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ABSTRACT 
 

In this paper, the construction of time-dependent solution of electromagnetic fields in space-time by 
exploiting Taylor Series and Geometrical Optics’ (GO) tools, i.e. wavefronts and rays, is introduced. 
Discontinuities in the fields and their successive time derivatives may only exist on the wavefronts and 
propagate along the rays. These discontinuities are transported via higher order transport equations. 
The proposed method is implemented by two different procedures on a sample problem of Hertzian 
dipole at origin in isotropic, homogeneous medium. In the first one, discontinuities themselves are 
transported directly by differential-type equations but in the latter by auxiliary vectors using both 
differential and integral type equations and conservation of energy is taken into account. Forward 
differences in time and central differences in space are applied. Simulation studies, when compared 
with analytical results, show that consistent and accurate results are obtained. 
 
Keywords: Geometrical Optics, characteristics, bi-characteristics, wavefronts, rays, numerical 
methods, finite differences, time domain, computational electromagnetics (CEM). 
 

1. INTRODUCTION  
Maxwell’s equations, which are of hyperbolic 
nature and partial differential type, define initial-
boundary value problems in electromagnetics 
[1]. Although it was established more than a 
century ago, very few time-dependent solutions, 
either by analytical or by other means, are 
known. On the other hand, frequency-domain 
analytical/numerical research has been conducted 
extensively. However numerical studies in space-
time have recently been quite popular due to 
many advantages of time-domain. 
 
As for the solution of Maxwell’s equations in 
space-time domain by numerical methods, the 

first milestone is the Yee’s paper in 1966 [2]. 
There have been an increasing number of papers 
in this field following Taflove’s paper in 1975 
[3]. Although developed methods of the past 
provide good solutions for electromagnetic 
problems, they still need to be improved in some 
respects. Maximum time-step (∆t) depends on 
spatial grid intervals (∆x,∆y,∆z) and is limited by 
Courant-Friedrich-Levy (CFL) stability 
condition. Therefore, in general, conditionally 
stable algorithms have been developed [4]. The 
size of spatial grid intervals with respect to 
wavelength has also influence on the numerical 
accuracy. There exists numerical dispersion due 
to the discretization of computational domain. 
Absorbing boundary conditions (ABC) cannot be 
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implemented perfectly at the outer boundary of 
the computational domain. This leads to 
undesired reflected waves, which in turn 
propagate to the interior region resulting in 
unwanted modulation of signal and energy 
deposition. These reflected waves also 
deteriorate the numerical accuracy. This is a 
critical issue in Radar Cross Section (RCS) 
simulations, which typically require a dynamic 
range on the order of 60dB. Moreover these 
methods may also suffer from some other 
drawbacks such as computation of very large 
number of variables, storage of them, and 
inversion of huge matrices etc. 
 
Apart from the studies in CEM, there has also 
been extensive research for the numerical 
solution of Euler equation in computational fluid 
dynamics and some researchers have tried the 
characteristic-based methods developed for Euler 
equation on Maxwell’s equations since they are 
both hyperbolic, partial differential equations [5], 
[6], [7]. The gist of the method is that Maxwell’s 
equations are reduced to three approximate 1-
dimensional Riemann problems in each spatial 
direction and then each is solved successively 
one at a time using FDTD, FVTD etc. The 
eigenvalues of Riemann problem are real and 
gives us the direction and speed of propagating 
wave along the characteristics [8]. 
Discontinuities propagate along these 
characteristics. There exists a domain of 
influence and domain of dependence bounded by 
characteristic curves from the point of view of 
fields and sources that create them. 
Characteristic-based methods provide us good 
mathematical formulation, which is also 
consistent with the physics of wave propagation. 
They honor the physical domain of dependence 
and mimic the directional-signal propagation. 
Hence we have some advantages in numerical 
applications. More stable 
(conditional/unconditional), explicit/implicit, and 
efficient algorithms can be developed [5], [6], 
[7]. ABCs can be implemented perfectly at the 
outer boundary of the computational domain [5]. 
Variables can be decoupled in some cases and 
computational burden can be alleviated. 
Numerical dispersion is expected to be much 
less. The only disadvantage of characteristic-
based methods is that the coefficient matrices 
can be diagonalised only in one dimension at a 
time. Diagonalisation in 2 and 3 dimensions has 

not been achieved yet to the knowledge of the 
authors. 

rr

 
In this study, contrary to the mentioned methods, 
we do not attempt to solve the Maxwell’s 
equations directly in space-time, but rather, the 
time-dependent total electromagnetic fields’ 
solutions are established by first finding the GO 
field and then improving it by addition of higher 
order discontinuities on the wavefronts and along 
the rays in time. 
 

2. THEORETICAL STUDIES 
Time-dependent Maxwell’s equations in source-
free, isotropic medium are given in (1). In the 
solution of these equations in space-time, 
discontinuities in the fields and their successive 
time derivatives exist on discontinuity 
hypersurfaces (characteristics) and propagate 
along the bi-characteristic curves [8], [9]. The 
projections of characteristics and bi-
characteristics into the space domain are called 
as wavefronts ϕ and rays respectively.  Figure-1 
illustrates a typical hypersurface (a hypercone in 
2-Dimension), bi-characteristic, wavefronts and 
rays. According to Geometrical Optics, 
electromagnetic fields propagate along the rays 
and wavefronts satisfy the well-known Eikonal 
equation. 
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Figure 1: Illustration of hypersurface, bi-
characteristics, wavefronts and rays. 
 
Procedure 1: Discontinuities of the fields which 
correspond to  ν=0  are the GO electric and 
magnetic fields. These fields propagate in the 
normal direction to the wavefront. Rays are 
curves normal to the wavefront in isotropic 
medium. They turn into straight lines in 
homogeneous medium. Discontinuities for 
electric field are transported along rays by higher 
order transport equations given in (3). Similar 
formulas can also be written for magnetic field 
[9]. Here, τ is a parameter along a ray and is 
related to s (arc length) and t (time) by ds=ndτ 
and τ=ct/n2 respectively where c is speed of light 
and n is the index of refraction of the medium. 
One outstanding property of these higher order 
transport equations is that they are ordinary 
differential equations (ODE). The other one is 
that they are recursive. It is also apparent that 
electric and magnetic fields are decoupled. One 
should also note that we have homogeneous 
equations for ν=0 and inhomogeneous equations 
for ν>0 which also implies the recursive nature 
of them. In homogeneous medium, equations (3) 
get simpler form and field components 
themselves also become decoupled.   
 

  

    

 (3) 
 
Procedure 2: In other way [9], discontinuities 
can also be transported as in (4), (5) and (6). In 

(4), Wν is the electromagnetic energy density for 
the νth discontinuity and K is the Gaussian 
curvature belonging to the wavefront. To start, 
discontinuities for ν=0 and corresponding 
electromagnetic energy densities are known at an 
initial point τ0 on the ray and auxiliary vectors 

0P
r

 and Q0

r
are calculated. These vectors are 

transported to the next point τ(x,y,z) on the ray 
by using (5). Electromagnetic energy densities 
are also calculated at τ(x,y,z) by using the GO 
ray tube technique. Then discontinuities for ν=0 
are found by using (4) at this new position again.  
 

 

  (4) 
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Then auxiliary vectors 

νP
r

 and 
νQ
r

 for ν>0 are 
calculated by (4) and (6) in a fashion similar to 

0P
r

 and 0Q
r

. Equation (6) gives the procedure 

for 
νP
r

. Similar integral-type equations can be 

written for Qν

r
 [9]. We also define  as a unit 

vector along the ray and normal to the wavefront. 
p̂

0P
r

 and Q0

r
 auxiliary vectors are transverse 

vectors perpendicular to each other and to . 

Hence  

p̂
( )00,ˆ Pp ,Q

rr
 is a triple orthogonal vector 

set propagating along ray. Projections of other 
auxiliary vectors onto these triple vector set are 
found by using (6). 
 

       (6) 
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Construction of Total Field: After transporting 
the discontinuities along the rays by using either 
of the above methods, total time-dependent 
electromagnetic fields at an arbitrary point in 
space ( ) and at time t (t>t0), e.g. for electric 
field, can be constructed by exploiting the Taylor 
series as in (7). Similar Taylor series expression 
can be written for magnetic fields. It should be 
noted that Taylor series expansion is convergent 
under the assumption of “finite” discontinuities. 
This series is also one-sided convergent, that is 
for t>t0. It may converge for t<t0 but does not 
represent true fields. 

                       (7) 
One remark is fruitful here. Comparing the 
Taylor series expansion (7) with Luneberg-Klein 
series (8), the first term in (7) is the GO electric 
field, which is the counter part of the first term of 
(8) except for a phase factor. Other terms in (7) 
provide the improvements beyond the GO term 
in time-domain. (8) is expanded in an asymptotic 
sense as frequency goes to infinity while the only 
restriction for (7) is “finiteness” of 
discontinuities for convergence. r
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3. SIMULATION STUDIES 
Simulations have been conducted for a Hertzian 
dipole at origin in an isotropic, homogeneous 
medium (ε=ε0, µ=µ0). Frequency-domain field 
solutions corresponding to e  time input for 
this problem are given in spherical coordinates 
(R,θ,φ) as in (9), [1], where Idl and Z are strength 
of the source and wave impedance of the 
medium respectively. 

tjω

 

    

    (9) 
 
Time-dependent field solutions corresponding to 
impulse, ( )tδ , time input are calculated by using 
inverse Fourier transform and found as in (10). 
 

               (10) 
 
Discontinuities in the fields and their successive 
time-derivatives stem from the doublet terms. 
Successive differentiation and determination of 
discontinuities yield the results given in (11). 
One can observe that discontinuities disappear 
after v>2 for electric field and after v>1 for 
magnetic field. 
 

     (11) 
 
In the simulations, a Gaussian pulse whose 
maximum effective frequency content is 1GHz is 
used. To this effect, the expressions given in (10) 
must be convolved with the Gaussian pulse. 
Since (11) are the discontinuities arising from the 
doublet term for impulse δ  input, 
discontinuities exhibit Gaussian derivative time 
behavior for Gaussian input after convolution. 
Time-step is selected to be ∆t=1.25×10

( )t

-10 which 
also imposes radial spacing along the rays to be 
∆R=c×∆t. Angular spacing in elevation is also 
taken to be ∆θ=π/90. The nature of the problem 
is independent of the φ variable in azimuth plane. 
For this sample problem, wavefronts are spheres 
of ϕ=nR and rays are straight radial lines passing 
through the origin. In numerical 
implementations, discontinuities are defined 
analytically on an initial wavefront and are 
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treated as initial values. Forward differences in 
time and central differences in space are applied. 
Standing at a fixed point in space and letting the 
time vary, normalized values of are 
calculated and are presented in Figures 2-3 
where the first one corresponds to Procedure-1 
and the latter corresponds to Procedure-2. 

θE

80 90 

 
In simulation results, it is observed that GO term 
is very dominant and the rest in the series are 
negligible. Derivative of Gaussian pulse is 
obtained as the total field. These observations are 
consistent with the physics of wave propagation 
in free space with Gaussian input. Procedure-2 is 
superior to Procedure-1 from stability point of 
view. This is especially due to imposing the 
condition of energy conservation in the 
formulation. 
 

10 20 30 40 50 60 70 

Figure 2: Eθ evaluated by Procedure-1. 
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 Figure 3: Eθ evaluated by Procedure-2. 

4. CONCLUSION 
Maxwell’s equations have been solved 
successfully by using a novel method without 
attempting to diagonalise, discretize and solve 
them directly. The advantages of previous 
methods are kept but their deficiencies are 
eliminated. Proposed method transports the 
discontinuities along the rays in space-time, 
hence, in effect, reduces the problem to 1-
Dimension along each ray. Electric and magnetic 
fields are calculated independently since they are 
uncoupled. Computational burden and storage 
requirement are not more than those of the other 
methods. Numerical stability and accuracy 
advantages of characteristic-based algorithms are 
still preserved. Sommerfeld radiation condition 
can be written in 1-Dimension along the ray and 
implemented perfectly at the outer boundary of 
computational domain. No unwanted reflected 
waves exist. Numerical dispersion due to 
discretization of computational domain is 
avoided since our grids where we perform our 
computations lie on the wavefronts and along the 
rays. All these improvements stem from the fact 
that the transport equations for the fields along a 
ray direction are a one-dimensional problem, i.e. 
one has to deal with ordinary differential 
equations instead of a partial differential 
equation. 
 
With the proposed method, one can calculate the 
time-dependent electromagnetic fields at all 
points in space. Conversely, one can also 
calculate the time-dependent electromagnetic 
fields at a region of interest from rays that pass 
through it. These could be called as Time-
Domain Ray Optics (TDRO) and Time-Domain 
Ray Tracing (TDRT) respectively. 
 
Future studies shall include the detailed error, 
stability and numerical dispersion analyses of the 
proposed method. Application to isotropic, 
inhomogeneous medium shall be done for 
arbitrary shape wavefronts, rays and complex 
source geometries. The method shall also be 
extended to anisotropic media case. 
Electromagnetic phenomena of reflection, 
refraction, and diffraction shall be incorporated 
into the method. Discontinuities shall be related 
to source quantities at t=0 on initial discontinuity 
hypersurface. Our target is to solve/examine all 
electromagnetic problems/phenomena in 3-
Dimension and in time-domain. The proposed 
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method is also expected to be applicable for 
acoustics. 
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