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ABSTRACT 
 

   A new binary systematic linear block code construction technique, called as Systematic Distance-4 
(SD-4) codes that generates all the optimal size Hamming distance-4 codes, is recently proposed. In 
this paper, we evaluate the error performance of some of the SD-4 codes to measure the coding gain 
of the codes over Rician and Rayleigh fading channels. We also compared the results with the error 
performance of the same size extended Hamming codes, which is the subset of SD-4 codes.  

Keywords: Error Performance, Linear block codes, Fading channels. 
 
 
 
I. INTRODUCTION 
     Single-error correction and double-error 
detection (SEC-DED), for example extended 
Hamming codes, have been widely used for 
error control in digital communication over 
the years owing to their high rates and 
decoding simplicity [1]. Encoder and decoder 
implementation of long linear block codes is 
difficult in practice and also requires large 
capacity of memory. Low Density Parity 
Check (LDPC) codes [2] receive enormous 
interest from the coding community as they 
hold higher Bit Error Rate (BER) 
performances [3]. Whereas, they have the 
disadvantage for encoding part as they have 
large, high-density and irregular generator 
matrices to encode information data, which 
cause difficulty in encoder implementations in 
practice. A generator matrix with low density 
of ones is considered as Low Density 
Generator Matrix (LDGM) and it was shown 
that it has practical advantage of decreased 
encoding complexity and increased decoder 
architecture flexibility [4] and also achieves a 

performance close to the Shannon theoretical 
limit [5].  Block Turbo Codes (BTC) or Turbo 
Product Codes (TPC) [6] and Product 
Accumulate (PA) codes [7] have been shown 
to provide near-capacity performance and low 
encoding and decoding complexity. They use 
simpler components codes to produce very 
long block codes. Recently [8], a similar 
approach to PA codes have been implemented 
using extended Hamming codes that achieves 
near Shannon limit performance for very high 
rate coding, which is useful for bandwidth 
efficient transmission. On the other hand, it 
has some difficulty for adjusting code rates by 
using extended Hamming codes as there are 
only limited numbers of code rates available 
with extended Hamming codes. This difficulty 
can be overcome by using the recently 
introduced Geometric Construction (GC) 
codes [9] as they are able to generate all the 
Hamming distance-4 even codes with full 
information rate (optimal). On the other hand, 
GC codes are not systematic and complexity 
of decoding process stands as a disadvantage. 
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Recently, a new binary linear block code 
construction technique, called as Systematic 
Distance-4 (SD-4) codes, is proposed that 
generates all the optimal Hamming distance-4 
codes greater than 7 [10]. SD-4 codes have a 
systematic structure and therefore it provides 
great simplicity in decoding process. By 
optimal Hamming distance-4 codes, we mean 
a code C = (n, k, d), where n, k and d are 
length, dimension and minimum Hamming 
distance, respectively, has the full information 
rate (k/n) for Hamming distance-4 with 
respect to the table of best known codes in 
[11]. Considering the properties like Hamming 
distance-4 and optimal and also any code 
length greater than 7, it is apparent that SD-4 
codes, as a code family, includes the Extended 
Hamming codes and distance-4 Reed Muller 
(RM) codes [1]  and also the GC codes of 
distance-4. This is because, Extended 
Hamming codes and distance-4 RM codes are 
the power of 2 in lengths and also the GC 
codes of distance-4 are the multiple of 2 in 
lengths. On the other hand, the proposed SD-4 
codes have any length that is greater than 7. 
Another superiority of SD-4 codes is that their 
generator matrices are systematic, which in 
turn provides great flexibility and simplicity in 
encoding and decoding processes. Therefore, 
the SD-4 codes can be a good alternative for 
the component codes used in [7] and [8] as 
they give much greater flexibility and thus 
adoptability with respect to length of a code. 
Moreover, the constructed generator matrices 
of SD-4 codes contain low density of ones and 
cyclic property in the parity part of the 
generator matrices. A code with cyclic 
property can be encoded with less complexity 
[12], [13] in a similar way of cyclic codes. 
Therefore, GC codes also provide the 
advantages of LDGM codes and cyclic codes.  
 In this paper, we exhaustively evaluated the 
bit error performance of various code length 
SD-4 codes over Rician and Rayleigh fading 
channels. We performed computer simulations 
to obtain the bit error rates (BER) of SD-4 
codes. In the simulations we utilised the sum-
product algorithm (SPA) [14] for decoding 
processes and also we employed the binary 
phase shift keying (BPSK) for the modulation 
process. We compared our results with the 
well known extended Hamming codes. 
Regarding our results, we concluded that SD-4 
codes can be considered as useful high rate 
and flexible codes that may find applications 
in satellite channels.  
 
 
 
 

II. CODE CONSTRUCTION 
In this section we briefly describe the 
construction of SD-4 codes as follows: 
The systematic generator matrix of an SD-4 
code is constructed as in (1). 

[ ]IGG ='    (1) 
   

Here, the matrices G and I are appended to 
form a systematic matrix, where G is the 
generator matrix that we construct and I is the 
corresponding identity matrix of the row size 
of G. We now define the rule of constructing 
the matrix G as follows. 
   In order to construct the matrix G, we first 
define the generator codewords and by 
cyclically shifting them we obtain the whole 
matrix G. To give a simple definition of the 
construction we continue by explaining the 
rule with an example. Since our SD-4 codes 
are full information we look at the table of 
best-known codes [11] and pick up a full 
information rate code size of distance-4. Let’s 
now construct the SD-4 code of C = (n, k, d) = 
(128, 120, 4), where n, k, d are the code 
length, dimension and Hamming distance, 
respectively (R = 120/128 is a full information 
rate). Obviously, the necessary identity matrix 
of this code is in the size of (120x120). That 
means the size of G is (120x8), which are 120 
rows and 8 columns. Therefore the length of 
generator codewords that will be formed is 8 
and each generator codeword is able to 
produce another 7 codewords by cyclically 
shifting it. The first generator codeword is 
formed by placing 3 of the binary ones 
sequentially as g1 = [1 1 1 0 0 0 0 0]. We 
consider this generator codeword as (3+0) 
case regarding the placement of binary ones. 
This is useful to observe the cyclic versions of 
the codeword. Then, we form the variations of 
the generator codewords that contains three of 
binary ones in the form of (2+1), which are g2 

= [1 1 0 1 0 0 0 0], g3 = [1 1 0 0 1 0 0 0], g4 = 
[1 1 0 0 0 1 0 0], g5 = [1 1 0 0 0 0 1 0]. It is 
important to emphasize that we do not form 
the generator codewords in the form of (1+2) 
since they are already the cyclic shifted 
versions of (2+1) generator codewords. Then 
we form the other possible variations of the 
generator codewords that contain three of 
binary ones like (1+1+1), which are g6 = [1 0 1 
0 1 0 0 0] and g7 = [1 0 1 0 0 1 0 0]. Since we 
have completed all the possible versions of the 
generator codewords with three of binary 
ones, we proceed by forming another type of 
generator codewords that contain five of 
binary ones like g8 = [1 1 1 1 1 0 0 0] which is 
in the form of (5+0). The rest of the process is 
similar to the previous type of generator 
codewords that means we will form all the 



PERFORMANCE OF THE SYSTEMATIC DISTANCE-4 CODES OVER FADING CHANNELS 
 

 Osman N. Ucan,Tayfun Acarer, Ertugrul Karacuha, Onur Osman, Gökmen Altay, Şenay Yalcin 

 

709

variations in the form of (4+1), (3+2), (3+1+1) 
and then (2+2+1) as follows: g9 = [1 1 1 1 0 1 
0 0], g10 = [1 1 1 1 0 0 1 0], g11 = [1 1 1 0 1 1 0 
0], g12 = [1 1 1 0 0 1 1 0], g13 = [1 1 1 0 1 0 1 
0] and g14 = [1 1 0 1 1 0 1 0]. The last type of 
generator codewords is the one that contains 
seven of binary ones since the length of 
generator codewords is 8 for this example. 
Therefore the only possible generator 
codeword is g15 = [1 1 1 1 1 1 1 0]. Since each 
of the generator codewords produce another 7 
of codewords, including themselves, they 
ultimately form the generator matrix G that 
contains 15x8=120 rows and 8 columns. Then 
the process of constructing G is complete and 
it can be placed in (1) to obtain the final 
systematic generator matrix of (128, 120, 4) 
SD-4 code.  
   We always place the number of 3, 5, 7, 9, … 
of binary ones to form the generator 
codewords. We care not to reproduce a 
codeword while cyclically shifting the 
generator codewords. Thus, for instance, we 
do not form (2+1+2) since it is a cyclic 
version of the formed generator codeword 
(2+2+1).  
  Using these generator codewords of the 
above example, we can construct the generator 

matrices of binary linear block codes with 
length from 65 to128. It straight forward to 
see that, for example, to obtain an SD-4 code 
of length 125, we erase the last three row of G 
and obtain the G in (1) that results the 
generator matrix of (125, 117, 4) SD-4 code.   
   So far, we described the construction 
method of SD-4 codes by an example. Using 
this approach, all the distance-4 optimal 
systematic binary linear block codes can be 
obtained. Whereas, we will provide Table 1 to 
give a quick reference for generator 
codewords of length up to 10 that allows 
generating SD-4 code with maximum length 
of 512. The rest of the generator codewords 
can be formed regarding our description and 
the smaller size examples as presented in 
Table 1. Additionally, there are some specific 
cases that need careful consideration. When a 
generator codeword is formed like [1 0 0 1 0 0 
1 0 0], we can shift it only two times since it 
repeats itself at the third phase of shifting. 
This means, the generator codeword can only 
produce another two codeword and while 
calculating the total number of rows of G the 
matter is counted into account. In the Table 1, 
we point out this sort of small number of 
shifting by appending for instance x3. 

 

Table 1.  Some of the generator codewords of SD-4 codes, where t is the row length. 
t=4  Type  t=7  Type t=8  Type 
1110 (3+0)  1110000 (3+0) 11100000 (3+0) 
    1101000 (2+1) 11010000 (2+1) 
t=5    1100100 (2+1) 11001000 (2+1) 
11100 (3+0)  1100010 (2+1) 11000100 (2+1) 
11010 (2+1)  1010100 (1+1+1) 11000010 (2+1) 
11111 (5+0)  1111100 (5+0) 10101000 (1+1+1) 
    1111010 (4+1) 10100100 (1+1+1) 
t=6    1110110 (3+2) 11111000 (5+0) 
111000 (3+0)  1111111 x1 (7+0) 11110100 (4+1) 
110100 (2+1)    11110010 (4+1) 
110010 (2+1)    11101100 (3+2) 
101010 x2 (1+1+1)    11100110 (3+2) 
111110 (5+0)    11101010 (3+1+1) 
      11011010 (2+2+1) 
      11111110 (7+0) 
         
t=9     t=10    t=10 (continues)   
111000000 (3+0)   1110000000 (3+0) 1101100010 (2+2+1) 
110100000 (2+1)   1101000000 (2+1) 1100110100 (2+2+1) 
110010000 (2+1)   1100100000 (2+1) 1100110010 (2+2+1) 
110001000 (2+1)   1100010000 (2+1) 1100011010 (2+2+1) 
110000100 (2+1)   1100001000 (2+1) 1101010100 (2+1+1+1) 
110000010 (2+1)   1100000100 (2+1) 1101010010 (2+1+1+1) 
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101010000 (1+1+1)   1100000010 (2+1) 1101001010 (2+1+1+1) 
101001000 (1+1+1)   1010100000 (1+1+1) 1100101010 (2+1+1+1) 
101000100 (1+1+1)   1010010000 (1+1+1) 1111111000 (7+0) 
100100100 x3 (1+1+1)   1010001000 (1+1+1) 1111110100 (6+1) 
111110000 (5+0)   1010000100 (1+1+1) 1111110010 (6+1) 
111101000 (4+1)   1001001000 (1+1+1) 1111101100 (5+2) 
111100100 (4+1)   1111100000 (5+0) 1111100110 (5+2) 
111100010 (4+1)   1111010000 (4+1) 1111101010 (5+1+1) 
111011000 (3+2)   1111001000 (4+1) 1111011100 (4+3) 
111001100 (3+2)   1111000100 (4+1) 1111001110 (4+3) 
111000110 (3+2)   1111000010 (4+1) 1111011010 (4+2+1) 
111010100 (3+1+1)   1110110000 (3+2) 1111010110 (4+1+2) 
111010010 (3+1+1)   1110011000 (3+2) 1110111010 (3+3+1) 
111001010 (3+1+1)   1110001100 (3+2) 1110110110 (3+2+2) 
110110100 (2+2+1)   1110000110 (3+2) 1111111110 (9+0) 
110110010 (2+2+1)   1110101000 (3+1+1) 1010101010 x2 (1+1+1+1+1) 
110011010 (2+2+1)   1110100100 (3+1+1)    
110101010 (2+1+1+1)   1110100010 (3+1+1)    
111111100 (7+0)   1110010100 (3+1+1)    
111111010 (6+1)   1110010010 (3+1+1)    
111110110 (5+2)   1110001010 (3+1+1)    
111101110 (4+3)   1101101000 (2+2+1)    
111111111 x1 (9+0)   1101100100 (2+2+1)     
 

There are some important properties of SD-4 
codes that should be emphasized. First they 
are optimal and full information rate codes 
(for example (512, 502, 4)) since we select the 
code size from the table of best-known codes 
[11]. As proved in Theorem 1 in [10], SD-4 
code family has the Hamming distcance-4 and 
namely they include the code families of 
Extended Hamming codes, distance-4 RM 
codes and also the recently introduced coding 
scheme, the GC codes. SD-4 codes are binary 
systematic linear block codes and therefore 
easy to decode using well known decoding 
techniques. At the next section we 
demonstrate the error performance of some of 
the SD-4 codes using Sum-Product Algorithm 
(SPA), which is the popular decoding 
technique used for decoding LDPC codes. We 
also compare the error performance of SD-4 
codes with some other codes. 

 
III. ERROR PERFORMANCE 
RESULTS 
  In the below figures, we demonstrate some 
simulation results in order to demonstrate the 
BER performances of SD-4 codes. We also 

compare the results with the extended 
Hamming codes of same size. The simulations 
are performed in Rician, and Rayleigh 
channels. Rician probability density function 
(pdf) can be written as, 

[ ])1(2))1(2(   )1(2)( 0 KKKKeKP I +−+−+= ρρρρ
   (2) 

   
where ρ is fading effect, 0I  is the modified 
Bessel function of the first kind, order zero 
and K is fading parameter. Rician pdf turns 
into Rayleigh pdf if parameter K is chosen as 
0. 
In our simulations, Rician fading parameter K 
is chosen as 10dB. Sum-Product Algorithm 
(SPA) [14] is used with maximum of 100 
iteration using Binary Phase Shift Keying 
(BPSK) modulation. We also plot the uncoded 
BPSK and Shannon limit for comparison 
purposes. In all the considered codes, BPSK 
modulation is used and perfect bit and block 
synchronizations are assumed.  
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Fig.1 BER of some SD-4 codes and an Extended Hamming code over Rician channel. 

 

Fig.2 BER of some SD-4 codes and an Extended Hamming code over Rayleigh channel. 
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   The simulations demonstrate that SD-4 
codes have similar performance with extended 
Hamming codes. Although SD-4 codes are 
able to generate any length of full information 
rate code of Hamming distance-4, we only 
evaluated the SD-4 codes of length power of 2 
since it allows us to compare the results with 
extended Hamming codes. We observed that 
SD-4 codes and extended Hamming codes 
have quite similar error performance.  
We also compare the BER performances of 
SD-4 codes with uncoded BPSK error rates in 
both Rician and Rayleigh fading channels in 
order to measure the coding gain of SD-4 
codes. For example, in Rician channel, 
(16,11,4) SD-4 code provides about 6.3 dB 
coding gain and (512, 502, 4) SD-4 code 
provides about 4.6 dB coding gain at the BER 
of 10-5. Also, in Rayleigh channel, (16,11,4) 
SD-4 code provides about       17 dB coding 
gain and (512, 502, 4) SD-4 code provides 
about 7 dB coding gain at the BER of 10-4.  
  As it can be seen from the figures, SD-4 
codes have significant error correction 
capability, whereas, they have superior 
properties such as optimal code size, any code 
length greater than 7, and most importantly 
systematic, low density generator matrix. 
Having these superiorities with similar error 
performance of their counterparts; SD-4 codes 
stand as a very useful code family that may 
well find applications in digital 
communication applications such as satellite 
communications and computer 
communications. 
 
IV. CONCLUSION 
   We presented the bit error performances of 
some of SD-4 codes in Rician and Rayleigh 
fading channels using sum-product algorithm 
for decoding process and also binary phase 
shift keying for modulation process.   
   We concluded that SD-4 codes have 
significant coding gain in these fading channel 
environments but they have similar error 
performances with the well known extended 
Hamming codes. They generate all the optimal 
size codes for Hamming distance–4 as a code 
family that contain the well known codes such 
as extended Hamming codes and also 
distance-4 RM codes. Generator matrices of 
SD-4 codes have some useful properties like 
low density and systematic structure; they are 
practical for encoder and decoder design of 
very long length block codes. Thus we state 
that SD-4 codes, with their significant coding 
gain and practical structure, will be an 
important code family of forthcoming 
telecommunication applications.  
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