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ABSTRACT 

 
We present a multi-window method for obtaining the time-frequency spectrum of non-stationary 
signals such as speech and music. This method is based on optimal combination of evolutionary 
spectra that are calculated by using multi-window Gabor expansion. The optimal weights are 
obtained by using a least square estimation method. An error criterion that is the squared distance 
between a reference time-frequency distribution and the combination of evolutionary spectra is 
minimized to determine the weights. Examples are given to illustrate the effectiveness of the 
proposed method. 
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I. INTRODUCTION 
Time-Frequency (TF) signal analysis is a helpful 
tool for analyzing the time-varying frequency 
content of a non-stationary signals such as 
speech, music, biological signals etc. [1]. For a 
time-dependent spectral analysis of non--
stationary stochastic process, the Wigner-Ville 
Spectrum (WVS) [2] is given by : 
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where ),( ωtW  denotes the Wigner Distribution 
(WD) and the above is the statistical average of 

the WDs of the realizations of the process. When 
we have several observations of the non-
stationary process , we can use an ensemble 
average of the individual WDs of these 
observations to estimate the WVS. However, this 
is not the case in general; we are only given a 
single realization of the process. In that case, 
Time-Frequency Distributions (TFDs) with a 
smoothing kernel function is used to estimate the 
WVS [1]. A good amount of research has been 
done to design kernels with desired properties 
yielding unbiased and low variance WVS 
estimates [2,3]. A new estimate of the WVS is 
proposed as an optimal  
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average of multiple-window spectrograms of the 
process in [4,5] in the least squares sense. In this 
work we extend this WVS estimate to the 
weighted average combination of multi-window 
evolutionary spectra obtained by a Discrete 
Evolutionary Transform (DET) [6]. The 
combination weights are determined by 
minimizing a sum-squared difference (norm 
squared distance) between the average 
evolutionary spectrum and a higher order time-
frequency representation. 
 
There is a growing interest on higher order time-
frequency methods. One example is the class of 
Time-Varying Higher Order Spectra (TV-HOS) 
based on Polynomial Wigner-Ville Distributions 
(PWVD) [7,8,9]. Higher order TF methods are 
useful in the analysis of non-linear, non-
Gaussian signals. Several methods have been 
presented to estimate a time-varying spectrum 
using higher order statistics. In [8], it has been 
shown that PWVD can achieve the delta function 
concentration for polynomial FM signals (that is 
signals with the instantaneous phase modelled by 
a polynomial of possibly order higher than two). 
TV-HOS have been recently developed in a 
search for a tool that could perform higher-order 
spectral analysis of non-stationary random 
signals. As a general tool for the analysis of non-
stationary, non-linear, non-Gaussian signals [10] 
TV-HOS has grown as a set of hybrid techniques 
that extends both TF analysis and higher-order 
spectra (HOS). For a random non-stationary 
signal , the TV-HOS is defined as the 
expected value of the PWVD by 

(x

 

{ }),(),( )()( ωω tWEtS kk =                           (1) 
 

If we interchange expectation operator E with 
integration, TV-HOS becomes 
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The selection of the hl coefficients is explained 
in detail in [9]. The fourth-order member of 
TVHOS, called the moment Wigner-Ville 
Trispectrum (M-WVT) [9] and defined as 
follows: 
 

∫ −= ττ ωτ detmMWVT j
x ),()4()4(                      (3) 

 

where the fourth-order moment is 
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A new estimate of the WVS is proposed as the 
optimal average of multiple-window 
spectrograms of the process in [5, 6]. In this 
work we extend this WVS estimate to the 
optimal combination of evolutionary spectra 
obtained by a Discrete Evolutionary Transform 
(DET) [6]. We present a 
least-squares, multi-window evolutionary 
spectral estimation method. The optimal 
combination coefficients are obtained by 
minimizing the squared error between a 
reference TFD and the multi-window spectral 
estimate. 
 

2. THE DISCRETE 
EVOLUTIONARY TRANSFORM 
 
Given a non-stationary signal, x(n), 

10 −≤≤ Nn , a discrete-time, discrete-
frequency spectral representation [11] for it is 
given by 
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where Kkk /2πω = , K is the number of 

frequency samples, and ),( knX ω  is an 
evolutionary kernel. The evolutionary spectrum 
is obtained from this kernel as 

2),() kk nX ω=,(nS ω . The sinusoidal 
Discrete Evolutionary Transformation (DET) is 
obtained by expressing the kernel in terms of the 
signal. This is done by using conventional 
representations such as the Gabor and the Malvar 
transforms. Thus, for the sinusoidal 
representation in (4) the DET that provides the 
evolutionary kernel  )k,(nX ω , 

10 −≤≤ Kk , is given by [6] 
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where  is, in general, a time and 
frequency dependent window. The DET can be 
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seen as a generalization of the short–time Fourier 
transform [6], where the windows are constant. 
The windows  can be obtained from 
either the Gabor representation that uses non 
orthogonal bases, or the Malvar wavelet 
representation that uses orthogonal bases. Details 
of how the windows can be obtained for the 
Gabor and Malvar representations are given in 
[6]. For example, the multi-window Gabor 
expansion is given by [11] 
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where { ia ,  are the Gabor coefficients, 

{ }k,mih ,  are the Gabor basis functions that are 
obtained by scaling, translating and modulating 
with a sinusoid a window function: 
 

n
kmi

knh ω)(,, =                              (7) 
 

and the synthesis window  is obtained any 
scaling a unit–energy mother window g(n) as 
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The multi-window Gabor coefficients are 
evaluated by 
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where the analysis window )(niγ  is solved 
from the bi-orthogonality condition between 

 and )n(hi  [11]. The evolutionary kernel 
is obtained by comparing the spectral and the 
Gabor representations of the signal (6): 
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Replacing for the coefficients { }kmia ,, , one can 
also write 
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where the time–varying window for scale 2  is 
defined as 
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Then the evolutionary spectrum of x(n) 
calculated by the window  is ),(W lni

,),(1),( 2
kiki nX

K
nS ωω =  

 

where the factor 1/K is used for proper energy 
normalization. We should mention that 
normalizing the W  to unit energy, the 
total energy of the signal is preserved thus 
justifying the use of 

),( lni

(i nS ), kω  as a TF 

representation for x(n). Furthermore, ),( kniS ω  
is always non–negative and approximates the 
marginal conditions [1]; hence, in contrast to 
many TFDs, interpretable as TF energy density 
function [11]. 
 

3. LEAST SQUARES 
EVOLUTIONARY SPECTRUM  
 
Given a realization of a discrete-time, 
nonstationary process corrupted by additive 
noise )()()( nnsnx η+=  where s(n) and 

)(nη  denotes the signal and noise processes 
respectively. We intend to obtain a high 
resolution evolutionary spectral estimate with 
good performance in low signal to noise ratio 
(SNR) conditions. We calculate a weighted 
average combination of evolutionary spectra 

)k,(i nS ω  that is closest to a reference TFD in a 
least squares sense. Given the signal x(n), we 
calculate evolutionary spectra ),( kniS ω  for 
i=0, 1, ...., I-1  as 
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Gauss windows are used as , for their 
optimal concentration in the TF plane [12]. Then 

)(nhi

we estimate the WVS of the process x(n) as a 
weighted average of the evolutionary spectra 
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where the weights { } are obtained by 
minimizing the error function 

ic
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and ),( kR nP ω  is a reference TFD which is 
taken here as higher order TF representation [7] 
of the 
signal. 
 
By using a matrix notation, the minimization 
problem in (13) can be rewritten as 
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The solution of this least squares minimization 
problem is 

TTo PSSSc 1)( −=  
 

where the superscript  ‘ ’  stands for optimum. 
Then a WVS estimate is obtained as optimal 
weighted average using { }o

ic  as 
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Finally, we mask or threshold our estimate to 
eliminate any possible negative values as in [5], 
and result in a non-negative time-varying 
spectrum, i.e., 
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where  denotes the positive-only 
part of the evolutionary spectrum. 
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4. EXPERIMENTAL RESULTS 
 
Example 1. First we consider a single 
component signal, which is a linear chirp. We 
give the Wigner-Ville distribution of this chirp in 
Fig. 1 and the least squares evolutionary 
spectrum in Fig. 2. As shown from the figures 
least squares evolutionary spectrum gives all 
positive values and a satisfactory TF resolution. 
 
Example 2. As a multi-component example, we 
consider  a signal that is composed of two chirps 

with different chirp rates. In Fig. 3, we show the 
4th  order TV-HOS or Moment Wigner-Ville 
Trispectrum [7]. This higher order TFD has the 
advantage of high concentration, however, it has 
negative values and interference terms between 
the two auto components. The above TV-HOS is 
used as reference TFD in our method, and a least 
squares evolutionary spectral estimate 

 is obtained by I = 4 windows and 
given in Fig. 4. As shown, it is always positive, 
displays both components with sufficient 
resolution, and carries out the advantages of both 
reference TFD and the multi-window 
evolutionary spectral estimates. We also compare 
the performance of our method with multi-
window evolutionary spectrum [11] explained in 
section 2, for same I = 4 windows, and the result 
is shown in Fig. 5. In Fig, 6, we give Cakrak and 
Loughlin’s least-squares combination of 
multiple-window spectrograms [5] with the same 
4 windows. As shown in figures, our proposed 
algorithm provides better localization than these 
two methods. 

+),(ˆ
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Example 3. We also analyze a crossing-chirp 
signal. The reference TFD (Moment Wigner-
Ville Trispectrum) is given in Fig. 7. Using this 
reference TFD, our least squares evolutionary 
spectrum for I = 5 windows is obtained and 
given in Fig. 8. The proposed least squares 
combination provides spectral estimates with 
sufficient resolution and no interference terms. 
 
Example 4.  Finally our proposed method is 
tested on a sinusoidal FM signal. The Wigner-
Ville trispectrum which we use as a reference 
TFD is given in Fig. 9. Notice that the Wigner-
Ville trispectrum provides very good TF 
resolution, but gives negative values in the 
density. The result of Least Squares evolutionary 
spectrum is shown in Fig. 10 obtained by I=3  
windows yielding positive and high resolution 
TF spectrum. 
 

5. CONCLUSIONS 
 
In this work, we present a new method for 
estimating the evolutionary spectrum of non-
stationary signals using a linear least squares 
approach. Our method is based on optimal 
combination of evolutionary spectra that are 
calculated by using DET. The optimal weights 
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are obtained by minimizing the squared error 
between the combination of evolutionary spectra 
and a reference TFD which is taken here as one 
of the higher order TFDs. Examples show that 
the new method combines the advantages of 
multiple–window evolutionary spectral analysis 
and higher order TFDs, i.e., it provides non-
negative and high resolution time varying 
spectral estimates with no cross-terms. 
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