

ISTANBUL UNIVERSITY –
JOURNAL OF ELECTRICAL & ELECTRONICS ENGINEERING

YEAR
VOLUME
NUMBER

: 2003
: 3
: 2

(859-877)

Received Date : 5.7.2001
Accepted Date: 02.05.2003

DESIGN OF A SCHEDULER: COMPARISON OF DIFFERENT
SCHEDULING ALGORITHMS

A. Halim ZAİM

Istanbul University, Engineering Faculty, Computer Engineering Department

34850, Avcilar,Istanbul,Turkey

E-mail: ahzaim@istanbul.edu.tr

ABSTRACT

In this study, we investigate different scheduling algorithms, and compare their performance for
systems with multiple priority queues. The scheduler defined in this paper may be thought as the
preprocessor in an ATM switch, a network processor in a router or just an ordinary CPU scheduler
where multiple processes with different priorities are present in the system. We show that the
proposed algorithm outperforms the known scheduling algorithms from the point of balancing the
average response times.

Keywords: Priority scheduling, dynamic scheduling, priority queues..

I. Introduction
Scheduling theory first appeared in applied
mathematics about forty years ago in order to
study mathematical questions arising in
production planning and scheduling. An
increasing interest in this branch or operations
research can be attributed to the high level of
automation of all branches of human activity.
The quality of modern production essentially
depends on the planning decisions taken at
different stages of the production process.
Moreover, as the quality of these decisions is
improving, the time and flexibility requirements
for decision-making are becoming more
important [1].

Scheduling is the process of devising or
designing a procedure for a particular objective,
specifying the sequence or time for each item in
the procedure. Typical scheduling problems are
railway time-tabling, project scheduling,
production scheduling, mass transit scheduling,
hydropower scheduling, scheduling nurse shifts
in a hospital, ets... Emerging application
examples of scheduling in computer systems are
in flexible manufacturing systems,
multiprocessor scheduling, multiple queue
scheduling, robot activity scheduling, scheduling
in large scale networks and hard real-time
scheduling. For more information about different
scheduling applications refer to ([2]-[5]).

In this study, we investigate the scheduling
problem in a computer network router or a
switch filtering a number of queues with

mailto:ahzaim@istanbul.edu.tr

Design of a Scheduler: Comparison of Different Scheduling Algorithms 860
different priorities. A dynamic priority
adjustment proposed for such queues are
compared with the well known first-in first-out
(FIFO), round robin (RR), head-of-line (HOL)
scheduling and a mixed algorithm. More
information about these scheduling algorithms
can be found in [6].

The paper is organized in the following manner:
in Section II, the problem definition and the
proposed scheduling algorithm is explained.
Section III shows the results, and Section IV
concludes the paper.

II. A Scheduling Model for Priority

Queues

Consider the following CPU scheduling problem.
Programs (jobs, packets, etc.) submitted for
execution are partitioned into N classes. The rate
of submission for class i is �i programs per
second. The execution time of a class i program
is a random variable with mean EXi and variance
�i

2. We may assume that the sequences of
program interarrival and execution times from
independent and identically distributed (IID)
processes. A queuing model for this system is
shown in Figure 1.

The queues have infinite capacity, so no program
submission is blocked. For simplicity we may
assume that an executing program cannot be
preempted.

The objective of the scheduling algorithm is the
following. We are interested in keeping the
average response time for programs of class i,
call it ERi, below a class-dependent, given
threshold gi. The mathematical representation of
the problem can then be thought as devising a
CPU scheduling algorithm to solve the following
problem:

ER Lim D Ai n
n i

i

n

i= −
→∞ =

∑1

1
()

 (1)

A dynamic priority adjustment techniques is
proposed in [7] to solve the problem defined
above. Let Tn denote a program arrival instant
such that the program finds the system empty for
the nth time as shown in Figure 2. Let Dn denote a
departure instant such that a finished program

leaves the system empty for the nth time. Bn is
called the nth busy cycle; In is the nth idle period.

We wish to set up class priorities only at the
beginning of each cycle. The priorities will be
kept constant throughout the busy cycle. Of
course, they may change from busy cycle to idle
cycle. From now on, we consider the special case
of two program classes only, for simplicity of
presentation.

Consider the following quantity:

∫ == 2,1,))((111)(idttnT
Tg

TP in
nii

ni λ
 (2)

Here ni(t) is the queue size including the program
currently being executed, if any, of class i at time
t. The integral is the time-average queue size; if
the system is ergodic and if n is very large, its
value should be equal to the average queue size
in steady state. Then, from Little's Law [6], the
ratio

∫ dttnT
Tg in

nii

))((111
λ

 (3)

should converge to ERi.

It is proposed to use P1(Tn) and P2(Tn) as the
priority indices since (at least for large time
values) they represent estimates of ERi/gi. The
scheduler can be now described as follows:

At time Tn compute Pi(Tn):
If P1(Tn)>P2(Tn), give higher priority to class 1.
If P1(Tn)<P2(Tn), give higher priority to class 2.
If P1(Tn)=P2(Tn), give higher priority to class 2
(arbitrary).

The rational for such an algorithm is the
following: By giving it higher priority, such an
algorithm always helps the class with the highest
current delay. It is dynamic (it needs to measure
queue sizes), and thus we expect it to be
"adaptive".

1. Defining (S,Q,P):

When defining the random processes, we need to
decide on the sample space, the set of all events
of interest and the probability assignments shown

A.Halim ZAİM

Design of a Scheduler: Comparison of Different Scheduling Algorithms 861

A.Halim ZAİM

with (S,Q,P) triplet. There are two different
approaches for that. One of these approach is
true and the other is false. Let us try to pose these
approaches and try to make clearer the right
choice. The first approach is defining a general
set of (S,Q,P) and work on this set throughout
the paper. The second approach, on the other
hand, is defining different (S,Q,P) sets for each
different random used in the study.

Now, first, let us look at the second one.
According to this approach, we define different
(S,Q,P) sets for each random variable. That
means, for example, for the random variable
arrival time, we define S=[0,1], and Q=[0,], and
P is the probability mass function (pmf) of the
Poisson Random Variable. For another random
variable such as interarrival times which is an
exponential random variable, we change the P as
the probability density function (pdf) of the
exponential random variable. The problem with
this approach, we could not make it clear the
definition of the (S,Q,P), because if we want to
deal with another random variable that we see
during the processing time, the (S,Q,P) set for
this random variable is unknown. Therefore, this
is in fact a wrong approach.

The first approach on the other hand says us to
define (S,Q,P) from scratch for the whole
system in a general way. Let us then try to define
S. S, the sample space, contains all possible
outcomes of the experiment. That means, for
example, for a given seed value, which is in our
case the ζ, what would be the values of the
random variables such as the arrival random
variable, interarrival random variable, etc. It is in
fact obvious that, a random variable can take
values between 0 and 1, therefore, all possible
outcomes range between 0 and 1. As a
conclusion we could say that S=[0,1].

Q, the set of all events of interest, to which we
can assign probabilities is of course uncountable,
and we define Q as [0, ∞]. P, the probability
assignment, is a function from S to R that
specifies how events in Q are assigned
probabilities. There are three ways to assign
probabilities to events: measurement,
computation, and hypothesis. In this study, we
used the computation method, and then defined
the probabilities as relative frequencies. That
means P is the relative frequency of each
computation.

For example, to compute the probability of
having k number of jobs in the system, we run
the simulation for a long time, and then calculate
the histograms for the outcomes. These
histograms from which we could easily calculate
the relative frequencies of each outcome, is then
used for the probability assignment. This is in
fact a known method to approximate the pdf of
random variables.

2. Random Variables in the System.

Random variables in this system are:
Arrival times of jobs(A),
Interarrival times of jobs(I),
Number of jobs in the queues(NQ1, NQ2),
Number of jobs in the system(N),
Departure times of jobs(D),
System Delay(T),
Queueing Delays(TQ1, TQ2),
Execution Times of jobs(X),
Response Times(R1,R2),
Priority Indices(P1,P2),

III.Results

In this study we implement different scheduling
algorithms for a system with two priority queues
with infinite sizes and one scheduler and one
server. The priority indices, arrival rates and
departure rates of each queue is changed for
different scenarios. In the following subsections,
we give a number of different tests performed on
this system to demonstrate the comparison of
different scheduling algorithms by first proving
the correctness of the random number generators,
and simulation environment.

1. Plotting queue sizes as a function of
time.

In Figure 3. it is seen in a small time interval the
change of the queue size. These values are taken
from the experiment made with λ=10, and the
time parameter is increased in a discrete way by
0.01. The plot shows that the arrival process is a
Poisson Process. The figure shows that queue
size increase as a step function which is one of
the known properties of the Poisson Process.

Design of a Scheduler: Comparison of Different Scheduling Algorithms 862
In Figure 4. it is seen the changes of the Queue
Sizes for both queues in an experiment made
with λ1=0.5, λ2=0.5. The figure shows that the
slope of both curves are equal to 0.5, as it should
be. In this figure a further look is used to
illustrate the slope of the queues which gives us
the parameter of the arrival Poisson process. On
the other hand, it is very natural that we could
not observe the step function property of the
Poisson process from that figure. A closer look
to this figure is already given in Figure 3.

2. Plotting histograms of interarrival

times, and service times.

Figure 5 shows histograms for interarrival times
for an experiment with λ1=10, λ2=1. The shapes
of both histograms are similar but if we look at
these histograms more carefully, we could see
the differences in their x-axis. In the first
histogram the number of jobs arriving with an
interarrival time smaller then 0.1 is nearly 5500.
The same is true for jobs with interarrival rate
smaller than 0.2. As a total the number of jobs
with an interarrival rate between 0 and 1 is
nearly all of the jobs produced which is nearly
equal to 10000. On the other hand, at the second
histogram the interarrival rates smaller then 1 is
5500.

To demonstrate the correctness of these
histograms, a comparison with real exponential
random variables is added. Figure 6 shows the
first comparison where the first part is the
histogram of interarrival time for queue 1 while
the second one is the histogram of values
generated randomly with exponential random
function with the same parameter λ which is 10
for this queue. Figure 7 is the same experiment
repeated with parameters changed according to
the λ's of the second queue which is 1.

Figure 6 gives us the histograms for the
execution times of jobs in queues 1 and 2. The
parameters of the execution times (1/µ's) of
queues 1 and 2 are 30, and 5 respectively.

3. Defining system delays (R1, and R2),
in steady state.

R1 and R2 are steady states, meaning the average
response time of jobs in each queue as n goes to

infinity. We can show this as the following
formula:

ER Lim D Ai n
n i

i

n

i= −
→∞ =

∑1

1
()

 (4)

In this formula, we calculate the departure times
of each job, and then subtract from the departure
time of that job from its arrival time which gives
us that job's response time. We add the response
time of each job coming to the queues, and
calculate their time average. If we increase the
number of jobs we are processing, that means if
n goes to infinity, this will give us the steady
state value response time, or in other words the
average response time.

4. Expressing Pi(Tn+1) recursively, in
terms of Pi(Tn).

The priority index at time Tn is calculated as the
time average of response time until time Tn. We
describe this process with the following formula.

P T D T A Ti n N i i
i

N

i i() (() ())= −
=
∑1

1 (5)

From that formula we can see that sum of the
responses is equal to N*Pi(Tn).

 (6)
The same is true for the priority index at time
Tn+1

[]P T D T A T D T A Tj n N ji i
i

N

ji i N j N j N() (() ()) () ()+ +
=

+ + += −








 + −∑1

1
1

1

1
1 1 1

 (7)

We know from equation (4) that the summation
part of the equation (7) is equal to N*Pi(Tn). If
we replace it to equation (7):

A.Halim ZAİM

Design of a Scheduler: Comparison of Different Scheduling Algorithms 863
From the formula we have obtained, we can see
that the priority indices are recursive values, that
means they depend both to the previous values
and also the response of the job being processed
at that time.

Now, let us consider the (P1(Tn), P2(Tn)) plane.
The two priority indices determine a point in this
plane (for any given n). As n varies, this point
moves around the plane. Observe that priority
indices are random variables since they depend
on the queue size. Assume for the time being that
the priority indices converge to some constant
values as n approaches infinity.

Figure 9 shows the change of priority indices for
queues 1 and 2. In Figure 9, it is obvious that the
steady state values for priority indices are very
near to 2.00. In fact if we take the average
execution times equal, we can calculate the
analytical solutions. The analytical solutions for
such a system is the same with the M/M/1 queue
(see [8]) with λ=λ1+λ2. The analytical solution to
an M/M/1 system with λ=1.5, and 1/µ=2 is given
as:

()
T =

−
=

− +







=
−





=






=
1

1
1

1

1

2 1 1 5
2

1

2 1
4

2
1 2µ ρ µ λ λ

µ
.

 (9)

Therefore, it is expected to find an average
response of 2.00 for FIFO. For the scheduling
algorithm proposed, of course the same result is
expected. The difference between two is that,
FIFO can converge to its steady state value much
more easier then the other scheduling method.

Figure 10 gives us the P1P2 plane. In Figure 10,
we see the result of expected delays for the plane
P1P2. In this study, we use priority indices
interchangeably with the system delays or
response times because we get constants gi=1.
Figure 10 shows that when we draw a line
starting from origin and passing from the steady
state point (which is near to 2.00 for this
example) we can see oscillation of the priority
indices across that line.

That means, at the beginning, priority index 1 is
higher than priority index 2. Then after the
arrangement of the priority indices in the idle
period, the priority index 1 decreases while the
priority index 2 increases. Therefore, there is an

oscillation around the line defined beforehand.
At the end, that means after a reasonable number
of arrivals, both indices converges to their steady
state values. On the other hand, it is worth
mentioning that, the amount of trial necessary for
obtaining the steady state depends on both the
parameters of the system, and the algorithm used
for scheduling. Figure 11 gives us another
example for oscillation of P1P2 with changing n
value.

The Figures 9 and 12 shows the convergence of
the priority indices towards their steady state
values clearly. For example for the system used
in Figure 12, the simulation result for steady
state is near to 0.16 for P1, and 0.28 for P2. This
result may be seen also in that figure while
observing the P1 and P2 indices individually.

We used the ergodicity notion in obtaining
average response times. Ergodicity enables us to
calculate statistical parameters of the random
process, such as means and correlation, through
time averages of a single sample path. In this
study, in order to simplify the calculations, we
used only one simple path, with the seed = 1. In
fact in order to obtain the real means, we should
repeat the experiment with different seed values,
so that we could obtain different sample paths
and calculate the average. However, by the use
of ergodicity, we performed the experiment with
only one seed, that means for only one sample
path and obtained the average by taking the time
average.

For example, P[n customers in the system at time
t] is described with Pn(t), and average number of
customers in the system at time t is EN(t). To
calculate this value we should repeat the
experiment with different seed values, and store
the N(t) values for the time we are interested and
then take their average. That would be expressed
as follows:

EN t nP tn
n

() ()=
=

∞

∑
0 (10)

We can find the equilibrium distribution as t→∞,
Pn(t) → Pn,n=0,1,2,...

A.Halim ZAİM

Design of a Scheduler: Comparison of Different Scheduling Algorithms 864

and as t→∞ (11)
EN t nP t ENn

n
() ()= =

=

∞

∑
0

Let Nt be the time average of number of
customers in (0,t),i.e. with N(t) being the number
of customers in the system at time t, then

N

t
N u dut

u

t

=
=
∫

1

0

()
 (12)

That means the system we are interested is
ERGODIC which means that N=Nt=EN(t) as
t→∞.

In our system to calculate the time average we
should repeat the process with different seed
values and take the average of the number in the
system at that time. To make this for every
random variable used in the system and for every
time interval is very time consuming therefore,
we used the ergodicity notion and calculated the
random variables by working on the same
sample path with fixed ζ. That means we could
use time averaging for obtaining ER1 and ER2.

5. Comparing Different Scheduling
Algorithms

In this study, we simulated a few scheduling
algorithms such as First In First Out (FIFO),
Round Robin (RR), The dynamic priority
adjustment algorithm proposed in this paper,
Head Of Line (HOL), and mixed. We don't
explain FIFO, RR and HOL algorithms. To learn
more about these algorithms refer to [8]. The
mixed algorithm works similar to FIFO. The
only change is on the choice of choosing among
the queues. That is the queues are FIFO in
themselves however, we decide from which
queue to choose by a random number. We pick a
random number and according to a predefined
acceptance parameter we choose queue 1 if that
number we generated is below that acceptance
parameter. Otherwise we choose the second
queue. So we give priority to one of the queues
with certain probability for all the time.

Using these scheduling algorithms, we calculate
P1 and P2, the steady state values of the priority
indices. We then plot these values in the P1P2
plane for all the scheduling algorithms we have

simulated. That way, we could compare different
scheduling algorithms.

In order to simulate these algorithms, we define a
queue structure formed from three different
participants: interarrival time, execution time,
and priority. Interarrival times are produced
according to an exponential distribution with
parameter λ,and the execution times are
produced again according to an exponential
distribution but this time its parameter is µ. The
idea of using exponential distribution for
interarrival times comes from the fact that, if the
arrival process is Poisson, then the interarrival
times of these processes are exponential.
Therefore, if we produce exponential interarrival
times, the coming process becomes Poisson. In
fact we can see this Poisson effect from Figure 3
and 4 which show the arriving times.

In order to compare the behaviors of these
algorithms, we plot the steady state responses in
P1P2 plane. We test the algorithms with four
different (λ,µ), combinations. The resulting
graphs are shown in Figures 13,14,15 and 16 for
(λ1=λ2=0.5, µ1=µ2=2); (λ1=0.5, λ2=1,
µ1=µ2=2); (λ1=λ2=0.5, µ1=2, µ2=1); and (λ1=10,
λ2=1, µ1=30, µ2=5) respectively. In these graphs,
there are in fact 6 point instead of five, because
we plot both HOL(1 2) and HOL(2 1).

As seen in these figures, the results lie in a
straight line between the points obtained in trials
performed with HOL(1 2) and HOL(2 1). In fact
this result is very normal because, in HOL(1 2),
the first queue has always priorities to the second
queue, therefore, the jobs in the second queue
wait longer than the jobs in queue 1. As a
consequence, in this case, the average response
time of the first queue is smaller than the average
response time of the second queue. The inverse
is also true for HOL(2 1). At the same time there
is not another scheduling algorithm which gives
a total priority to one of the queue. The others
balance the two queue in a way. Therefore, it is
again very natural that, average response time of
queue in other algorithms is between these two
bounds. For the proposed algorithm, if the arrival
rates and execution times are not very different,
this algorithm nearly produce the same average
responses for both queues, which is also natural.
For the mixed scheduling algorithm, the
important parameter is the acceptance probability
which is 0.3 in our examples. If we change this

A.Halim ZAİM

Design of a Scheduler: Comparison of Different Scheduling Algorithms 865

A.Halim ZAİM

parameter, we could easily observe that we move
on that straight line between its two bounds. For
the RR algorithm, again the important parameter
is the processors processing time. If we take this
time larger then the average execution time of
jobs in one or both of the queue, then we could
see a nonpreemptive system. In that case, the
system become a nonpreemptive RR, and of
course the results approaches to the one obtained
with FIFO. Therefore, for that system, it is
important to take the processors' execution time
smaller than the average execution time of jobs
in both queue.

Another important factor in these simulations is
the necessary condition of stability, which is the
fraction of λ and µ. As it is known ρ which is
equal to λ/µ should be smaller than 1. Therefore,
λ should be smaller than µ. Otherwise the system
become unstable, and we could not reach to a
steady state value.

Conclusion

In this paper, we investigate different scheduling
algorithms in a comparative way. We define an
environment to generate random processes.
Using a simulator, we test first the correctness of
the environment and then compare the
scheduling algorithms from the point of priority
handling among two queues with different
priorities. We also show how to analyze these
priority schemes analytically. As a future work,
it is possible to adapt this study to more
sophisticated scheduling algorithms.

References

1. Sotskov, Y.N. And Tanaev, V.S., Scheduling
theory and practice: Minsk Group results,
Intelligent Systems Engineering, Spring, 1994.

2. Jing Z., Li L., Sun H., Chen Y., Performance
of priority scheduling to support differentiated
services in ATM switches, Communication
Technology Proceedings, 2000. WCC - ICCT
2000. International Conference on , Volume: 1 ,
2000, Page(s): 463 -470 vol.1

3. Baruah, S.K.; Deji Chen; Mok, A., Static-
priority scheduling of multiframe tasks Real-
Time Systems, 1999. Proceedings of the 11th
Euromicro Conference on , 1999, Page(s): 38 -45

4. Kim H., Lee S. and Lee J., Alternative priority
scheduling in dynamic priority systems,
Engineering of Complex Computer Systems,
1996. Proceedings., Second IEEE International
Conference on , 1996, Page(s): 239 -246

5. Katcher, D.I.; Sathaye, S.S.; Strosnider, J.K.,
Fixed priority scheduling with limited priority
levels, Computers, IEEE Transactions on ,
Volume: 44 Issue: 9 , Sept. 1995, Page(s): 1140 -
1144

6. Kleinrock, L, "Queueing Systems: Theory",
Wiley-interscience publications, New York,
1975.

7. Viniotis, Y., "Probability and Random
Processes for Electrical Engineers", McGraw
Hill Pub., Boston, 1998.

8. Kleinrock, L, "Queueing Systems: Computer
Applications", Wiley-interscience publications,
New York, 1976.

Design of a Scheduler: Comparison of Different Scheduling Algorithms 866

Figure 1: The Queueing Model

 Figure 2: Busy and idle periods

A.Halim ZAİM

Design of a Scheduler: Comparison of Different Scheduling Algorithms

A.Halim ZAİM

867

Figure 3: Change in Queue Size with Time

Design of a Scheduler: Comparison of Different Scheduling Algorithms 868

Figure 4: Change in Queue Size with Arrival: a) Queue 1, b) Queue 2.

A.Halim ZAİM

Design of a Scheduler: Comparison of Different Scheduling Algorithms 869

Figure 5: Change in Number of Jobs with Interarrival Time: a)Queue 1, λ=10, b)Queue 2, λ=1.

A.Halim ZAİM

Design of a Scheduler: Comparison of Different Scheduling Algorithms

A.Halim ZAİM

870

Figure 6: Change in Number of Jobs with Interarrival Time: a)Queue 1, λ=10, b)Exponential with

λ=10.

Design of a Scheduler: Comparison of Different Scheduling Algorithms

A.Halim ZAİM

871

Figure 7: Change in Number of Jobs with Interarrival Time: a)Queue 1, λ=1, b)Exponential with
λ=1.

Design of a Scheduler: Comparison of Different Scheduling Algorithms

A.Halim ZAİM

872

Figure 8: Change in Number of Jobs with Execution Time: a)Queue 1, µ=30, b)Queue 2 with

µ=5.

Design of a Scheduler: Comparison of Different Scheduling Algorithms 873

Figure 9: Change in Priority Indices: a)Queue 1, b)Queue 2.

A.Halim ZAİM

Design of a Scheduler: Comparison of Different Scheduling Algorithms 874

Figure 10: Change in P1 and P2 as n Varies(λ1= 0.5, EX1.= 0.5, λ2= 1, EX2.= 0.5).

Figure 11: Change in P1 and P2 as n Varies(λ1= 0.1, EX1.= 0.03, λ2= 1, EX2.= 0.2)

A.Halim ZAİM

Design of a Scheduler: Comparison of Different Scheduling Algorithms 875

Figure 12: Time vs Priority Indices: a)λ=10,µ=30, b) λ=1,µ=5

A.Halim ZAİM

Design of a Scheduler: Comparison of Different Scheduling Algorithms 876

Figure 13: P1 vs P2 for (λ1=λ2=0.5, µ1=µ2=2)

Figure 14: P1 vs P2 for (λ1=0.5, λ2=1, µ1=µ2=2)

A.Halim ZAİM

Design of a Scheduler: Comparison of Different Scheduling Algorithms 877

Figure 15: P1 vs P2 for (λ1=λ2=0.5, µ1=2,µ2=1)

Figure 16: P1 vs P2 for (λ1=10,λ2=1, µ1=30,µ2=5)

A.Halim ZAİM

	DESIGN OF A SCHEDULER: COMPARISON OF DIFFERENT SCHEDULING ALGORITHMS
	A. Halim ZAÝM
	I. Introduction
	
	Conclusion

