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ABSTRACT 
 

Sufficient condition for optimality is derived for the problem under consideration on the basis of the 
apparatus of locally conjugate mappings,and duality theorems are proved.A sufficient condition for 
an extremum is an extremal relation for the direct and dual problems. 
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Introduction 
It is known that optimization problems for 
differential inclusions constitute one of the 
intensively developing directions in optimal 
control theory.The reason is mainly the fact that a 
great number of problems in mathematical 
programming and economic dynamics,as well as 
classical problems on optimal control,differential 
games,and so on,can be reduced to such 
investigations [1]-[3]. 
 
The present paper is devoted to an investigation of 
problems of this kind,but with distributed 
parameters,where the treatment is in finite-
dimensional  Euclidean spaces.It can be divided 
conditionally into two parts. 
 
 

 
 
In the first part (§2) a certain sufficient conditions 
is formulated for convex differential inclusions 
with first order partial derivatives.For such 
problem we use construction of contract analysis 
in terms of local conjugate mappings(LCM’s) for 
convex problem to get sufficient conditions for 
optimality,that is based on some subtle 
computations with the help of the LCM apparatus. 
 
At the end of  §2 we consider on optimal control 
problem described by the linear equation.This 
example shows that in known problems the 
conjugate inclusion coincides with the conjugate 
equation which is traditionally obtained with the 
help of the Hamiltonian function. 
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In the second part of the paper (§3) we construct the dual problem to convex problem for differential 
inclusion with distributed parameters.As is known,duality theory is by virtue of the importance of its 
applications one of the central directions in convex optimality problems ,and it is interpreted differently 
for different concrete cases.For example,in mathematical economics duality theory is interpreted in the 
form of prices ; in mechanics the potential energy and complementary energy  are in a mutually dual 
relation the displacement field and the stress field are solutions of the direct and dual 
problems,respectively.Besides the indicated applications,duality often makes it possible to simplify the 
computational procedure and to construct a generalized solution of variational problems that do not 
have classical solutions. 
 
The duality theorems proved allow one to conclude that a sufficient condition for an exremum is an 
exremal relation for the direct and dual problems.The latter means that if some pair of admissible 
solutions satisfies this relation,then each of them is a solutions of the corresponding (direct and dual) 
problem.We remark that a significant part of the investigations of Ekeland and Temam [5] for simple 
variational problems is connected with such problems,and there are similar results for differential 
inclusions with lumped parameters in [5]-[11]. 
 
As it was naturally expected,the suggested method of construction of dual problems permits to 
substitute the initial optimization problem with complex boundaries by a problem with the simplest 
boundaries,i.e. conjoint systems. 
 
§1 Necessary Information and Problem Statement 
The basic concepts and definitions given below can be found in [1]. Let Rn be the n-dimensional 
Euclidian space; <x1, x2> is a pair of elements x1, x2∈Rn; and <x1, x2> is their inner product.We say 

that a multivalued mapping a: R2n → 
nR2
n

 is convex if its graph 
 is a convex subset of )},(:),,{(gf 2121 xxavvxxa ∈= R3 .It is convex-valued if is a 

convex set for each (x

),( 21 xxa
1, x2 ) { }φ≠= ,(:),( 121 xxaxx∈ . )2doma

For such mappings we introduce the notation 
 

,)},,(:,inf{),,(
***

*
21

**
21 RvxxavvvvxxW n

a

>=<∈=

∈∈><= 

 
For convex a we let W  if +∞=),,( *

21 vxxa ∅=),( 21 xxa . 

For a convex mapping  the cone of tangent directions at a point will be 

denoted by . 

a
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Moreover for a convex mapping a: 
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)
is called the locally conjugate mapping(LCM) to a at the poi  ( , where  ),, 21 vxxnt

 is the cone dual to the cone . ,,( 21
* vxxKa ),,( 21 vxxKa

According to the definition in [1] , [12] for a function g: { }∞±∪→ 1RR n  

( ) ( ){ }
{ }+∞<=

−><=

)(:

,, ***

xgxdomg

xgxxSupxg
x  

 
Here  is called the conjugate function of a function g. *g
 A function is said to be proper if it does not take the value -∞ and is not identically equal to 
+∞.Subdifferential of a some convex proper function  defined on nRyyF ∈** ),(., nR  at 

 is denoted  )(., *
0 ydomFx ∈

{ }n
x RxxxxyxFyxFxyxF ∈∀>−≥<−=∂ ,,),(),(:),( 0

**
0

***
0  

 
In the next section we study the convex problem for differential inclusions with first order partial 
derivatives: 
 

∫∫ ∫ →+=
Q

dtxgdtdttxgx
1

0
0 inf)),,1((),),,((.)),(.(I      )1.1( τττττ  

 

10   ,10  ,),(,),(),(      )2.1( <≤≤<







∂
∂

∈
∂

∂ ττ
τ

ττ ttxtxa
t
tx

 

 
(1.3)        ]1,0[]1,0[  ,0),0(  ,0)1,( ×=== Qxtx τ  
 

Here a: R2n → is a convex multivalued mapping, g is continuous function that is convex with 
respect to x, , 

n

1

R2
: Rg  RQn →× nRg :0 ×  [ ] .1,0 1R→   

~The problem is to find a solution ),( τtx  of the first boundary value problem (1.2), (1.3) that 
minimizes (1.1). Here an admissible solution is understood to be an absolutely continuous functions 
with summable first partial derivatives.However,as will be seen from the context ,the definition of a 
solution in this or that sense (classical,generalized etc.) is introduced only for simlicity and does not in 
any way restrict the class of problems under consideration. 
 
 
§2. Sufficient Conditions For Optimality For Differential Inclusions 
 
Theorem 2.1. Suppose that g(x,t,τ) and ( )τ,0 xg

gfa
 are jointly continuous functions convex with 

respect to x, and a is a convex closed mapping i.e.  is a convex closed subset of nR3 .Then for the 
optimality of the solution ),(~ τtx  among all admissible solutions it is sufficient that there exist an 



Duality in the Problems of Optimal Control Described by Convex Differential İnclusions  
With Distributed Parameters 

892

 

 
E. N. MAHMUDOV 

absolutely continuous functions { }),(),,( ** ττ txtu  with summable first partial derivatives such that 
the conditions a) – c) hold: 
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Proof. By Theorem 2.1. III in [1] 

),,;( ),(21
**

21
Wvxxva XX∂= ,  ),,( *

21 vxxa
 
Then by using the Moreau-Rockafeller theorem ( )[9] , from condition a) we obtain the  
Inclusion 
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Using the definitions of subdifferential and W , we rewrite the last relation in the form 

, 
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On the other hand,by the second condition in b) 
 
 ),1(~),1(),,1()),,1(~()),,1(( *

00 τττττττ xxxxgxg −≥−  

 
Integrating the preceding relation over the domain Q, and the latter over the interval [0,1] and then 
adding them,we get  
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( ) ( )[ ] ( ) ( )[ ] ττττττττττ dxgxgdtdttxgttxg
Q

∫∫∫ −+−
1

0
00 ),1(~,),1(,),,(~,),,(  

 
(2.1) 
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where, since ))3.1((0),0(),0(~ seexx == ττ  
 
 

0),0(),0(~),,0(
1
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Analogously 
 
(2.3)  

dttxtxtudttxtxtudtdtxtxtu
Q
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∂
∂ 1

0

*
1

0
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and since 0)1,(~)1,( == txtx  and u  0)0,(* =t
 
by condition b) 

               ∫ =>−<
1

0

* 0)1,(~)1,(),1,( dttxtxtu

               and   ∫ =>−<
1

0

* 0)0,(~)0,(),0,( dttxtxtu 0)0,(* =tu
 
Then forom (2.2) and (2.3) we obtain that the right-hand side of the inequality (2.1) 
is equal to zero.Thus,we have finally 

 
( ) ( )∫∫ ∫∫≥ dxgdtdttxg ττττττ ),,1(~,),,( 0 Q Q

 
For all admissible solutions .),(),,( Qttx ∈ττ  The theorem is proved. 
 
In the conclusion of this section we consider an example:  
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(2.4) 
            Ι ( )( ) inf, →τtx , 
 
 

UtutButxAtxAtx
∈++

∂
= ),(),,(),(),(),(

21 τττττ∂
 t ∂∂ τ
 
x(t,1)=0,x (0,τ )=0 
 

where A1 and A2 are n×n matrices, B is a rectangular n×r matrix, U⊂Rr  is a convex closed set, and g 
and  is continuously differentiable function of 0g x .It is required to find a controlling parameter 

Utu ,( ∈)~ τ such that the solution  ),(~ τtx corresponding to it minimizes I(x(.,.))      . 
In this case  
 a(x1, x2)=A1x1+A2x2+BU 
By elementary computations we find that 

 )]([, uUconvB

),(),( 1 ττ txAtu =




−∉∅
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=
***
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2
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1

21
** )]([),,(

)),,(;(
uUconvBvAvA
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where v=A1x1+A2x2+Bu, and [conM]* is the cone dual to the cone conM.  
Then, using Theorem 2.1, we get the relations 
 
(2.5)  ***

 
 

),),,(~(),(),(),( **
2
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∂

−
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 τ t∂∂

UutxBtuu ∈≥− ,0),(),,(~ ** ττ
 
(2.7)   
 
 
(2.8) x*(1, τ)= )),,1(~(0 ττxg ′ ,  0)0,(* =tu
 
substituting (2.5) in (2.6),we have  
 

(2.9)    ),),,(~(),(),(),( **
2

*
*
1

*

τττ
τ

ττ ttxgtxAtxA
t
tx ′++

∂
∂

−=
∂

∂
−  

 
 
Obviously, (2.7) and second condition of the (2.8) can be written in the form 
 

),(,inf),(),,(~ ** τττ txButxtuB = 
Uu∈

 
              0)0,(* =tx
 
Thus, we have obtained the following result. 
Theorem 2.2. The solution ),(~ τtx corresponding to the control ),(~ τtu minimizes I(x(.,.)) in the 
problem (2.4) if there exists a function x*(t,τ) satisfying the conditions (2.8),(2.9),(2.10). 
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§3. On Duality In Differential Inclusions with Distributed Parameters 
 
The problem of determining the supremum 
(3.1)     )),(),,(),,((sup ***

*

0)0,(
),(),,(),,(

*

***
τττ

τττ
tztxtuI

tu
tztxtu

=

is called the dual problem to the direct problem (1.1)-(1.3) where  
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It is assumed that the functions u are an absolutely continuous functions 

with summable first partial derivatives on Q and  is an absolutely continuous function on Q. 

),(),,(),,( *** τττ tztxt
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Theorem 3.1 The inequality 
                     ( ) ( )),(),,(),,((),(~ ***

* ττττ tztxtuItxI ≥  

is valid for all admissible solutions ),( τtx and { }),(),,(),,( *** τττ tztxtu  of the direct problem 
(1.1)-(1.3) and the dual problem (3.1),respectively. 
Proof.It is clear from the definitions of the functions aΩ ,  and   *g *
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Using (3.2) and (3.3) , we have 
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( ) ++ ∫∫ τττ dtdttxg
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and since the solution ( )0)1,(,0),0(),( == txxtx ττ is admissible,and u we get from 
the preceding inequality (3.4) 
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Thus  

≤)),(),,(),,(( ***
* τττ tztxtuI  ( )),( τtxI , 

which is what was required. 
 
Theorem 3.2 If the functions ),(~ τtx and { }),(),,(),,( *** τττ tztxtu ,where 

),),,(~(),(~ τττ ttxgtz ∂∈  and )),,1(~(),1(~
0 τx* ττ gx ∂∈ satisfy the conditions a) – c) of  

Theorem 3.1,then they are solutions of the direct and dual problems,respectively,and their values 
coincide. 
 
Proof. The fact that ),(~ τtx is a solution of the direct problem was proved in Theorem 2.1.We study 
the remaining assertions.By the definition of an LCM,the condition a)is equiavalent to the inequality 
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Further,since ∂  and , it is clear that ),(.,),,( * ττ tdomgtxg ⊂ )(.,),( *
00 ττ domgxg ⊂∂

 
(3.6)    ),(.,),(~ ** ττ tdomgtz ∈ , )(.,),1(~ ** ττ domgx ∈  
 
Then it can be concl ded from (3.5) and (3.6) that the indicated functions u
{ }),(~),,(~),,(~ *** τττ tztxtu  form an admissible solution.It remains to show that it is optimal.Using 
Lemma 2.2.III in [1] (p.105) , we get 
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Moreover we can write 
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where it is taken into account that  

),,),,(~(),(~* τττ ttxgtz ∂∈  )),,1(~(),1(~
0

* τττ xgx ∂∈  
Then in view of (3.7)-(3.9) it is easy to establish as in the proof of Theorem 3.1 that  

( ) ( )),(),,(),,((),(~ ***
* ττττ tztxtuItxI ≥ . 

The proof is complete. 
 
 
Conclusions 
In the first part a certain sufficient conditions is formulated for convex differential inclusions with first 
order partial derivatives. For such problem is used construction of convex analysis in terms of local 
conjugate mappings for convex problem to get sufficient conditions for optimality. In the second part 
of the paper is constructed the dual problem to convex problem for first order differential  inclusions. 
The duality theorems proved allow one to conclude that a sufficient condition for an extremum is an 
extremal relation for the direct and dual problems. 
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