in the forward pass. The 
output error is used to adapt the premise 
parameters by means of a standard back 
propagation algorithm. It has been proven that 
this hybrid algorithm is highly efficient in 
training the ANFIS [19-20]. 
 
 
3. RESULTS 
3.1. ANFIS Training and Model 
Selection 
 
The training fault transformer with DGA set 
contained 150 examples. 38 of 150 examples 
achieved from Turkish national grid and rest 
of them taken from [21].  
Shape of the membership functions of the 
antecedents we have used triangular function 
as  

µAi (x )=  
1

| |
max(0,1 )

in
j j

i
j j

x c
b=

−
−∏ .  

        
                                                                   (14) 
where the matrix centers(i,j) represent the 
value of i

jc  and the matrix bases(i.,j) 

represent the value of i
jb .  

Parametric form of the consequent model it 
can be constant yi = pi or linear  

0
1

n

i ij j i
j

y p x p
=

= +∑                             (15)

     
   
we have used constant form in this 
work [19-20].   
 
Our system has 3 inputs and 1 output, we used 
15 rules (figure 3) and obtained 15x3 centers 
matrix, 15x3 bases matrix and 15x1 
parametric matrix.  
The aim of this study is to determine the fault 
type of failed power transformers with a few 
key gases using ANFIS. Determination of the 
fault type with few key gases is a convenience 
for on-line gas-in-oil monitoring systems, 
used for detecting incipient faults. Three key 
gases Methane (CH4), Ethylene (C2H4) and 
Acetylene (C2H2) were chosen for this study. 
Total accumulated amount of these gases were 
calculated and 100 percents (%) of each gas 
used as inputs of Anfıs.  
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Figure  3. Triangular membership functions 

with 15 rules. 
 
The output is one of the fault types are PD, 
D1, D2, T1, T2, T3. After evaluate 15 rules 
modeled our Neuro- Fuzzy system After 20 
rules we modeled our system, and using our 
50 test data sets  than we got 76.0 % succeed 
(figure 4).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.  Evaluate of 50 patterns using ANFIS 
approach. “o” symbols are our testing outputs 
and  stars “*” are our predicts. 

 
 
4. CONCLUSION 
 
ANFIS is powerful for the classification 
problems. Aim of this study is to determine 
the fault type of failed power transformers 
with a few key gases using ANFIS. 
Determination of the fault type with few key 
gases is convenience for on-line gas-in-oil 
monitoring systems, used for detecting 
incipient faults. Since dissolved gas analysis 
(DGA) is a very efficient tool for monitoring 
transformers failures. We determine best 
choosing kernel function and parameters of 
ANFIS for this problem. We obtained 76.0 % 
classification accuracy.  

Table 1 : Centers parameters 
 

0,39056 0,3473 0,27094 

0,46098 0,26956 0,25644 

0,021289 0,47169 0,52528 

0,028268 0,23993 0,74492 

0,47959 0,18054 0,37501 

-0,03954 0,083646 0,89259 

0,037651 -0,00594 1,0001 

0,24845 0,22342 0,56304 

0,68418 0,14547 0,15327 

0,2885 0,34201 0,39455 

0,045453 0,034002 0,92089 

-0,01279 0,37024 0,61713 

0,23016 0,18064 0,59482 

0,019461 0,56807 0,38184 

0,52327 0,3349 0,14987 
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Tablo 3. Linear p parameters 

-3,5 -2,4 0,08 0,42 0,21 -8,7 -3,9 -3,9 -2,5 -1,6 -2,5 -3,3 0.20 -3.0 

 
Table 2 :Bases Parameters 
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