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ABSTRACT 

 
In this study, we investigate different scheduling algorithms, and compare their performance for 
systems with multiple priority queues. The scheduler defined in this paper may be thought as the 
preprocessor in an ATM switch, a network processor in a router or just an ordinary CPU scheduler 
where multiple processes with different priorities are present in the system. We show that the 
proposed algorithm outperforms the known scheduling algorithms from the point of balancing the 
average response times. 
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I. Introduction 
Scheduling theory first appeared in applied 
mathematics about forty years ago in order to 
study mathematical questions arising in 
production planning and scheduling. An 
increasing interest in this branch or operations 
research can be attributed to the high level of 
automation of all branches of human activity. 
The quality of modern production essentially 
depends on the planning decisions taken at 
different stages of the production process. 
Moreover, as the quality of these decisions is 
improving, the time and flexibility requirements 
for decision-making are becoming more 
important [1].  
 

Scheduling is the process of devising or 
designing a procedure for a particular objective, 
specifying the sequence or time for each item in 
the procedure. Typical scheduling problems are 
railway time-tabling, project scheduling, 
production scheduling, mass transit scheduling, 
hydropower scheduling, scheduling nurse shifts 
in a hospital, ets... Emerging application 
examples of scheduling in computer systems are 
in flexible manufacturing systems, 
multiprocessor scheduling, multiple queue 
scheduling, robot activity scheduling, scheduling 
in large scale networks and hard real-time 
scheduling. For more information about different 
scheduling applications refer to ([2]-[5]). 
 
In this study, we investigate the scheduling 
problem in a computer network router or a  
switch filtering a number of queues with 
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different priorities. A dynamic priority 
adjustment proposed for such queues are 
compared with the well known first-in first-out 
(FIFO), round robin (RR), head-of-line (HOL) 
scheduling and a mixed algorithm. More 
information about these scheduling algorithms 
can be found in [6].  
 
The paper is organized in the following manner: 
in Section II, the problem definition and the 
proposed scheduling algorithm is explained. 
Section III shows the results, and Section IV 
concludes the paper. 
 
II. A Scheduling Model for Priority 

Queues 
 
Consider the following CPU scheduling problem. 
Programs (jobs, packets, etc.) submitted for 
execution are partitioned into N classes. The rate 
of submission for class i is �i programs per 
second. The execution time of a class i program 
is a random variable with mean EXi and variance 
�i

2. We may assume that the sequences of 
program interarrival and execution times from 
independent and identically distributed (IID) 
processes. A queuing model for this system is 
shown in Figure 1. 
 
The queues have infinite capacity, so no program 
submission is blocked. For simplicity we may 
assume that an executing program cannot be 
preempted.  
 
The objective of the scheduling algorithm is the 
following. We are interested in keeping the 
average response time for programs of class i, 
call it ERi, below a class-dependent, given 
threshold gi. The mathematical representation of 
the problem can then be thought as devising a 
CPU scheduling algorithm to solve the following 
problem: 
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                         (1) 
 
A dynamic priority adjustment techniques is 
proposed in [7] to solve the problem defined 
above. Let Tn denote a program arrival instant 
such that the program finds the system empty for 
the nth time as shown in Figure 2. Let Dn denote a 
departure instant such that a finished program 

leaves the system empty for the nth time. Bn is 
called the nth busy cycle; In is the nth idle period. 
 
We wish to set up class priorities only at the 
beginning of each cycle. The priorities will be 
kept constant throughout the busy cycle. Of 
course, they may change from busy cycle to idle 
cycle. From now on, we consider the special case 
of two program classes only, for simplicity of 
presentation.  
 
Consider the following quantity: 
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Here ni(t) is the queue size including the program 
currently being executed, if any, of class i at time 
t. The integral is the time-average queue size; if 
the system is ergodic and if n is very large, its 
value should be equal to the average queue size 
in steady state. Then, from Little's Law [6], the 
ratio 
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                            (3) 

 
should converge to ERi. 
 
It is proposed to use P1(Tn) and P2(Tn) as the 
priority indices since (at least for large time 
values) they represent estimates of ERi/gi. The 
scheduler can be now described as follows: 
 
At time Tn compute Pi(Tn): 
If P1(Tn)>P2(Tn), give higher priority to class 1. 
If P1(Tn)<P2(Tn), give higher priority to class 2. 
If P1(Tn)=P2(Tn), give higher priority to class 2 
(arbitrary). 
 
The rational for such an algorithm is the 
following: By giving it higher priority, such an 
algorithm always helps the class with the highest 
current delay. It is dynamic (it needs to measure 
queue sizes), and thus we expect it to be 
"adaptive".  
 

1. Defining  (S,Q,P): 
 
When defining the random processes, we need to 
decide on the sample space, the set of all events 
of interest and the probability assignments shown 
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with (S,Q,P) triplet. There are two different 
approaches for that. One of these approach is 
true and the other is false. Let us try to pose these 
approaches and try to make clearer the right 
choice. The first approach is defining a general 
set of (S,Q,P) and work on this set throughout 
the paper. The second approach, on the other 
hand, is defining different (S,Q,P) sets for each 
different random used in the study.  
 
Now, first, let us look at the second one. 
According to this approach, we define different 
(S,Q,P) sets for each random variable. That 
means, for example, for the random variable 
arrival time, we define S=[0,1], and Q=[0,], and 
P is the probability mass function (pmf) of the 
Poisson Random Variable. For another random 
variable such as interarrival times which is an 
exponential random variable, we change the P as 
the probability density function (pdf) of the 
exponential random variable. The problem with 
this approach, we could not make it clear the 
definition of the (S,Q,P), because if we want to 
deal with another random variable that we see 
during the processing time, the (S,Q,P) set for 
this random variable is unknown. Therefore, this 
is in fact a wrong approach.  
 
The first approach on the other hand says us to 
define (S,Q,P) from  scratch for the whole 
system in a general way. Let us then try to define 
S. S, the sample space, contains all possible 
outcomes of the experiment. That means, for 
example, for a given seed value, which is in our 
case the ζ, what would be the values of the 
random variables such as the arrival random 
variable, interarrival random variable, etc. It is in 
fact obvious that, a random variable can take 
values between 0 and 1, therefore, all possible 
outcomes range between 0 and 1. As a 
conclusion we could say that S=[0,1].  
 
Q, the set of all events of interest, to which we 
can assign probabilities is of course uncountable, 
and we define Q as [0, ∞]. P, the probability 
assignment, is a function from S to R that 
specifies how events in Q are assigned 
probabilities. There are three ways to assign 
probabilities to events: measurement, 
computation, and hypothesis. In this study, we 
used the computation method, and then defined 
the probabilities as relative frequencies. That 
means P is the relative frequency of each 
computation. 

 
For example, to compute the probability of 
having k number of jobs in the system, we run 
the simulation for a long time, and then calculate 
the histograms for the outcomes. These 
histograms from which we could easily calculate 
the relative frequencies of each outcome, is then 
used for the probability assignment. This is in 
fact a known method to approximate the pdf of 
random variables. 
 

2. Random Variables  in the System. 
 
Random variables in this system are:  
Arrival times of jobs(A), 
Interarrival times of jobs(I), 
Number of jobs in the queues(NQ1, NQ2), 
Number of jobs in the system(N), 
Departure times of jobs(D), 
System Delay(T), 
Queueing Delays(TQ1, TQ2), 
Execution Times of jobs(X), 
Response Times(R1,R2), 
Priority Indices(P1,P2), 
 
III.Results 
 
In this study we implement different scheduling 
algorithms for a system with two priority queues 
with infinite sizes and one scheduler and one 
server. The priority indices, arrival rates and 
departure rates of each queue is changed for 
different scenarios. In the following subsections, 
we give a number of different tests performed on 
this system to demonstrate the comparison of 
different scheduling algorithms by first proving 
the correctness of the random number generators, 
and simulation environment. 
 
 

1. Plotting queue sizes as a function of 
time. 
 

In Figure 3. it is seen in a small time interval the 
change of the queue size. These values are taken 
from the experiment made with λ=10, and the 
time parameter is increased in a discrete way by 
0.01. The plot shows that the arrival process is a 
Poisson Process. The figure shows that queue 
size increase as a step function which is one of 
the known properties of the Poisson Process.  
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In Figure 4. it is seen the changes of the Queue 
Sizes for both queues in an experiment made 
with λ1=0.5, λ2=0.5. The figure shows that the 
slope of both curves are equal to 0.5, as it should 
be. In this figure a further look is used to 
illustrate the slope of the queues which gives us 
the parameter of the arrival Poisson process. On 
the other hand, it is very natural that we could 
not observe the step function property of the 
Poisson process from that figure. A closer look 
to this figure is already given in Figure 3. 
 

 
2. Plotting histograms of interarrival 

times, and service times. 
 
Figure 5 shows histograms for interarrival times 
for an experiment with λ1=10, λ2=1. The shapes 
of both histograms are similar but if we look at 
these histograms more carefully, we could see 
the differences in their x-axis. In the first 
histogram the number of jobs arriving with an 
interarrival time smaller then 0.1 is nearly 5500. 
The same is true for jobs with interarrival rate 
smaller than 0.2. As a total the number of jobs 
with an interarrival rate between 0 and 1 is 
nearly all of the jobs produced which is nearly 
equal to 10000. On the other hand, at the second 
histogram the interarrival rates smaller then 1 is 
5500.  
 
To demonstrate the correctness of these 
histograms, a comparison with real exponential 
random variables is added. Figure 6 shows the 
first comparison where the first part is the 
histogram of interarrival time for queue 1 while 
the second one is the histogram of values 
generated randomly with exponential random 
function with the same parameter λ which is 10 
for this queue. Figure 7 is the same experiment 
repeated with parameters changed according to 
the λ's of the second queue which is 1.  
 
Figure 6 gives us the histograms for the 
execution times of jobs in queues 1 and 2. The 
parameters of the execution times (1/µ's) of 
queues 1 and 2 are 30, and 5 respectively. 
 

3. Defining system delays (R1, and R2), 
in steady state. 

 
R1 and R2 are steady states, meaning the average 
response time of jobs in each queue as n goes to 

infinity. We can show this as the following 
formula: 
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                      (4) 
 
 
In this formula, we calculate the departure times 
of each job, and then subtract from the departure 
time of that job from its arrival time which gives 
us that job's response time. We add the response 
time of each job coming to the queues, and 
calculate their time average. If we increase the 
number of jobs we are processing, that means if 
n goes to infinity, this will give us the steady 
state value response time, or in other words the 
average response time.  
 

4. Expressing Pi(Tn+1) recursively, in 
terms of Pi(Tn). 

 
The priority index at time Tn is calculated as the 
time average of response time until time Tn. We 
describe this process with the following formula. 
 

P T D T A Ti n N i i
i

N

i i( ) ( ( ) ( ))= −
=
∑1

1        (5) 
 
From that formula we can see that sum of the 
responses is equal to N*Pi(Tn). 
 
 

  (6) 
The same is true for the priority index at time 
Tn+1 
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                                                                   (7) 
 
We know from equation (4) that the summation 
part of the equation (7) is equal to N*Pi(Tn). If 
we replace it to equation (7): 
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From the formula we have obtained, we can see 
that the priority indices are recursive values, that 
means they depend both to the previous values 
and also the response of the job being processed 
at that time. 
 
Now, let us consider the (P1(Tn), P2(Tn)) plane. 
The two priority indices determine a point in this 
plane (for any given n). As n varies, this point 
moves around the plane. Observe that priority 
indices are random variables since they depend 
on the queue size. Assume for the time being that 
the priority indices converge to some constant 
values as n approaches infinity. 
 
Figure 9 shows the change of priority indices for 
queues 1 and 2. In Figure 9, it is obvious that the 
steady state values for priority indices are very 
near to 2.00. In fact if we take the average 
execution times equal, we can calculate the 
analytical solutions. The analytical solutions for 
such a system is the same with the M/M/1 queue 
(see [8]) with λ=λ1+λ2. The analytical solution to 
an M/M/1 system with λ=1.5, and 1/µ=2 is given 
as: 
 

( )
T =
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.

     
                                                              (9) 
 
Therefore, it is expected to find an average 
response of 2.00 for FIFO. For the scheduling 
algorithm proposed, of course the same result is 
expected. The difference between two is that, 
FIFO can converge to its steady state value much 
more easier then the other scheduling method. 
 
Figure 10 gives us the P1P2 plane. In Figure 10, 
we see the result of expected delays for the plane 
P1P2. In this study, we use priority indices 
interchangeably with the system delays or 
response times because we get constants gi=1. 
Figure 10 shows that when we draw a line 
starting from origin and passing from the steady 
state point (which is near to 2.00 for this 
example) we can see oscillation of the priority 
indices across that line. 
 
That means, at the beginning, priority index 1 is 
higher than priority index 2. Then after the 
arrangement of the priority indices in the idle 
period, the priority index 1 decreases while the 
priority index 2 increases. Therefore, there is an 

oscillation around the line defined beforehand. 
At the end, that means after a reasonable number 
of arrivals, both indices converges to their steady 
state values. On the other hand, it is worth 
mentioning that, the amount of trial necessary for 
obtaining the steady state depends on both the 
parameters of the system, and the algorithm used 
for scheduling. Figure 11 gives us another 
example for oscillation of P1P2  with changing n 
value. 
 
The Figures 9 and 12 shows the convergence of 
the priority indices towards their steady state 
values clearly. For example for the system used 
in Figure 12, the simulation result for steady 
state is near to 0.16 for P1, and 0.28 for P2. This 
result may be seen also in that figure while 
observing the P1 and P2 indices individually. 
 
We used the ergodicity notion in obtaining 
average response times.  Ergodicity enables us to 
calculate statistical parameters of the random 
process, such as means and correlation, through 
time averages of a single sample path. In this 
study, in order to simplify the calculations, we 
used only one simple path, with the seed = 1. In 
fact in order to obtain the real means, we should 
repeat the experiment with different seed values, 
so that we could obtain different sample paths 
and calculate the average. However, by the use 
of ergodicity, we performed the experiment with 
only one seed, that means for only one sample 
path and obtained the average by taking the time 
average. 
 
For example, P[n customers in the system at time 
t] is described with Pn(t), and average number of 
customers in the system at time t is EN(t). To 
calculate this value we should repeat the 
experiment with different seed values, and store 
the N(t) values for the time we are interested and 
then take their average. That would be expressed 
as follows: 
 

EN t nP tn
n

( ) ( )=
=

∞

∑
0                             (10) 

 
We can find the equilibrium distribution as t→∞, 
Pn(t) → Pn,n=0,1,2,... 
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and  as t→∞  (11) 
EN t nP t ENn

n
( ) ( )= =

=

∞

∑
0

 
Let Nt be the time average of number of 
customers in (0,t),i.e. with N(t) being the number 
of customers in the system at time t, then 
 

  
N

t
N u dut

u

t

=
=
∫

1

0

( )
 (12) 

That means the system we are interested is 
ERGODIC which means that N=Nt=EN(t) as 
t→∞. 
 
In our system to calculate the time average we 
should repeat the process with different seed 
values and take the average of the number in the 
system at that time. To make this for every 
random variable used in the system and for every 
time interval is very time consuming therefore, 
we used the ergodicity notion and calculated the 
random variables by working on the same 
sample path with fixed ζ. That means we could 
use time averaging for obtaining ER1 and ER2. 
 

5. Comparing Different Scheduling 
Algorithms 
 

In this study, we simulated a few scheduling 
algorithms such as First In First Out (FIFO), 
Round Robin (RR), The dynamic priority 
adjustment algorithm proposed in this paper, 
Head Of Line (HOL), and mixed. We don't 
explain FIFO, RR and HOL algorithms. To learn 
more about these algorithms refer to [8]. The 
mixed algorithm works similar to FIFO. The 
only change is on the choice of choosing among 
the queues. That is the queues are FIFO in 
themselves however, we decide from which 
queue to choose by a random number. We pick a 
random number and according to a predefined 
acceptance parameter we choose queue 1 if that 
number we generated is below that acceptance 
parameter. Otherwise we choose the second 
queue. So we give priority to one of the queues 
with certain probability for all the time.  
 
Using these scheduling algorithms, we calculate 
P1 and P2, the steady state values of the priority 
indices. We then plot these values in the P1P2 
plane for all the scheduling algorithms we have 

simulated. That way, we could compare different 
scheduling algorithms. 
 
In order to simulate these algorithms, we define a 
queue structure formed from three different 
participants: interarrival time, execution time, 
and priority. Interarrival times are produced 
according to an exponential distribution with 
parameter λ,and the execution times are 
produced again according to an exponential 
distribution but this time its parameter is µ. The 
idea of using exponential distribution for 
interarrival times comes from the fact that, if the 
arrival process is Poisson, then the interarrival 
times of these processes are exponential. 
Therefore, if we produce exponential interarrival 
times, the coming process becomes Poisson. In 
fact we can see this Poisson effect from Figure 3 
and 4 which show the arriving times. 
 
In order to compare the behaviors of these 
algorithms, we plot the steady state responses in 
P1P2 plane. We test the algorithms with four 
different (λ,µ), combinations. The resulting 
graphs are shown in Figures 13,14,15 and 16 for 
(λ1=λ2=0.5, µ1=µ2=2);  (λ1=0.5, λ2=1, 
µ1=µ2=2); (λ1=λ2=0.5, µ1=2, µ2=1); and (λ1=10, 
λ2=1, µ1=30, µ2=5) respectively. In these graphs, 
there are in fact 6 point instead of five, because 
we plot both HOL(1 2) and HOL( 2 1). 
 
As seen in these figures, the results lie in a 
straight line between the points obtained in trials 
performed with HOL(1 2) and HOL(2 1). In fact 
this result is very normal because, in HOL(1 2), 
the first queue has always priorities to the second 
queue, therefore, the jobs in the second queue 
wait longer than the jobs in queue 1. As a 
consequence, in this case, the average response 
time of the first queue is smaller than the average 
response time of the second queue. The inverse 
is also true for HOL(2 1). At the same time there 
is not another scheduling algorithm which gives 
a total priority to one of the queue. The others 
balance the two queue in a way. Therefore, it is 
again very natural that, average response time of 
queue in other algorithms is between these two 
bounds. For the proposed algorithm, if the arrival 
rates and execution times are not very different, 
this algorithm nearly produce the same average 
responses for both queues, which is also natural. 
For the mixed scheduling algorithm, the 
important parameter is the acceptance probability 
which is 0.3 in our examples. If we change this 
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parameter, we could easily observe that we move 
on that straight line between its two bounds. For 
the RR algorithm, again the important parameter 
is the processors processing time. If we take this 
time larger then the average execution time of 
jobs in one or both of the queue, then we could 
see a nonpreemptive system. In that case, the 
system become a nonpreemptive RR, and of 
course the results approaches to the one obtained 
with FIFO. Therefore, for that system, it is 
important to take the processors' execution time 
smaller than the average execution time of jobs 
in both queue. 
 
Another important factor in these simulations is 
the necessary condition of stability, which is the 
fraction of λ and µ. As it is known ρ which is 
equal to  λ/µ should be smaller than 1. Therefore, 
λ should be smaller than µ. Otherwise the system 
become unstable, and we could not reach to a 
steady state value. 
 
Conclusion 
 
In this paper, we investigate different scheduling 
algorithms in a comparative way. We define an 
environment to generate random processes. 
Using a simulator, we test first the correctness of 
the environment and then compare the 
scheduling algorithms from the point of priority 
handling among two queues with different 
priorities.  We also show how to analyze these 
priority schemes analytically. As a future work, 
it is possible to adapt this study to more 
sophisticated scheduling algorithms. 
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Figure 1: The Queueing Model 
 

 
  Figure 2: Busy and idle periods 
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Figure 3: Change in Queue Size with Time 
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Figure 4: Change in Queue Size with Arrival: a) Queue 1, b) Queue 2. 
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Figure 5: Change in Number of Jobs with Interarrival Time: a)Queue 1, λ=10, b)Queue 2,  λ=1. 
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Figure 6: Change in Number of Jobs with Interarrival Time: a)Queue 1, λ=10, b)Exponential with  

λ=10. 
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Figure 7: Change in Number of Jobs with Interarrival Time: a)Queue 1, λ=1, b)Exponential with  
λ=1. 
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Figure 8: Change in Number of Jobs with Execution Time: a)Queue 1, µ=30, b)Queue 2 with  

µ=5. 
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Figure 9: Change in Priority Indices: a)Queue 1, b)Queue 2. 
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Figure 10: Change in P1 and P2 as n Varies( λ1= 0.5, EX1.= 0.5, λ2= 1, EX2.= 0.5). 
 

 

 
Figure 11: Change in P1 and P2 as n Varies( λ1= 0.1, EX1.= 0.03, λ2= 1, EX2.= 0.2) 
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Figure 12: Time vs Priority Indices: a)λ=10,µ=30, b) λ=1,µ=5 
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Figure 13:  P1 vs P2  for (λ1=λ2=0.5, µ1=µ2=2) 
 

Figure 14:  P1 vs P2  for (λ1=0.5, λ2=1, µ1=µ2=2) 
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Figure 15:  P1 vs P2  for (λ1=λ2=0.5, µ1=2,µ2=1) 
 
 

 
Figure 16:  P1 vs P2  for (λ1=10,λ2=1, µ1=30,µ2=5) 
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