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ABSTRACT 
 

Generalized modeling principles of a nonlinear system with a dynamic fuzzy network (DFN)- a 
network with unconstrained connectivity and with dynamic fuzzy processing units called ‘feurons’, 
have been given. DFN model has been trained both in open loop and closed loop forms to satisfy these 
principles. Several system trajectories with a PRBS input have been used for open loop training. DFN 
model obtained from open loop training was used in a closed loop training with an extended Kalman 
filter (EKF) in an observer design. For gradient computations adjoint sensitivity method has been 
used. 
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I. INTRODUCTION  
The application of fuzzy logic technology to 
modeling and control of dynamical systems has 
been constrained by the non-dynamical nature of 
popular fuzzy system architectures. Many of the 
difficulties that ensue- large rule bases (i.e., curse 
of dimensionality), long training times, the need 
to determine buffer lengths- can be overcome 
with dynamic fuzzy network (DFN)- network 
realizations that contain unconstrained 
connectivity and with dynamic fuzzy processing 
units called “feurons” and may also allow for the 
incorporation of both heuristics and deep 
knowledge to exploit the best characteristics of 
each [12, 21].  
 
The two major complications introduced during 
the modeling of a nonlinear dynamical system 
with a DFN are: which principles should be 
considered to obtain the accurate “model 
equivalence” of a known model of a nonlinear 
dynamical system? Moreover, how can we train 

a DFN for the best convergence? For the first 
one, the generalized modeling principles have 
been defined in this study. In algebraic fuzzy 
systems parameter tuning is relatively simple 
because the gradients of model error with respect 
to the parameters are easy to compute [20]. In 
dynamic fuzzy networks, gradient computation is 
more involved. Approaches for gradient 
computation for dynamic systems have been 
developed in systems and control theories [2, 
21], and have been successfully used in 
identification and control applications [9, 10]. 
 
In section 2, we define the generalized modeling 
principles. In section 3, we introduce the 
standard fuzzy system. In section 4, we present a 
model for dynamic fuzzy network (DFN). In 
sections, we have discussed the employment of 
approximate second order gradient-based 
approaches to determine appropriate values for 
the dynamic fuzzy network parameters for the 
desired trajectory tracking and modeling. 
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Simulation examples of phase portrait modeling 
of a tunnel diode circuit by a DFN and open loop 
and closed loop modeling of a CSTR system by a 
DFN are illustrated in section 6.   
 

2. GENERALIZED MODELING 
PRINCIPLES 
To make an effective control system design, 
there should be a model that accurately 
represents the real nonlinear dynamical plant. 
Theoretical models are obtained in general, by 
four steps [3, 15]. These are 1) problem 
definition, 2) model formulation by using the 
first principles, 3) parameter estimation and 4) 
model validation. 
 
It is asserted that there exists a DFN which can 
represent all the behaviors of a given dynamical 
plant. This assertion is based on the experiments 
done on a mathematical models that accurately 
represent the physical plant (i.e., reference 
model). We can develop an equivalent DFN 
which captures all the qualitative behaviors of 
this physical plant. In this study these 
experiments classified into two categories:  i) 
open loop/closed loop validations,  ii)  local and 
global validations. 
 
There are some works in the literature for open 
loop and closed loop verification of a model. 
Gevers (1999), developed the model error 
estimation method of Ljung (1987) for the closed 
loop validation. Some examples of open loop 
validation can be found in Aguirre’s studies [1]. 
 

3. STANDARD FUZZY SYSTEM 
An important contribution of fuzzy systems 
theory is that it provides a systematic procedure 
for transforming a knowledge base into a 
nonlinear mapping [20]. Figure 3.1 shows the 
basic configuration of a fuzzy system. 

 Figure 3.1 Basic configuration of fuzzy systems 

 
We call the fuzzy systems with product inference 
engine, singleton fuzzifier, center average 
defuzzifier, and Gaussian membership functions 
as “standard fuzzy systems” [20]. Nonlinear 
mapping of a standard fuzzy system is in the 
following form: 
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where r is the number of rules, cij and σij are 
center and spread parameters of the ith rule’s jth 
input variable’s of the Gaussian membership 
function respectively. yi, is the output center 
parameter of the ith rule. Figure 3.2 shows the 
inference mechanism of a standard fuzzy system 
with two input variables that uses expert 
knowledge base. 
 

 Figure 3.2 The inference mechanism of a 
standard fuzzy system with two input variables. 

(Peaks show some expert knowledge) 
 

4.  THE DYNAMIC FUZZY 
NETWORK (DFN) MODEL  
By a dynamic fuzzy network, we mean a 
network with unconstrained connectivity and 
with dynamic elements in its fuzzy processing 
units [13, 17]. The processing unit is called the 
feuron, representing a single dynamic fuzzy 
neuron. Figure 4.1 shows a DFN with two 
feurons.  
 
Basically the feuron model represents the 
biological neuron that fires when its inputs are 
significantly excited. This firing is through a lag 
dynamics (i.e., Hopfield dynamics). The manner 
in which the feuron fires is defined by the fuzzy 
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activation function φ. The feuron's activation 
model also represents a standard fuzzy system 
that described before. 
 

F1

F2

u y

 
 

Figure 4.1 Dynamic Fuzzy Network (DFN) with 
two feurons 
 

 
 

 

1/s 1
Ti+ )x( iiφ

-1 

xi &xi yi 
xi(0) 

Fuzzy activation 
function 

(Lag dynamics) 

ui 

 
(a) 

 
 

Ri1(xi) 

RiM(xi) 

y i1  

y iM  

+ 

+

xi w

Receptive field 
units 

Receptive field 
units strengths 

1iξ

iMξ

(b) 
Figure 4.2 Block diagram of the feuron              
(a) A single feuron model,                                 
(b) Feuron’s activation model, yi= φ(xi). 

Since the feuron's activation model has a single 
input, (i.e., the scalar state of the feuron) the 
product inference output becomes the 
membership functions itself. The activation 
function of the ith feuron can be expressed as:    
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The boundary membership functions of the 
feuron may be represented by hard constraints in 
the form of: 

iUiiiRiLii1 x xif     ,1)x(   and   x xif     ,1)x( ≥=µ≤=µ
                                                                       (4.2) 
where xiL and xiU are the lower and upper limits 
of the state values of the ith  feuron respectively. 
The general computational model that we have 
used for DFN is summarized in the following 
equations: 

∑
=

=
n

1j
jmjm yqz      (4.3) 

),x(y iiii πφ=                    (4.4) 

0iii

l

1j
jij

n

1j
jijiii x)0(   x,   r+upywxxT =++−= ∑∑

==

&

(4.5) 
where w, p, q, r are the interconnection 
parameters of the DFN,  T is the time constants 
and π is the parameter sets (centers c, spreads σ, 
output centers b) corresponding to fuzzy SISO 
activation functions of the feurons. This model 
has some similarities with models encountered in 
the literature [6, 16].  
 
 
5.  PERFORMANCE INDEX 
MINIMIZATION IN DFN 
In order to obtain DFN model of a process we 
associate a performance index  given by 

∫ −−= ft

0
dTd dt)]t(z)t(z[)]t(z)t(z[2

1J    (5.1) 

where zd(t) and z(t) are actual and modeled 
process responses respectively. Tuning dynamic 
fuzzy networks to mimic a given set of 
trajectories is equivalent to determining (i.e., 
learning) DFN parameters so that the 
performance index is minimized. This is a 
dynamic nonlinear optimization problem. We 
require the computation of gradients or 
sensitivities of the performance index with 
respect to the various interconnection parameters 
of the DFN and internal parameters of the 
feurons. They are respectively: 
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We have used  “Adjoint’’ method for sensitivity 
computation [10]. The computation formulas 
have been found in [15]. We used first and 
approximate second order gradient-based 
methods including Broyden-Fletcher-Golfarb-
Shanno (BFGS) algorithm to update the 
parameters of the dynamic fuzzy networks 
yielding faster rate of convergence [4, 19]. 
 

6. GENERALIZED MODELING 
SIMULATION EXAMPLES 
For obtaining the equivalent DFN models due to 
generalized modeling principles, first of all it is 
useful to show the efficiency of a DFN in global 
modeling. Our first set of experiments have used 
the data of  a tunnel diode circuit with two state 
variables for phase portrait modeling by a DFN 
with two feurons.  
 

6.1 Phase Portrait Modeling of a 
Tunnel Diode Circuit 
The state-space model of a tunnel diode circuit 
[7] is given by  

[ 211 x)x(h
C
1x +−=& ]                 (6.1)

  

[ uRxx
L
1x 212 +−−=& ]                (6.2) 

where h(x) is a fifth degree polynomial 
representing the tunnel diode charecteristics and 
given by      
   h(x)=17.76x-
103.79x2+229.62x3-226.31x4+83.72x5    (6.3)
   
and the other circuit parameters are given as  
u=1.2 V, R=1.5 kΩ, C=2 pF, L=5 µH           (6.4) 
 
The tunnel diode circuit system was simulated 
for several initial conditions to the three 
equilibrium points A=(0.285,0.61), 
B=(0.063,0.758), and C=(0.884,0.21) with an 
integration time step of 0.01 second. These 
trajectories were taken as the desired trajectories 
for a DFN to capture. At the beginning, each 
trajectory segment was used for training. 
Subsequently, combinations of the segments 

were used for fine-tuning based on randomly 
generated initial conditions. Figure 6.1 shows the 
resulting phase portraits of the tunnel diode 
circuit system and the DFN model. The final 
phase portrait model response was visually 
indistinguishable in some of the trajectory 
segments. 
 
Dynamic fuzzy network parameters obtained 
were: 
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Figure 6.1 The phase portrait of  the DFN 
(dashed curve). The solid curve is the Tunnel 
Diode circuit phase portrait. 
 

6.2 Equivalent DFN Modeling of a 
Nonlinear Continuously Stirred Tank 
Reactor   
Generalized modeling principles given in section 
2 have been examined for obtaining a DFN 
model equivalent of a nonlinear continuously 
stirred tank reactor (CSTR) system with relevant 
equations given below [18]: 



Generalized Modeling Principles Of A Nonlinear System With A Dynamic Fuzzy Network 
  

731

 

 
A.Ferit KONAR, Yusuf OYSAL 

γ+−+−= 2x1
2x

11
1 e)x1(Dax

dt
dx         (6.5) 

 

                      (6.6) 
where x1, x2 represent dimensionless reactant 
conversion and temperature, Da is the 
Damköhler number and the variables d, u are 
dimensionless deviation variables for the feed 
temperature disturbance and control (jacket 
temperature) respectively. In the simulations the 
parameters were taken as Da= 0.135, B=11, 
β=1.5 and γ =20.   
 
For the equivalent DFN modeling of a CSTR, 
these experiments have been done: 
1) Open loop: 

• Zero-input response of the equivalent 
models, 

• Zero-state response of the equivalent 
models, 

• Various input and various state responses 
of the equivalent models, 

2) Closed loop: 
• The design of Extended Kalman Filter 

with equivalent models, 
 

6.2.1 Open Loop Experiments  
To obtain an equivalent DFN model, we have 
used data generated from a simplified nonlinear 
CSTR model as the target model. Performance 
index has been chosen as:  

∫ −+−= ft

0
2

22
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11 dt)xxd(
2
1)xxd(

2
1J                  x k =      )ẑz(K̂x̂ˆ 1kkkk1kkk −− −+  

                                  (6.7) 
where x1 are x2 normalized CSTR concentration 
and temperatures respectively. xd1 and xd2 are 
state variables (feuron variables) of DFN.   
 
CSTR initial states have been taken as zero. A 
PRBS has been applied to this system.  
Approximately in 83 iterations the equivalent 
DFN model responses converges to the CSTR 
responses. Figure 6.2 illustrates the change of 
DFN state responses for some iterations.  
 
To examine the validity of obtained equivalent 
DFN model, we have also examined the  steady-

state responses and the eigenvalues of the 
equivalent systems. Figure 6.3 shows that both 
system responds exactly the same. 
 

6.2.2 Closed Loop Experiments 
For validation of the equivalent DFN model 
obtained from the open loop experiments, it is 
necessary to examine some of the closed loop 
responses of the equivalent models. For this aim 
equivalent DFN model obtained from open loop 
training was used in an extended Kalman filter 
(EKF) in an observer design. 
 
EKF is based on the linearization of a nonlinear 
system around an operating point or a trajectory 
and application of linear optimal state estimation 
to the obtained system [2, 14].  Figure 6.4 shows 
the block diagram of linearized EKF. The k 
indices is a discrete time indices. k/k-1 indices 
represents the k indices variable that uses (k-1)th 
indices and previous indices values. 
 
Process model can be written as:  

kkk1k w)u,x(fx +=+

kkk v)x(hz
,       

+=                    
            (6.8) 

where wk and vk are random variables with Q and 
R covariance and zero mean respectively. 
 
EKF equations can be summarized as: 
 
1) One-step ahead prediction equations:    

)u,x̂(f̂x̂ 1k1k1k1kk −−−− = , )x̂(h 1kk1kk −− =ẑ
    
2) Correction equations:  

3) Covariance propagation 

1k
T

1k1k1k1k1kk QFPFP −−−−−− +=  
                    
4) Covariance correction: 

1kkkkkk P)HK̂I(P −−=   
                  
5)Filter gain: 

1
k

T
k1kkk

T
k1kkk )RHPH(HPK̂ −

−− +=  
   
The gradients with respect to system state 
variables are: 
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For one step ahead prediction equations 10x̂ −  
and for covariance propagation P0/-1 values 
should be selected first. 
 
To test the generalized modeling principles, the 
equivalent DFN model obtained from the open 
loop training has been used in linearized EKF to 
estimate the CSTR model states. Figure 6.5 
shows CSTR response with covariance process 
noise and  zero initial conditions to zero input. 
When EKF has been applied for state estimation 
with the initial parameters chosen as: 

 

 

 
it can be seen that estimation was successful 
(Figure 6.5). 
 
Closed loop experiments can be expanded for 
various closed loop control appications from PID 
controller to fuzzy controllers, etc. In [17] the 
results of the closed loop PID control systems for 
a CSTR and its equivalent DFN models have 
been shown. It has been seen that equivalent 
models exactly gave the same responses to the 
PID controller under various disturbance effects. 

 

 
Figure 6.2 DFN (model) response (solid curves at start) (a) concentration (b) temperature. The dashed 
and near solid curves are Process and DFN (converged model) responses, respectively. 
 

 
Figure 6.3 The solid and near dashed curves are Process and DFN responses to change in feed 
temperature respectively (a) steady-state responses, (b) the change of eigenvalues.  
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Figure 6.4 Block diagram of linearized Extended Kalman Filter (EKF) 

 
 

 
Figure 6.5 (a) CSTR responses with white process and measurement noise, (b) CSTR responses 

without noise (solid curve) and EKF with DFN estimations (dashed curves) 
 

7. CONCLUSIONS 
This work is the result of our ongoing research 
on Intelligent Systems. It is a companion paper 
to earlier works given in [8, 10, 12] on Dynamic 
Neural Networks. The work reported here has 
concentrated on laying the theoretical and 
analytic foundations for training of Dynamic 
Fuzzy Network DFN. They are to be used in 
real-time applications with process modeling and 
advanced control.  
 
For modeling with DFN, “extended equivalence 
conditions” have been defined. DFN model has 
been trained both in open loop and closed loop 
forms to satisfy these equivalence conditions.  

 
Several system trajectories with a PRBS input 
have been used for open loop training. DFN 
model obtained from open loop training was 
used in an extended Kalman filter (EKF) in an 
observer design for a nonlinear system. It has 
been shown by  simulations that DFN system 
models satisfy all extended equivalence 
conditions. 
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