

ISTANBUL UNIVERSITY –
JOURNAL OF ELECTRICAL & ELECTRONICS ENGINEERING

YEAR
VOLUME
NUMBER

: 2003
: 3
: 1

(793-800)

Received Date : 09.09.2002
Accepted Date: 22.12.2002

A NEW RULE-BASED APPROACH
FOR COMPUTER CHESS PROGRAMMING

USING GP-ARTIFICIAL TECHNIQUES : PECP

Y.Güney HANEDAN 1 Ahmet SERTBAŞ2

1,2 Istanbul University, Engineering Faculty, Computer Engineering Department
34850, Avcılar, İstanbul, TURKEY

1E-mail: ghanedan@yahoo.com 2E-mail: asertbas@istanbul.edu.tr

ABSTRACT

In this paper, we use a brand new chess engine programming technique which we name PECP
(Positional Evolutionary Chess Programming), that brings the Artificial Intelligence and Genetic
Programming approaches together, to construct a chess endgame analyzing engine. Throughout the
paper, the technique and the algorithm are discussed in detail. Also, using PECP, an example
program (RETI V1.0) aimed to prove the correctness and performance of the rule-based theory and
algorithm is written in PROLOG language.

Keywords: Genetic Programming, Chess Play, Endgame Engine , Positional Rule-based

I. INTRODUCTION
Evolutionary Computing (EC) is a rapid
devoloping area in Computer Science. It has
been used for a wide range of applications from
optimization, modeling and simulation to
entertaintment.

The one of its important application areas is the
chess programming The complexity of the
search space in chess is far beyond the
imagination. To be search exhaustively, for
interesting games, trees of possible
continuations are very complex. Such complexity
makes it practically impossible to evaluate all
possible next moves that would occur from an
initial position with any recent computer
available. Thus, intelligent methods for tracing
the search tree are necessary.

The most popular among them is the minimax
principle[2], was introduced by Shannon (1950).
In minimax principle the search tree is only
traced down to a few levels and a general idea of
the forthcoming moves is predicted. For the
nodes in the search tree represent the board
positions, a minimax run can be schematized just
as the fig.1.

The minimax algorithm has to visit all of the
nodes in the search tree before selecting the
optimum move line indicated by bold arrows in
fig.1. For this reason, a more economical
approach inspired by the minimax principle
called alpha-beta pruning, uses an advanced
version of the minimax algorithm. Here, the
algorithm keeps the minumum weight value
estimated so far (alpha) along with the maximum
weight value (beta).

mailto:ghanedan@yahoo.com
mailto: asertbas@istanbul.edu.tr

A New Rule-Based Approach For Computer Chess Programming
Using Gp-Artificial Techniques : PECP

794

Y.Güney HANEDAN, Ahmet SERTBAŞ

While evaluating some other node, if beta is
exceeded, the process stops tracing on that branch
and advances the search on another one[1].

Figure 1. Minimax optimum play.

[Root node indicates the initial position and its
corresponding weight. The player with side to
move is denoted as MAX and the opponent as
MIN.MAX to play selects the highest weighted
move and MIN to play selects the lowest].
The basic alpha-beta algorithm is as follows;

I. Start with position a.
II. Move down to b.

III. Move down to d.
IV. Take the maximum weight value among

d’s children, (alpha).
V. Backtrack to b and move down to e.

VI. Search for a weight value among e’s
children, w(max e), which is greater
than alpha. When you encounter such a
value, stop the search immediately.
Because this is enough for MIN to
realize that there is a better path for
MAX after selecting move e than the
successors of move d. This means MIN
can decide position e is inferior for
itself than position d, even without
investigating all children nodes
connected to node e [2].

In 1975, it was developed a more compact
formulation of the above algorithm by Knuth and
Moore using the neg-max principle instead of
minimax. In 1980 and 1982-85, Advice
Language approach using pattern knowledge
(positional approach) was introduced by Michie
and developed by Bratko respectively.

On the other hand, as opposed to search intensive
approach, the different method to chess
programming, knowledge-intensive (tactical)
approach was introduced by Berliner and Pitrat
in 1977.

But, the increasing power of computer hardwire
and the implementing of special purpose chess
hardwire have effected the search speed of
millions of positions per second. So, search
intensive approach has gained the superiority on
the knowledge intensive approach.

Nearly all commercial chess engines use alpha-
beta pruning or advanced versions of it. For
instance one of the most popular commercial
chess engines Deep Junior, uses a method called
Brute-Force approach culminated in 1997 which
allows the program to ignore moves that threaten
nothing in addition to alpha-beta pruning. This
enables the tracing to dive deeper in the search
tree but also creates a possibility to
underestimate some good lines. However, it has
the shortcoming of the program.

In this study, using genetic and artificial
intelligent techniques, a new algorithm depends
on the positioanal rule-based approach is
presented on the chess endgame application.

2. THE APPROACH METHOD
In high level chess, there are two main styles of
play; tactical and positional.

As it is well known, tactical play depends on
calculating N moves further and discovering
some piece capture there. From tactical point of
view, any recent computer chess program that
chiefly uses alpha-beta pruning can be really
strong, but, as general, it is not strong from
positional aspects.

Opposed to tactical play, positional play requires
strict book knowledge on positional themes such
as centralization, open files, over-protection or
maneuvering against weaknesses, etc [7].
Positional play grants us the ability to choose the
best move ‘without’ calculating N moves further.
A positional player just examines the position;
the relative places of the pieces, strong and weak
points of both the enemy and his/her own, again
he/she investigates the board from the view of

A New Rule-Based Approach For Computer Chess Programming
Using Gp-Artificial Techniques : PECP

795

Y.Güney HANEDAN, Ahmet SERTBAŞ

positional opportunities which is formally called
‘small advantages’ that can only be obtained by
the accompaniment of the ‘sense’ that leads to a
‘plan’. Positional play depends on rules which
are accepted as guidelines for specific chess
phases.

Although positional rules are the fundamental
parts of chess, it’s interesting that there are few
studies for rule-based computer chess
programming in the literature and they are at
most designed as natural language advice
engines for intermediate players [5]. The main
reason for rule-based programming being not so
admired relies on the logical claim that one
cannot generate every general rule, or a series of
general rules which would cover all types of
positions that may arise in chess. Although this
may seem quite reasonable, such a claim just
refutes itself because there is no need to find
such general rules that can be applied to any
probable random chess position while
programming. It’s enough to express sufficient
number of such rules. In chess, sometimes you
have to give up a piece of your own in order to
capture a more valued piece after N number of
moves which we name ‘piece sacrifice’. Another
claim against rule-based programming is said to
be the impossibility of making piece sacrifices
with such a chess engine. The claim depends on
this theme; if you don’t calculate N moves
further you will not be able to see such an
advantaged line of play because giving up a
piece always seems disadvantageous within the
scope of one move.

In the next chapter, using the positional rule-
based approach, the PECP algorithm is given in
detail, on an endgame application.

3. PECP ALGORITHM
PECP algorithm was intended to be a Genetic
Algorithm (GA), so the terminology used here
belongs mainly to Genetic Programming (GP).
For GP being a relatively new programming
technique, it’s important to have some biological
background to understand the terminology here,
references [3] and [6] would provide some
useful help. In this algorithm, a specific purpose
(‘king & pawn vs. king’ endgame) is targeted.
So, standart GA rules are not used, all of time.

The algorithm is as follows;

• Preparation Phase;
1. Define the chess board.
2. Define adjacent squares.
3. Define a function that finds the shortest

distance between two given squares. For
future use in larger functions, define the
vertical, horizontal and diagonal
distances separated from irregular
distances.

4. Define a list structure that will represent
the board positions.

5. Define list operation functions that will
be used in displaying and modifying
lists. Some of those must perform
special element insertions or deletions
according to the board representation
used. (For example deleting the 2nd
element e from some list L or
enumerating list L by inserting
corresponding indexes as the nth
element).

6. Define a function that is able to find all
possible legal board positions. This
function will also check if a given initial
position by the user is a legal board
position or not.

7. Construct a user interface which is
capable of getting the initial position of
the pieces and the side to move from
user.

8. Define a function that transforms the
information taken from user into a
board representation. This same
function should also be able to insert the
initial board position to the database.

• Defining Artificial Intelligence sub-
functions;
9. Define a function for the attacking

conditions of pieces. The function
should be able to find all squares to
which a piece attacks, from a given
piece position.

10. Define a function that manages the
movement of pieces. The function
should be capable of finding all squares
to which a piece can move, from a
given piece position.

11. Define a function for the capturing
conditions of the pieces.

12. Define positional functions such as;
opposition for white & black, distant
and diagonal opposition, the endgame

A New Rule-Based Approach For Computer Chess Programming
Using Gp-Artificial Techniques : PECP

796

Y.Güney HANEDAN, Ahmet SERTBAŞ

rule for black king that decides the
position of it to reach the white pawn
(staying in the magic square) etc. Those
functions should use the whole board
representations as input. Define as many
logical and theoretical functions as
possible (We used basically references
[8] and [9] to find out some important
endgame rules).

13. Define a function that takes a board
position as input, mutates it (makes a
move), and gives the resulting board
position as output. The resulting
position should have generation number
N + 1 and thus, must be a legal next
position. This function should be able to
make every possible legal move within
every possible position. You can use the
function defined in step 10 as a sub
function to build this one.

14. Define absolute draw and absolute win
positions as separate functions. In the
program, an absolute win is a
position in which the white pawn had
reached to 8th rank (queened) and black
has a legal next move. Absolute drawn
board positions should just contain legal
drawn positions defined by chess rules.

• Defining Weights as AI functions;

15. Define weight values for board
positions. In the ‘king & pawn vs. king’
endgame stage there are only two
possible outcomes for a problem; win or
draw (a loss for black is accepted as a
win for white). An absolute win position
should have the weight value 1 and an
absolute draw position should have the
weight value 0.Between 0 and 1, define
as much weight functions as possible.
These vice-functions should check up to
which of the positional rules, or a series
of rules, a given position obeys, that
were defined in step 12.The vice-
functions whose weights are extremely
close to a win or draw (including the
win and draw) should be deterministic.
Other vice-functions should be non-
deterministic.For instance if the white
pawn is on the 7th rank and if the black
king is unable to prevent it from
queening, then such a position (this is
not an absolute win yet, but is likely to

become an absolute win in one move),
must have a deterministic weight value.
If not, the position would also obey
rules that were applied to less
advantaged positions for white. For
example, although the discussed
position’s weight is 0.9 in our program,
if the extreme weight function was
designed to act non-deterministic, then
the same position would also obey rules
whose weights are, let’s say, 0.8 and
0.75.This would cause the level-1
selection algorithm to underestimate the
move.This is one of the most important
and brand new properties of PECP
technique. Our rules are not position
specific. Rather, the rules defined in the
program are generalized. Usually a
position can obey to several rules and
this adds great dynamics to our level-1
selection algorithm.

• The GA phase;

16. Get the places of the pieces and whose
side it is to move from user.

17. Transform the user position into a board
position represented as a function by
assigning a generation number N = 0 to
the initial position. Insert generation N
to the database.

18. While N ≤ 50 do ;
a. Create a list representation L of

generation N.
b. Create a population EL ‘Enumerated

List’ , from L, which consists of all
possible board positions represented as
list structures with their corresponding
individual numbers I and generation
numbers N, which may arise from the
next move.This process is equivalent to
mutated reproduction of individual L.
The mutation probability is %100 and
the initialization method is full. The
population size is the number of moves
that the player with side to move can
make and is not a fixed value. For a
‘king & pawn vs. king’ endgame,
maximum population size is 10 and
minimum size is 0.

c. Apply weight functions to all of the
individuals in EL and create WEL
(weighted enumerated list) which is a
list containing the same individuals with

A New Rule-Based Approach For Computer Chess Programming
Using Gp-Artificial Techniques : PECP

797

Y.Güney HANEDAN, Ahmet SERTBAŞ

EL but this time with their
corresponding weight values Wi with i
being the individual number. While
applying weight functions, if a position
obeys a deterministic rule it’s clear that
it must only have one weight value, if
not, find all possible weight values for
that individual and take their arithmetic
average and assign this value as Wi. We
call step-c and d as ‘level-1 selection
algorithm’.

d. Select the best 3 individuals from WEL
and insert them into the population
deleting the rest of the moves. If it’s
white to move, select the highest
weighted moves; else select the lowest
weighted moves. New population is
called Best3ofPop.(Of course, if there
are only two possible moves, then the
Best3ofPop will contain both of them,
or if there is one then it will contain just
that position.).

e. Delete all of the weight values from
Best3ofPop and arrange a tournament
selection ;
1. Select two individuals, i1 and i2

from Best3ofPop and apply level-2
selection algorithm to them. Winner
of the two is denoted as SW (Sub
winner).Since we are concerning
about the endgame stage, the
program again uses positional rules
for level-2 selection criteria but this
time with a higher understanding of
the position. In this step it’s also
possible to use alpha-beta pruning
or some other selection criteria as
well. In our program level-2
selection is completely
deterministic and is independent of
weight values.

2. Apply level-2 selection algorithm
to the winner (SW) of step e-I and
the remaining individual i3.The
winner of the two is denoted as
Winner.

f. Insert generation N as move N to the
database.

g. Delete generation N from the database.
h. If the Winner is an absolute draw or an

absolute win (termination criteria) pass
to step 19, else ;

i. Transform Winner into a generation

function; generation (Winner) which
already has generation number N + 1.

j. NewN ← N + 1.
k. Repeat step 18 for generation NewN

19. Display ∑ (i = 0 , i = NewN) move(i).

4. REALIZATION
In this application, the chess board is represented
by defining all of the squares as follow:

[Square(1/1), Square(1/2),
Square(1/3),..,Square(8/8)],

where, Square(1/1) stands for a1 and Square
(2/3) stands for b3 in chess notation. Also, the
board positions are represented as;

[N,wk (WX / WY), wp (PX/PY), bk (BX/BY),
Stm],

where N is the generation number, wk (WX /
WY), wp (PX / PY), bk (BX / BY) are the piece
positions, with WX, PX, BY being the pieces’ X
coordinates and WY, PY, BY being the Y
coordinates on board (wk = white king, wp =
white pawn, bk = black king) and Stm being the
side to move (black or white).

One of the most important functions used
frequently in larger procedures is visually
Closer/3 which takes 3 squares S1, S2, S3 as
input and generates a true value if S1 is closer to
S2 than S3. Which means the shortest distance
between S1 and S2 is less than the shortest
distance between S2 and S3.

We use many weight functions to determine the
weight value of a position. The function can be a
theoretical position or it can be a logical
procedure. For example:
draw ([_, _, wk (3/8), wp (2/6), bk (1/8), black]
): - !.
 (1)
(1) is a theoretically drawn position. Also,
WhiteCanDrive
([I,N,wk(WX/WY),wp(PX/PY),bk(BX/BY),
white]):-
PY2 is PY + 2, PX =\= 8, PX =\= 1,
VisuallyCloser
(Square(WX/WY),Square(PX/PY2),Square(BX/
BY)),
not(cancapture

A New Rule-Based Approach For Computer Chess Programming
Using Gp-Artificial Techniques : PECP

798

Y.Güney HANEDAN, Ahmet SERTBAŞ

([I,N,wk(WX/PY2),wp(PX/PY),bk(BX/BY),
white]))
 (2)
is a logical procedure defining a position in
which white king ‘seems’ to be able to drive
black king from the queening square. If the
reader takes a closer look at these procedures
he/she will notice that although (1) is
deterministic (2) is not. This is because;

weight(P , 0):- draw
and;
weight(P , 0.58):- whiteCanDrive(P).

That is to say; if a position is a definite drawn
position which we represent as draw(P) then
there is no need to look for if the same position
is also draw, according to some other absolute
draw rule, and again, there is no need to find
alternative weight values for this position
because the weight value for a draw position is
an extreme weight value (0), and must strictly be
deterministic to avoid it from being under or
overestimated.

In contrast with the previous rule, if a position
doesn’t obey to an extreme weight function then
find all other rules by which this position is also
weighted with. For instance, for a whiteCanDrive
position, try all other whiteCanDrive rules to
which this position obeys, and find all other rules
(such as opposition(P), instinct(P),
intelligence(P) etc.) to which the position also
obeys. This means, find all possible weight
values for position P whose weight is not an
extreme weight value, even if there are multiple
same weight values for P. Thus, non-extreme
weighted positions’ weight functions must
strictly be non-deterministic to provide
sensitivity for level-1 selection.

For example let’s consider position P, if P is a
highestW position (a rule that indicates the
highest wining probability), then it will only
have a weight value of 0.80 which is limit for
extreme values and is also accepted as an
extreme weight value. On the other hand let’s
consider P doesn’t obey any of the extreme
weight functions but obeys 4 non-deterministic
functions like whiteDrives, whiteCanDrive,
instinctW1 and intelligenceB. The corresponding
Weight List for this position could be

[0.70, 0.58, 0.58, 0.47, 0.11, 0.11, 0.11]

From the above Weight List we can conclude
that P obeys 1 whiteDrives rule (weight = 0.70) ,
2 different whiteCanDrive rules (w=0.58), 1
instinctW1 rule (w = 0.47) and 3 different
intelligence B rules (w=0.11). The level-1
selection takes the arithmetic average of all these
values ;

 Wp= (0.70+0.58+0.58+ 0.47+ 0.11+
0.11+0.11)/7 = 0.38

From which we can conclude that P is a slightly
better position for black (limit value is 0.4).
Although taking the arithmetic average was
sufficient in our case, of course more complex
formulations other than just taking the arithmetic
average can be developed for more complex
phases of the game.

After assigning all corresponding weight values
to the individuals of a population, level-1
selection selects the best 3 individuals amongst
those. As we stated earlier, after this stage, level-
2 selection is applied to these best individuals.
We need level-2 selection, because the weights
assigned in level-1 selection were all singular
values, by which we mean those weight values
were determined by a judgment (rules) that were
only applied to the singular properties of the
position.

Let’s consider the positions below;

 (Pos1) (Pos2) (Pos3)

Fig.2- The positions selection based on a rule
Pos1: Initial Position (white),
Pos2: Probable next move (black) ,
Pos3: Probable next move (black).

From given initial position Pos1 (white to move),
level-1 selection might have selected Pos2 (black
to move), Pos3 (black to move) and some other
next position as the best 3 individuals. Although

A New Rule-Based Approach For Computer Chess Programming
Using Gp-Artificial Techniques : PECP

799

Y.Güney HANEDAN, Ahmet SERTBAŞ

it’s obvious that Pos3 is preferable to Pos2, while
level-1 selection is assigning weights, it just
judges Pos2 within Pos2, and Pos3 within Pos3.
It hasn’t got the ability to compare Pos2 and
Pos3. Here, even the weight value of Pos2 could
be slightly higher than Pos3, because in Pos2
white has the direct opposition. So it’s level-2
selection who decides which move is the ‘real’
best among the best 3 selected by level-1
selection. As Pos2 and Pos3 are tested through
double tournament selection, immediately the
deterministic rule PY3 > PY2 (a rule being; white
pawn is more advanced in Pos3 than in Pos2 and
black is unable to reach it), will apply and Pos3
will be selected as the sub winner.
We can now pass to a test run the program with
the initial position given in Fig.3;

Fig.3 – Initial position to test the program.

This position is a win for white with white to
move and a draw for black with black to move.
Our initial position was with white to move and
test results are given below. We must note that
program had no specific knowledge on this
position.

5. CONCLUSIONS
The obtained results for the endgame analized in
this study prove that PECP method will give
better results in any kind of endgame situation,
than the classical methods. Recent commercial
engines use tablebases in endgame but that
reduces the speed of the evaluation process.
Without tablebases alpha-beta pruning is not
sufficient by itself, because endgame stages are
fully described in chess literature; there is no
point in calculating N moves further in the
endgame stage.

The program can also be used in creating
tablebases, also in midgame too.

Table I. The positional test results

Initial Position:
BestMove = [0, wk(5/3), wp(4/3), bk(4/6), white];
The ‘only’ move that leads to a win,
BestMove = [1, wk(4/4), wp(4/3), bk(4/6), black] ;
BestMove = [2, wk(4/4), wp(4/3), bk(4/7), white]
BestMove = [3, wk(4/5), wp(4/3), bk(4/7), black] ;
BestMove = [4, wk(4/5), wp(4/3), bk(4/8), white]
BestMove = [5, wk(4/6), wp(4/3), bk(4/8), black] ;
BestMove = [6, wk(4/6), wp(4/3), bk(3/8), white]
BestMove = [7, wk(5/7), wp(4/3), bk(3/8), black] ;
BestMove = [8, wk(5/7), wp(4/3), bk(3/7), white]
A hard choice but correct,
BestMove =[9, wk(5/7), wp(4/4), bk(3/7), black]
BestMove=[10,wk(5/7),wp(4/4),bk(3/6),white]
Again the only move,
BestMove=[11,wk(5/6),wp(4/4),bk(3/6),black]
Almost equal to c7,
BestMove=[12, wk(5/6), wp(4/4), bk(2/6), white]
BestMove = [13, wk(5/6), wp(4/5), bk(2/6), black]
BestMove = [14, wk(5/6), wp(4/5), bk(3/7), white]
BestMove = [15, wk(5/6), wp(4/6), bk(3/7), black]
A clever maneuver without any specific hint,
BestMove = [16, wk(5/6), wp(4/6), bk(3/8), white]
This was played according to a general rule,
BestMove = [17, wk(5/7), wp(4/6), bk(3/8), black]
BestMove=[18,wk(5/7),wp(4/6),bk(2/8),white]
BestMove =[19, wk(5/7), wp(4/7), bk(2/8), black]
And white queens.
BestMove =[20, wk(5/7), wp(4/7), bk(2/7), white]

REFERENCES
[1] Leon Sterling and Ehud Shapiro, The art of
PROLOG, pp. 400-407,second edition, The MIT
press London, 1999.
[2] Ivan Bratko, PROLOG programming for
Artificial Intelligence, pp. 581-592 , third edition,
Addison-Wesley 2001.
[3] W.Banzhaf, P.Nordin, R.E.Keller, F. D.
Francone, Genetic Programming, pp133-136,
dpunkt.verlag & Morgan Kaufmann Publishers,
Inc. 1998.
[4] Richard Reti, “A Turkish translation of Reti’s
‘Modern Ideas In Chess – 1923 and Masters of
the Chess Board – 1933” combined into one
volume, second edition, Broy yayınları, pp. 32-
33, Ağustos 2000.
[5] W.Barth , “Combining Knowledge and
Search to Yield Infallible Endgame Programs”,
A study of passed Pawns in the KPKP ndgame.6,

A New Rule-Based Approach For Computer Chess Programming
Using Gp-Artificial Techniques : PECP

800

Y.Güney HANEDAN, Ahmet SERTBAŞ

In: ICCA Journal, Vol. 18 (1995), No. 3, pp.
148-159.
[6] T.A. Brown, Genomes, pp. 331-336, John
Wiley & Sons – 1999.
[7] A. Nimzowich, My System, pp.157-256,
revised edition, David McKay Company – 1947.

[8] R. Fine, Basic Chess Endings, pp. 7-9,
DavidMcKay Company – 1941.
[9] L.Polgar, Chess Endgames, pp. 23-2
Könemann Verlagsgesellschaft mbH –199

 Güney Hanedan : He was born in ORDU in 1978. He received the B.S. degree in

computer engineering from the Istanbul University in 2001. He has been a chess player as
professional since 1998. His research interests include digital sound design and
composition, genetic and chess programming.

Ahmet Sertbaş was born in İstanbul in 1965. He received the B.S. and M.Sc. degrees in
electronic engineering from the Istanbul Technical University in 1990, the Ph.D. degree in
electronic department from Istanbul University in 1997 respectively. He has worked as
Research Assistant at I.T.U. during 1987-1990, research engineer at Grundıg firm during
1990-1992, an instructor at the Vocational School of Istanbul University during 1993-
1999. He is currently an Assoc. Professor in the Department of Computer Engineering at
the University of Istanbul. His research interests include computer arithmetic circuit
design, computer architecture and computer-aided circuit design, circuit theory and
applications.

	A NEW RULE-BASED APPROACH
	FOR COMPUTER CHESS PROGRAMMING
	USING GP-ARTIFICIAL TECHNIQUES : PECP
	Y.Güney HANEDAN 1 Ahmet SER�
	
	
	Table I. The positional test results

