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ABSTRACT 
 

In the past decades, representation models of dynamical processes have been developed via both 
traditional math-analytical and less traditional computational-intelligence approaches.  This 
challenge to system sciences goes on because essentially involves the mathematical approximation 
theory.  A comparison study based on cybernetic input-output view in the time domain on complex 
dynamical processes has been carried out.  An analytical decomposition representation of complex 
multi-input-multi-output thermal processes is set relative to the neural-network approximation 
representations, and shown that theoretical background of both emanates from Kolmogorov’s 
theorem. The findings provided a new insight as well as highlighted the efficiency and robustness of 
fairly simple industrial digital controls, designed and implemented in the past, inherited from input-
output decomposition model approximation employed.   
 
Keywords: Approximation models, characteristic input-output modes, complex systems, infinite 
matrices, neural networks.    
 

I. INTRODUCTION  
It may seem a paradox, but all the exact science is 
dominated by the idea of approximation – Bertrand 
Russell 

This outstanding statement by Russell, one of the 
two founders of modern mathematical science 
[50], best supports all endeavors of systems and 
control science in identification of approximate 
model representations of dynamical processes, 
no matter whether the word is about input-output 
black-box [47], [52] or structural state-space 
views [38], [53], and whether obtained by math-
analytical [37], [38] or computational 
intelligence [49], [54], [55] methods. This 

statement may well be readily inferred from 
Figure 1 on the fundamental concept of a 
dynamical system in engineering terms [9], [10]. 
For, indeed the word is about approximation 
models for time-domain functions, functionals or 
sequences that are theoretically consistent and 
empirically correct and valid.    
 
By and large, all approaches to approximate 
system representations involve some kind of 
decomposition either from input-output or 
input-state-output points of view [10], [24].  
The latter, of course, is associated intrinsically 
with the math-analytical fundamental approach 
[38], [53], and not with the one of the 
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computational-intelligence [49], [55]. the input-
output (I/O) view the foundations of which 
were laid dawn by the founders of Cybernetics 
[47], [52]., however, generally applies to both 
of them to the same extent [17]. In addition, in 
both fundamental approaches the ideas of 
system decomposition and expansion have been 
exploited to the full, and both rely essentially 
on real-world recorded time series possessing 
all possible peculiarities [37], [41].    
 

 
 
Fig. 1. The concept of a dynamical system in 
general, redefined in systems engineering terms 
according to essentially non-separable inter-
play of fundamental natural quantities – energy, 
information, and matter – in dynamical 
processes. 
 
In the present study, the focus is put on a 
comparative analysis [17] of certain 
approximate model representation results via 
math-analytical and neural-network techniques 
for the class of complex multi-input-multi-
output (MIMO) processes having real-world 
natural steady-states such as in thermal plants 
[13]-[16]. Note, in addition, that certain on-site 
experiments were done before on real-world, 
high-power, industrial furnaces in addition to a 
number of experimental simulations [14]-[16], 
[45]. Here it is impossible, of course, to cite 
properly all the relevant references in the 
literature. Nonetheless, it is pointed out that 
some of them are found in the reference list 
included, and in the references therein. In 
particular, works based on the I//O systems 
view in the math-analytical (MAN) approach, 
[3], [5], [10]-[12], [21]-23], [29], and in the 
computational intelligence approach employing 
artificial neural networks (ANN), [1], [6], [19], 
[20], [27], [30], [31]-[36], [40], [43], [44], 
should be observed.  
 
Next Section II gives a review discussion of 
some analytical results on I/O dynamical systems 

representations via characteristic I/O modes 
decomposition [10], [11]-[13], [21]-[23]. 
Similarly, but in the realm of neural-network 
computing structures [2], [4], [26], [48], [51], 
some of the most outstanding representation 
results in the literature, are recalled as 
appropriate along with a relevant review 
discussion in Section III, where these are cited 
and referenced. In Section IV, the comparison 
findings are summarized. Conclusion, an 
appendix (on relevant tools from mathematical 
approximation theory) and references are given 
thereafter. 
 

2. ON MATH-ANALYTICAL 
BLACK-BOX IDENTIFIED 
SYSTEM MODELS 
Pragmatically, the main goal in real-world 
system engineering applications is always to 
drive the plant so as to achieve the desired 
state(s) out of the all attainable ones controlling 
by means of the specified task-oriented and set-
point controls, i.e. by integrated control and 
supervision [1], [16]. For this purpose, firstly, a 
set of families of models is indispensable, at 
least for operating points at low-, medium-, 
normal- and maximum-operating loads. And, 
secondly, ultimately both control and 
supervision algorithms are implemented in 
terms of time-domain, discrete-time 
approximations of the theoretical designs as 
well as the practical stability of the overall 
system in all operating regimes must be ensured 
[14], [23], [45].    
 
In this paper, the proper theoretical treatment of 
the process model identification, which is found 
elsewhere (e.g., see [24], [37], [38]), is left 
aside and reference is made to the typical 
practice of operating common industrial plants 
that have finite steady state equilibrium, as the 
case study of 25 MW reheating furnace RZS 
(see the schematic in Figure 2) in Skopje 
Steelworks [14], [16], [23] is. In principle, any 
identification and signal processing methods 
may be used.  Then, for a complex  
plant ( N

outinp xNN

iinp N=  number of inputs;  
number of outputs) in a given plant environment 
with specified operating conditions, systems 
engineering design starts with a designed 
identification experiment and a study of a 
family of steady-state, non-linear  input/output 

oN=outN
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iy

models representing “energy/material supply 
variables, ,m  to controlled measurable state 

variables, ” within respective ranges of 
admissible inputs and sustainable outputs; 
moreover, within ranges where these are 
convex. In addition, a set of empirically (by 
either observation or experiment) obtained 
impulse-response representations are made 
available.  
 

(a)  

           (b)    

 
 
Fig. 2.  Real-world 25 MW pusher furnace RZS 
illustrating this comparative study: the schematic 
(a) of and (b) the reduced errors via learning the 
process characteristic I/O modes for the 
identified kTSM model of main 2x2 sub-system 
‘upper zone – lower zone’. 
 
In here we make use of the case studies [14], 
[16], [45] of high-power, large, multi-zone, 
gas/oil-fired industrial furnaces (like the one in 
Fig. 2) where the main subset of measurable 
states are physical temperatures. The I/O 
approximation models that are operationally 
identified on the grounds of recorded non-linear 
time sequences [41] of input and output 
variables have the form   

,),,( iljii yjlconstmmfT =≠==

oNi ,...,1=

,
                                                 (1) 

at the operating point OpPo , 
and  

µ

µµ N,...,2,1=

[ ] [ ]
TTtioio tkxNxNNkxNNk ttttgtG ≤≤= 0,)()(

 (2a) 
or  

[ ] [ ]
SSSStioio

ttttgtG kxNxNNkxNNk ≤≤= 0,)()(
(2b)  

where truncation and steady-state time instants 
are finite t

Tt ∞< t  and 
SS

t ∞< t . These models 
are produced by using admissible inputs with 
regard to the respective magnitude ranges at 

 operating point µOpPo µ  (a number of them). 
Ultimately, the latter two are in fact pseudo-
impulse responses, discretized correctly with 
respect to the time, known as pseudo-weighting 
functions [3] or I/O weighting patterns [21], or as 
k-time sequence matrices [10], kTSM for short. 
In here, constant  indicates the three-
dimensional matrices of instantaneous values 
span up to the truncation time , and t  is the 
time when steady state is reached, while 
theoretically 

Tt
N

Tt SS

+∞→∞t  [10]. In any case, these 
are approximated three-dimensional infinite 
Markov matrices [29] of plant process dynamics 
that have been conveniently truncated. Note for 
thermal processes, having natural steady-states, 
these still can contain information on the local 
nonlinear distortions [10]-[13]. Hence identified 
models in all forms, relevant to the approach in 
the time domain, may readily be available:  

[ ]
Ttio xNxNNlk tgty )()( = *

sskll tttttm <≤≤0),(                                 (3) 
with * denoting convolution operation, and  

[ ] [ ]
∞

≅
tioTtio xNxNNkxNxNNl tgtg )()(          (3a) 

ifonlyandif   

[ ]{ } =
→

Tt

io
T

N
xNxNNl

t
tg

NN 0
)(

lim
 

[ ]{ } 1

0
)(

lim +

→
Tt

io
T

N
xNxNNl

t
tg

NN

SST tt NN →

 when 

;                                                 (3b) 
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[ ] [ ] )()()()( 111
kxNNxNN teqmqGqy

ooio
Ψ+= −−− ;

(4) 

[ ] [ ]
[ ] [ ] );()()(

),1()()1()()(

kxNNkxnNk

knxNsknxnsk

tetxCty
tmTBtxTAtx

ooo

i

Ψ+=
−+−=

                                                                          (5) 
),(...,),1(()( ykkk Ntytyfty −−=

.),1( −ktm . 

)())(...),1(),(., kekkmk teNteteNttm +−−−− λ

 (6) 
where  and  is the 
vector of a zero-mean disturbance term. Of 
course, by allowing correctly for limited 
bandwidth via proper time sampling and using 
anti-aliasing filters, this enables always a 
convenient use of digital computations. Hence, 
the following formal definitions of characteristic 
I/O modes and vectors in the time domain for 
MIMO dynamical processes result [10], [21].  

o

])

uy NNN RRf →+: )( kte

 
Definition II.1. The scalar Toeplitz operator 
[ ( ki tλ  is a characteristic input-output mode or 
pattern (CPA) of a MxM matrix plant 
convolution (pseudo-impulse response) operator 

  [ ]
io xNN) =ktG( [ ]

Ttio xNxNNktg )( G=̂  for 

, MNout =Ninp = ,0 ∞≤≤ ttt k

[ ]

 if it is a root 
of the characteristic polynomial equation 

[ ]
tSSMxMxNktG )(ki It )( −det λ . The Mx1 vector 

operator  is a characteristic vector (CVE) 
if it satisfies the equation  

)(tw k

{ [ ]MxMxNkki tGIt )()( −λ } .         (7) 0)( =ktw
 
Apparently, the above concepts of CPA and the 
CVE describe the natural operational input-
output dynamic behavior of plant convolution 
operator G . In turn, plant convolution operator 

 can be obtained by means of the spectral 
decomposition  
G

V

Λ

[ ] ∑=
=

M

i kikikiMxMxNk tvtwttG
1

)()()()( λ (8a) 

for simplicity 
WG Λ=: .                                                 (8b) 

Here,  is a diagonal matrix comprising 

)( ki tλ , which represent the CPA’s, and the 

columns of W  == −1V [ ]Mwww ...21

i

 are 
the CVE’s. The validity of the approximation 
can be confirmed by the known Gershgorin 
eigenvalue theorem for diagonal dominance. A 
normalization of the CVE is carried out such that 
each diagonal element of W is the identity 
element (1, 0, 0, ...), and also an reordering 
procedure using the decomposition result in [13] 
is carried out such that to each {λ } corresponds 

a constituent matrix  with maximum norm on 
the diagonal element ‘i’ of approximated plant 
convolution operator G .   

iC

. uGGu <

∞
G

1
.

 
Recall now that for any compatible set of norms 
there exists a vector norm (of signal variables), 
denoted by , of such that . 

Then 
1

G , 
2

G ,  are system operator 

norms induced by signal norms , 
2

. , 
∞

. , 
respectively. Operator elements of the kind of 

, together with the zero O  and the identity G
I  operators, belong to a commutative Banach 
algebra in which the product corresponds to 
discrete convolution [8] and may thus be 
manipulated using block-diagram algebra. The 
relationship between defined sequences and the 
corresponding stable or unstable Z-transforms is 
detailed by Cheng and Desoer in [5], who 
showed that the discrete time case can be 
treated by more straightforward methods in 
contrast to the continuous-time distributed case, 
which normally is plagued by difficult fine 
points of analysis. In addition, for Lure-
Postnikov class of non-linear systems that are 
time-discretized, a left-distributive algebra on 
extended Banach spaces of p-summable (p=1, 
2, ∞ ) sequences exists [10]. It is well-known 
that the elements of G  do not reveal the useful 
information about the interaction behavior of 
the plant, while the spectral decomposition (7)-
(8) does [3], [10], [21].  
 
In principle, a CPA and associated CVE may be 
real and distinct, confluent or ones of a complex 
pair, however, for the well-posed gas furnaces 
they are real and distinct. When a CPA is real 
then its steady-state gain (SSG) matrix G  is 
also real, and thus a simple test is to check the 

ss
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ss

ss

eigenvalues of G . The CPA may be positive 
or negative, depending on the sign of its SSG; 
again, a simple test is to check the eigenvalues 
of . A G  has a characteristic inverse 
response pattern if a CPA is positive but the 
initial transient is negative, and vice versa, 
which implies that an eigenvalue of the first 
non-singular Markov matrix G  shall be 
positive if the eigenvalue of  is positive. 
The CPA type is defined in the usual way for 
scalar operators, i.e. if the system type is the 
same for all elements along a row of  then 
the CPA will take the same type. Internal 
process interaction is defined as the effect of 
one subsystem on the others, and this is 
reflected by the CVE precisely. If a CVE is 
aligned with its basis vector, i.e. 

G

)( kt

ssG

wi

G

I= , then 

 is partially or triangular decoupled, and if 
all CVE are aligned with the basis vectors, i.e. 

, then  is fully decoupled or non-
interacting. If a CVE vary with time t , the 
interaction is dynamic, otherwise it is static 
implying these vectors are zero for all . 
Static characteristic vectors imply that the 
constituents are constant real matrices.  

G

W =

G

M =

I G

iNN=

k

kt 0>

Tt
N

 
In real-world processes, the propagation 
information takes place along with flow and 
processing of energy and mass. Hence their 
behavior depend essentially on the magnitude 
of manipulated variables (which induces all 
sorts of nonlinear distortions that may be 
present in the plant), and hence the concept of 
energy and power balance within control loops 
has got a considerable impact [10], [17]. 
Moreover, from the energy balance point of 
view, the power contained in a kTSM operator 
of  can be well-defined via a decomposition 
theorem [13]. For the purpose of the present 
comparative analysis its updated version [14] is 
stated below.   
 
I/O Mode Decomposition Theorem II.1. The 
ordered characteristic input-output modes of 
well-posed MIMO processes for 

 and , represented 
by three-dimensional k-time sequence matrices, 
have their natural decomposition in terms of 
characteristic signal power distribution  

oNN N =

( ) ∑∑ ∑ == =
==

M

i iii
M

i k
M

j j CCtP
11 1

2 )( πλ ,   (9a) 

∑=
=

M

i i IC
1

,                                                 (9b)  

[ ] ,)(1
MxMxNktgGWLVLVV ===−    (10a) 

,T
iii vwC =                               (10b) 

with the constituent matrices Ci (CMA) of the 
characteristic I/O process modes 

[ ] xNxNNki io
tL )(λ=  and characteristic vectors 

[ ]T xNNk o
tww )(= , which only in special cases 

may be constant.   
 

(a)

 
(b)

 
(c)

   

Fig. 2.  Sample results for furnace RZS: (a) the 
identified pseudo-impulse response matrix; (b) 
the interaction characteristic vectors with time 

delays removed; (c) the ordered I/O 
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characteristic modes extended with time delays. 
 
The set of constituent matrices, with their 

essential property  (also see Figure 

3 c), act as a modulating distributor of 
generalized power weights.  

∑=
=

M

i i IC
1

 
It is apparent that the diagonal of   reveals 

how generalized powers 
iC

π  are being associated 

with a particular diagonal element of P . In turn, 
P  may be  
obtained as a sum of convolutions between iπ  

and , the array C  represents the power 

distribution weight in  associated with the 
respective input-output process channel. Hence, 
the indicator of the proper position of 

ii
lC ii

l

iiP

iλ  in the 
matrix structure is given by means of 

Max{∑=
=

M

i
ii
jC

1
I }, i = 1, 2,..., M,  j =1, 

2,..., N. This indicator also represents the rule to 
resolve characteristic I/O modes ordering and, 
consequently, the input-output pairing of 
controlling and controlled process variables. It 
is normally expected that the strongest 
interactions (represented by the elements of 
CVE and CMA) appear in the main diagonal of 
W. That is, a certain sub-system within MIMO 
systems ‘interacts mainly’ with itself validating 
the diagonal dominance in the process 
characteristic I/O modes has been attained.  
 
Figures 3 a, b, c for the real-world RZS pusher 
furnace provide a good physical illustration of 
the above presented I/O mode decomposition 
theorem as well as of the entire discussion in 
this section. Nonetheless, its is pointed out the 
word is about approximate representation 
models of operational processes in the plant 
object, where precisely the energy-information-
matter inter-play goes on.  
 

3. ON APPROXIMATION MODELS 
BY ANN AND KOLMOGOROV’S 
SECOND THEOREM  
Within the context of artificial neural networks 
(ANN) in this paper, we are interested solely in 
approximation of functions applied to process 
model emulation identification. So, we confine 

ourselves to a certain narrow area of 
approximation modelling of dynamical 
processes primarily using feed-forward ANN’s 
and solely to networks that emanate directly 
from Kolmogorov’s seminal results [31]-[32]. 
The emphasis is on Kolmogorov’s second 
theorem, which subsequently has been 
reformulated by Kurkova [34], [35] in more 
practical ways for ANN applications with 
somewhat relaxed requirements on 
approximating functions employed. This 
discussion follows the main streamline of 
mathematical theory of function approximation 
(for in depth study, see [33], [39], [42]) that is 
relevant for ANN based applications to generate 
approximate models, which represent stable but 
complex dynamical processes having natural 
steady-state equilibrium (e.g., industrial thermal 
systems) of interest in this comparative study. It 
should be noted, in addition, that computing 
ANN system structures are also readily 
modeled [2], [26], [51] by using theory of 
directed graphs [7], [25]. 
 
Now let here recall (6), which represents a 
fairly general input-output representation of 
time-discretized system models, where by 
assumption the underlying mapping 

 is continuous. In its very 
essence, the neural modeling approach makes 
use of ANNs for approximate representation of 
this function.  Hence the neural modeling, in its 
very essence, is a problem of mathematical 
approximation theory.  

ouy NNN RRf →+:

 
Formal mathematical formulation of the 
problem of neural modeling using feedforward 
neural networks can be stated as follows.  
Consider a continuous mapping 

 where  is an uncountable 

compact subset of 

oN
C RSf →: CS

oNR . Compactness of  
implies that it is closed and bounded, which is a 
realistic assumption given the fact that 
operating conditions are specified by means of 
admissible inputs and sustainable outputs, i.e. 
represented  by some bounded functions of 
time. Of course, the mapping  is not given 
explicitly, but rather by a finite number of pairs 
{U } 

CS

f

)(),( kk tYt ∈  xCS oNR , , 

now  representing the number of observed 
Tt

N...,,1k =

Tt
N
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input-output pairs, namely, U  =  

[   

)( kt
),1...,),1( −kty );( yk Nty − ( −kt

ou N+

1xNo

)

f

(f

u

i NN

( CS

  

]

...,
)yN

)CS

)( uk Ntu −

f

S

f

T is an  

vector, and Y  is an  vector. 
Then, seek to find a representation of the 
mapping  by means of known functions and a 
finite number of real parameters, such that the 
representation yields uniform approximation of 
it over set , which should be well-posed 

interpolation hyper-surface . Hence, in 
essence, this is an existence problem 
independent of the form in which the mapping 

 may be given, and therefore approximating 
known functions implies qualitative property 
such as continuity of the mapping .  On the 
other hand, by its very essence, finding the 
interpolation of the continuum  
intrinsically implies constructing it by a finite 
number of argument-value pairs, which may 
done by appropriate learning/training method 
and algorithms [2], [4], [26], [48], [51].  

(o xN
)()( kk tyt =

C

f

 
In the Appendix, there are found further points 
of argument in terms of a brief outline of the 
known abstract mathematical schema, compiled 
from the literature, via which main theorems of 
mathematical approximation theory have been 
derived along with these theorems.  
 
At this point, let briefly relate the discussion in 
this section to the one in Section II. It may well 
be noticed in the conceptual definition and the 
respective math-analytical description of 
process characteristic I/O modes via k-time 
sequence matrices, (7)-(8), that these are 
existent per-se because of the physical nature of 
the class of real-world plants considered. And, 
finding their constructive digital computation is 
dealt with in the associated decomposition 
theorem, (9)-(10), which is equivalent to 
learning/training in the neural modeling 
approach. So, for the time being, one can notice 
that indeed between these two I/O modeling 
approaches some kind of reminiscent 
relationship exists.  
 
In order to proceed further, here we recall and 
place into proper perspective a subset of the 
main results involving Stone-Weierstrass [46] 

and Kolmogorov’s second [32] theorems, and 
the polemical discussions related to the latter in 
[19], [20], [27], [30], [34]-[36], [40], [43], [44]. 
These two theorems constitute the fundamental 
toolbox of the approximation theory. The 
Stone-Weierstrass theorem has been identified 
in the literature as a prime candidate for 
establishing the property of the existence of 
approximation representation , employing 
ANN’s, of the continuous mapping 

, and more detail is found in the 
appendix.  In the sequel we focus on 
Kolmogorov’ second theorem and the related 
polemics.  

)( CSf

oN
C RSf →:

 
It is well known that artificial neural networks, 
because of the biological inspiration and greater 
transparency of the analysis, do have layered 
structures. The sigmoidal model is described by  

∑ =
=+=

N

j Yij
T
ijiji NidUby

1
....,,1),(σα , (11) 

where ,, Rdijij ∈α  b  are parameters, 

and U

oi xNN
ij R∈

)( ktU=  is the input vector, described at 
the beginning of this section. This representation 
equation possess the identity of that of an ANN 
having input layer, sigmoidal hidden layer, and 
linear output layer.  Similarly the radial-basis-
function model has the structure   

∑ =
==

N

j Ymciji NiUgy
ijij1 , ....,,1),(α ,        (12)  

∑ =
=−=

N

j Yijijmciji NimcUgy
ijij1 , ....,,1),/(α

.   (13) 
 
Of course, in both cases, respectively, it is 
necessary and sufficient to show that the set of 
all finite linear combinations of SG and RB 
functions constitute a non-vanishing algebra 
separating points on a compact . 
This has been done, but the same has been 
Gaussian-function networks only after 
introducing the additional requirement of 
convexity of .   

oi xNN
C R⊂S

oi xNN
C RS ⊂

 
On the grounds of Stone-Weirstarss theorem it 
has been found out that the use of both the SG 
and the RB functions is suitable for uniform 
approximation of an arbitrary continuous 
mapping, their interpolation properties, 
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],

however, are different; in a sense the RB 
functions, unlike the SG,  are designed for 
interpolation. On the other hand, the issue on 
finding the best approximation remains much 
more involved. Nonetheless, the way deep into 
the existence problem has been highlighted 
when Kolmogorov’s second theorem, which 
already had a decisive impact on approximation 
theory [39], [43], has been brought into ANN 
prospective [27].  
 
During a decade or so Kolmogorov’s theorem, 
resolving the representation of continuous 
functions defined on an n-dimensional cube by 
sums and superposition of continuous functions 
of one variable, has been one of the focuses 
attracting attention in the theory and 
applications of neural modeling approach. 
Hence the main result of Kolmogorov [32] as 
well as the subsequent reformulation by 
Kurkova [34], [35], who disproved the criticism 
by Girosi and Poggio [20] and verified its 
essential relevance for the neural modeling 
approach, are recalled next.  
 
Theorem III.1 (Kolmogorov’s Second). Any 
function continuous on the n-dimensional unit 
cube   can be represented in the 
form 

, [ 1,0=EnE

( )∑ ∑+

= =
=

12

1 11 )()...,,( n

i

n

j jijin xxxf ϕψ ,     (14)  

where  and ijϕ  are real continuous functions 

of one variable, and the functions ijϕ  are 

independent of the given function while only 

the functions 

f

iψ  are specific for the given 
function .  

iψ

 
Kolmogorov has made clear that on the grounds 
of this theorem it is possible to represent 
exactly every continuous function of many 
variables as a superposition of a finite number 
of continuous functions of one variable and of a 
single particular function of two variables, viz. 
addition. Considerably later, Lorentz [39] has 
proved a simplification of Kolmogorov’s 
theorem in which the functions iψ  may be 
replaced by only one function ψ , and Sprecher 

[43] has shown that the functions ijϕ  by   

with and some monotonic 

increasing functions 

j
ijφα

constij =α

jφ . Only in the eighties, 
Hecht-Nielsen [27] has reformulated Sprecher's 
version of Kolmogorov's representation 
theorem and applied to neural network 
modeling, and so did Funahashi, thus the use of 
ANN’s was made plausible entirely. More 
recently Lin and Unbehauen [36], Katsuura and 
Specher [30], Sprecher [44] made yet other 
realizations based on Kolmogorov’s second 
theorem.   

,n

ijα
ψ

 
Theorem III.2 (Heht-Nielsen form of Sprecher’s 
version). Any continuous function defined on the 
n-dimensional cube  can 
be implemented exactly by a three-layered 
network having 2n+1 units in the hidden layer 
with transfer functions   from the input to 
the hidden layer and 

[ ],1,0=EwhereE

jφ
 from all of the hidden 

units to the output layer.   
 
In their work Girosi and Poggio, [20], have 
pointed to the two drawbacks of this theorem: 

  are highly non-smooth, and j
ijφα  on the 

specific function  are not representable in a 
parameterized form. In turn, Kurkova [34], [35] 
eliminated both these difficulties by using 
staircase-like functions of a sigmoidal type in a 
SG feedforward neural network.  It is well 
known that highly non-smooth functions 
encountered in mathematics are mostly 
constructed as limits or sums of infinite series of 
smooth functions (see the Appendix). Kurikova 
showed that all of the single-variable functions in 
Kolmogorov’s theorem are limits of sequences of 
smooth functions when staircase-like functions 
of sigmoidal type are used in the neural network. 
In fact, this type of function has the property that 
it can approximate any continuous function on 
any closed interval with an arbitrary accuracy. 
Note that, in fact, these functions are directly 
employed in all discrete-time system 
representation models and kinds of digital 
computer generated controls [14], [16], [45].  

f
jφ

 
In the course of deriving her arguments, Kurkova 
also contributed an appropriate reformulation of 
Kolmogorov’s second theorem within the realm 
of artificial neural networks  Hence, this 
reformulation of the celebrated Kolmogorov's 
representation theorem is presented next.  
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N
Theorem III.3 (Kolmogorov-Kurkova).  Let 

 with , n∈ 3 ER →:≥n σ  be a sigmoidal 
function,  be a function of class , 

, and 
f

)n

)(0 nEC
∈f (0 EC ε  be a positive real number.  

Then there exist k  and staircase-like 
functions 

N∈

iψ , )(σϕ S∈
nE

ij

nx ∈)...,

 such that for every 

 holds true x ,1x = (

( ) εϕψ <−∑ ∑= =

k

i

n

j jijin xxxf
1 11 )()...,,( , (15)  

where )(σS  is the set of all staircase-like 
functions of the form  

∑ =
+=

k

j iiiSC cxbxf
1

)()( σασ .               (16) 

 
This theorem implies that any continuous 
function can be approximated arbitrarily well by 
a four-layer sigmoidal feedforward neural 
network. It should be noted that already has been 
established (albeit not by Kolmogorov 
arguments) that even three layers are sufficient 
for approximation of general continuous 
functions [6], [19]. In general, approximate 
implementation of iψ  does not guarantee an 
approximate implementation of the original the 
specific function  [36], implying that the 
former must be exactly realized.  

f

 
Clearly, also there are limitations of the 
applicability of Kolmogorov's theorem to neural 
networks for approximation of mappings 

. For instance, in applications, 
one has to answer the question whether an 
arbitrary given multivariate function can be 
represented by an approximate realization of the 
corresponding functions 

o

i

N
C RSf →:

ψ  of one variable. 
However, the efforts towards applying this 
theorem are fruitful and important, as some 
useful neural networks like the sigmoidal 
feedforward network are correctly and properly 
described by Kolmogorov's representation 
theorem [17]. Moreover, it is readily applicable 
to real-world complex plants such as industrial 
furnaces [15], [16]. And, so has been the case 
when applying CVE-CPA-CMA decomposition 
theorem that worked always for multi-zone 
furnaces [14]-[16], [23]. 
 

4. A SUMMARY OF 
COMPARATIVE FINDINGS  
A closer comparison analysis of the essential 
substances presented in Sections II and III 
reveals fairly well the existent of similarities 
and distinctive differences between the 
respective input-output time-domain model 
representations [17]. The ones discussed in the 
previous section, the foundation of which is 
Kolmogorov’s theorem and which make use of 
ANNs (e.g., see [16], [17]), of course, are the 
more ‘general’ ones, because these are fully 
consistent with the mathematical approximation 
theory [33], [39], [42] precisely. These are 
learned form the I/O time sequences as they ere 
recorded during plant operation.  
 
It should be noted, however, the kTSM 
representation model of characteristic I/O 
modes decomposition [10], [13] in Section II 
also are based on operational real-world I/O 
time sequences carrying on most essential 
features of the process [14]. This, in turn, sheds 
new light on the similarities and differences 
between both these approximation model 
representations.  The main difference appears in 
the fact that Kolmogorov ANN do imply 
decomposition and generalization in the time 
domain, while I/O k-time sequences CVE-CPA-
CMA imply solely decomposition [14], [17].  
 
By referring more closely to characteristic I/O 
mode decomposition formulae, (9)-(10), and to 
Kurkova’s formulae of Komogorov’s 
representation theorem, (15)-(16), despite the 
considerable difference a common underlying 
background is evident. Although derived by 
means of different arguments – the former have 
also exploited the engineering physics – clearly 
both have been derived within the context of 
approximation theory of multivariate functions 
[17].  
 
Now, let consider comparing (14) in the 
original Kolmogorov representation theorem 
and the approximation inequality (15) of 
Kurkova, which implies replacing the exact 
expression representation with an approximate 
one. Also, for a convenient parallel between 
neural-network approximation in this Section 
III and convolution approximation in Section II, 
and recall the earlier comparison setting for 
expressions (7)-(8) and (9)-(10). In turn, it may 
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well be seen that a noticeable reminiscence 
becomes quite apparent [17].    
 
In the final consequence, from the points of 
view in the present discussion, it has become 
evident above that ultimately the characteristic 
I/O mode decomposition also has its support in 
the general validity of Kolmogorov’s theorem. 
And, this provides the explanation why fairly 
simple designs of PI partially-decoupling digital 
controls of industrial furnaces [14], [23], [45] 
turned out to work in robustness way and 
considerably better than initially expected.  

5. CONCLUSION 
In the literature, there have been developed 
system representation models via both math-
analytical and computational-intelligence 
approaches. However, both essentially involve 
mathematical approximation theory.  In this 
work, a comparison study of approximate 
representation models of a class of complex 
stable MIMO processes through the time 
domain input-output view of math-analytical 
time-sequence and of the artificial neural 
networks has been elaborated.  
 
An analytical decomposition representation of 
complex MIMO dynamical processes having 
natural steady-state equilibrium (such as in 
thermal systems) has been set relative to the 
ANN approximation representations based on 
Kolmogorov’s theorem and comparison 
analysis carried out. The main findings 
resulting out of this study have been presented, 
which show that both emanate from the 
theoretical background of Kolmogorv’s second 
representation theorem.  These provide a new 
insight into the actual energy-information-
matter inter-play in real-world dynamical 
processes. In addition, these highlighted the 
efficiency and robustness of fairly simple 
industrial digital controls, designed and 
implemented in the past, which in fact is 
inherited from model I/O decomposition 
approximation employed.  
 
Lastly but not least, it may well be argued that 
Kolmogorov’s theorem is much more relevant 
to all engineering disciplines and physical 
science then insofar recognized [17].  For, as 
emphasized by Bertrand Russell, all the exact 
science is dominated by the idea of 

approximation and engineering sciences even 
more so.  

APPENDIX  
The original Weierstrass theorem is the well 
known first approximation theory result [33], 
[39], [42]. This theorem has showed that an 
arbitrary continuous function  
(the relevance is to single-output plants) can be 
uniformly approximated by a sequence of 
polynomials { } to within a desired degree 
of accuracy. Thus, given 

[ ] Rba →,:

)(xp
0>ε , it is possible 

always to find an integer , such that for 
any  the bounedness 

N∈N n

nNn >
ε<−)( pxf n )(x  is fulfilled uniformly on an 

arbitrary interval [a, b]. Apparently, this is the 
'archetype' of the problem considered involving 
a number of real parameters (the coefficients 

 that is finite for a given )(
1

xp
nN +

ε , degree of 

accuracy. In the work of Weierstrass, there is 
present a restriction to the class of polynomials.  
 
In [46] Stone has studied Weierstrass theorem 
on a general abstract level with the purpose of 
finding the general properties of approximating 
functions, which may not be intrinsic to 
polynomials. The model scheme of his abstract 
approach provide the proper way of tackling the 
approximation I/O modeling of dynamical 
processes no matter whether by sequence or 
neural-net structures, and requires a proper 
outline. Notice that his mathematically 
constructive conceptualization schema also 
supports Theorem II.1 on characteristic I/O 
modes decomposition.   
 
All sets of real numbers R  are composed of 
rational, ,   and irrational, , 
numbers. In essence, all computations, either by 
hand or by machine, are performed using the 
rationals because of the fact that any real 
number can be approximated to a desired 
accuracy by a sequence in . Once it is well 
established what natural numbers are and 
arithmetic operations are defined, the formal 
construction of the (sub)set of rational numbers 

 is simple. It should be noted, however, that 
the (sub)set of irrationals  is 
indispensable for theoretical investigations 

rR rRR −=

rRR −

iR

rR

rR

iR =
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because set R  is complete while neither of sets 
 and  are. The emphasized 

remarkable property of rationals is formalized 
by stating that set  is dense in 

rR r

r

i RR −=R

R R , or, 
equivalently, that R  is the closure of . That 
is to say 

rR
R  is the smallest set in which all 

rational Cauchy sequences have limits.  Hence, 
any number which can be approximated by a 
sequence with terms in set  is a real number.  r

BF

R

oi xNNR⊂CS

BF

B

BF

F

AF
rR

BF

rR

nf

f

AF

f

BF

oR

C RS ⊂

i xNN

oiN

 
Following Stone, consider the problem (a 
converse to that of Weierstrass): given the set, 

, of all continuous functions from a compact 

subset, , to the set of reals, R ,  

then find a proper subset of it, , such 

that  is the closure of . Note that when 
considering the approximation of functions of a 
real argument rather than approximation of real 
numbers, the set  is playing the role of the 

set

AF ⊂

AF

R  of reals and the set  is playing the role 
of set  of irrationals. Also note that when the 
word is about function approximation, it is 
desirable to perform simple algebraic operations 
on  (and ), e.g. forming of linear 
combinations and compositions, which to 
certain extent is equivalent to arithmetic 
operations on  (and 

AF

R ). Similarly to 
convergency and uniform convergency of 
sequences of real numbers in  and rR R ,  
convergency and in particular uniform 
convergency of sequences of functions is 
desirable [33], [39], [42]. Thus, if { } is a 

sequence of functions in  such that 
, it is desirable the limit  of  { } to 

be in . For issues investigated in this paper, 

sequences of functions with terms in  are 
required to converge uniformly on 

, which is guaranteed if set  
is composed of continuous real functions on a 
compact set .   

AF
ff n

CS

→

⊂

n

AF

xN

 
The above constructive, abstract, mathematical 
schemata via which Stone has extended 
Weierstrass theorem, cited below, remains valid 

for any functions and not solely for the 
continuous ones. 
 

Theorem A.1 (Stone-Weierstrass). Let  be an 
algebra of some continuous functions from a 
compact  to 

AF

oi xNN
C RS ⊂ R  such that   

separates points on S  and vanishes at no point 

of . Then the uniform closure  of  is 

consisted of all continuous functions from  to 

A

F

F

AF

CS

C

CS B

R .  
 
It is emphasized further that Stone-Weierstrass 
theorem remains valid for multivariate 
continuous functions too,  to oi xNN

C R⊂S
oNR , , because   the co-domain 

of a vector-valued function is Cartesian product 
of its components due to conditional property of 
an algebra of functions [33], [39], [42].  That is, 
it is valid for multi-output plants defined by (6) 
in Section II that are mappings 

 provided an appropriate 

compact subset of 

oN
C RSf →:

ouy NNN R→+

y NN

Rf :
uR +

be constructed.  With 
regard to neural modeling approach, however, 
Stone-Weierstrass theorem has to be viewed in 
the light of employing sigmoidal (SG; roughly 
speaking almost-smooth saturation nonlinearity) 
and radial-basis (RB; roughly speaking, almost 
smooth semi-sphere nonlinearity) functions. 
Their precise formal definitions are found in the 
literature cited. 
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