

ISTANBUL UNIVERSITY –
JOURNAL OF ELECTRICAL & ELECTRONICS ENGINEERING

YEAR
VOLUME
NUMBER

: 2003
: 3
: 2

(905-915)

Received Date : 31.10.2002
Accepted Date: 02.06.2003

A MEMORY ANN COMPUTING STRUCTURE FOR
NONLINEAR SYSTEMS EMULATION IDENTIFICATION

Georgi M. DIMIROVSKI1 Cvetko J. ANDREESKI 2

1 Department of Computer Eng., Dogus University, 34722 – Kadikoy / Istanbul, Turkey, and.
Institute of ASE-FEE, SS Cyril and Methodius University, Skopje, Republic of Macedonia

2 Computing Lab. of Faculty of Tourism, St. Clement Univ., 6000 Ohrid, R. of Macedonia

1E-mail: gdimirovski @ dogus.edu.tr 2E-mail: cipuslju @ mt.net.mk

ABSTRACT

Currently, almost all efforts for using artificial neural networks for control oriented process
identification are based on feed-forward networks. Provided the system order or the upper limit of the
order is known, a neural network design is feasible for which all the collection of previous values of
the inputs and outputs of the system to be identified can be used as input data to train in the network
computing structures to learn the input-output map. This work reports on a novel technique that
makes use of memory artificial neural network architecture that can learn and transform so as to
emulate any non-linear input-output map for multi-input-multi-output systems when no prior
knowledge on specific system features exists.

Keywords: Artificial neural-net computing structures, memory artificial neural networks, non-
linear input-output maps, system emulation identification.

I. INTRODUCTION
In engineering and technology, model
identification of certain system structures
requires searching for some class of functions for
approximation of the system input-output law of
behavior, generally highly nonlinear, in the
"best" possible way [4]. In most situations, such
as in control process identification, pattern
recognition etc., the value of the output of the
representation model of the observed system is

some function of the previous values of outputs
and inputs.

By and large, the input-output view on model
identification, in contrast to the input-state-
output one (see Figure 1), has been exploited in
industrial applications for identifying and control
design of complex nonlinear plants [4]. Hence
the formalism of artificial neural networks
(ANN) has attracted much attention by
researchers in systems and control engineering so

mailto:akan@istanbul.edu.tr

A Memory Ann Computing Structure For Nonlinear Systems Emulation Identification 906

Georgi M. DIMIROVSKI, Cvetko J. ANDREESKI

that dedicated monographs have appeared [12],
[14] in addition to the standard books as [5],
[10].

Figure 1. The input-output view on general
system assumes only spaces of admissible
inputs and sustainable outputs are available,
most adequate in emulation modeling by ANN
computing.

It has been shown by Narendra and Parthasarathy
in [13] that some huge class of models can be
constructed by using neural networks and linear
filters interconnected in cascades and/or
feedback configurations. Neural networks does
match non-linear part of the system, and, linear
filter gives dynamics to the system representation
model. They worked on method for
backpropagation-through-time of the error
signal, so called dynamic back propagation.
Using simulations they showed these kinds of
models could identify some complex non-linear
dynamic systems. This is the elegant way for
understanding model dynamics, but there are
some disadvantages. Namely, the knowledge of
the system structure is prerequisite in order of the
system to develop design combination of non-
memory transformation and linear filters that are
designed appropriately for emulating the
representation model [2], [7].

In the course of development of artificial neural
network theory, in parallel, there have been
present considerable interests and research
efforts about engaging neural networks in model
identification for control and the software design
and implementation of such soft-computing
structures [5], [9], [10], [17]. This paper reports
on such a designed realization based on a class of
recurrent neural networks employing the
neuronal architecture of memory ANN’s [16] as
a control oriented computational model for
emulation identification of inherently generic
nonlinear input-output (I/O) maps of either

controlled objects or controller laws [2]. The aim
of this paper is present an innovated design of a
memory ANN computing structure for neural
emulation identification of controller or object
system nonlinear I/O maps for the purpose of
complex systems control a well as to
demonstrate the potential computational models
with recurrent neural networks.

The memory artificial neural networks were
invented and introduced in the literature on
neural networks by Sastry and co-authors [16].
These represent a class of recurrent networks
created via adding new elements in classic feed-
forward ANN’s, which can be trained by means
of time sequences and which are able to
memorize its previous activities. By making use
of these abilities, these neural networks can
identify dynamic systems with no need for
previous values of the inputs and outputs. Thus
they able even to identify dynamic systems with
unknown specific features such as order or time
delay [3], [8] , [16].

The organization of the paper is as follows. In
Section II, in two subsections, an outline
presentation of memory ANN’s along with some
of the implementation details on our memory
ANN computing structure are given as well as a
brief discussion on details of the training
algorithm as adjusted for the implemented
memory ANN computing structure. Section III,
also in two subsections, presents an analysis of
the emulation identification strategy along with
the results for two examples of highly nonlinear
I/O maps known as benchmark cases in the
literature. Section IV discusses the performance
of this ANN computing structure for emulation
identification of nonlinear I/O maps via two
characteristic examples. Conclusions are
presented in Section V, and references follow
thereafter.

II. AN OUTLINE OF MEMORY
ANN COMPUTING STRUCTURES

To implement dynamics direct into the network
structure, the network to be endowed with some
"internal memory" and a learning algorithm for
recurrent network. As for the learning algorithm,
there is no much detail to present about possible
strategies for system model emulation or for
training a controller system. Both least-square
and back-propagation learning alternatives have

A Memory Ann Computing Structure For Nonlinear Systems Emulation Identification 907

Georgi M. DIMIROVSKI, Cvetko J. ANDREESKI

been explored with similar success [6], [8], [11],
[15], [18]. However, in this work the rather
common strategy of back-propagation-through-
time [18] has been found more adequate and
employed in our memory ANN based technique
[2]. Nonetheless, we emphasize that back-
propagation combined with feed-forward neural
networks can give erroneous results when current
value of the output of the system depends on
more than one of the previous inputs and
especially when the case is an multi-input-multi-
output (MIMO) system. And, MIMO systems
precisely are of main concern in our work. That
is to say, our focus was put on exploring the
emulation of MIMO non-linear I/O maps of
dynamical processes, where the values of some
or of all the outputs essentially depend on more
than one of the inputs.

II. 1. On Memory ANN Architecture

In the memory ANN architecture [16], each
neuron has its own memory neuron and its output
summarize the history of the previous actions of
the neuron. These memory neurons or more
precisely weight of the links presents the
elements of dynamics for training of the model.
Because links between neurons and their
memory neurons are back-propagation links, the
network from global point of view is indeed
recurrent as pointed out in [1]. Also, it has been
shown through a number of simulation
experiments that the amount of internal memory
and elements for training during the time are
enough for identification of arbitrary non-linear
I/O maps [16], [2].

The architecture of memory ANN based systems,
proposed by Sastry et al. in [16], is presented in
Figure 1 above. It is seen that their structure is
similar to feed-forward networks with a new
element - memory neurons, presented with little
solid circles, connected on every network
neuron, presented by big outlined circles. In
order to make difference between these two
kinds of neurons we should use titles network
and memory neuron.

Figure 2. Directed graph representation of the
architecture of memory artificial neuron
networks.

As shown in Figure 2, on every level of the
network, except the output level, every network
neuron has one memory neuron connected.
Memory neuron gets their input from its network
neuron, and also they have own feedback. With
this kind of propagation, data that are computed
at the network neurons can be stored in memory
neurons. Network, and memory neurons, from
every level they send their output into the
network neurons of the next level. In the output
level, every network neuron can have cascade of
memory neurons and each of them sends its
output to the network neuron of the output level.
Figure 2 presents a memory ANN with 2 input
and 1 output node and one "hidden" level. This
ANN computing structure is self-explained
through the notation and comments given below:

• - number of the network level with the
level as input and level as output
levels;

L
l L

l

k

• - number of network neurons on level

;
lN

l
• - network input in j network neuron

on level in the time period following
instant ;

)(kxl
j

k
l• - output of the memory neuron from j

network neuron of level l in the time period
following instant ;

)k(v j

A Memory Ann Computing Structure For Nonlinear Systems Emulation Identification 908

Georgi M. DIMIROVSKI, Cvetko J. ANDREESKI

)k

)k

l

• - "weight" of the connection

between i network neuron of level l and j
network neuron on level l in the time
period following instant ;

(w l
ij

1+
k

• - "weight" of the connection between
memory neuron of the i network neuron of
level and j network neuron of

(f l
ij

1+l
k

 level
in the time period following instant ;

• - "weight" of the connection between

j network neuron of level l and its memory
neuron in time period following instant ;

,

)k

L
)k

)k

)k

jM

(.)

L

l
oj

l
ov

s

(l
jα

≤1
L

k
l <

• - "weight" of the connection of (j-1)
memory neuron to j memory neuron of i
network neuron in output level in the time
period following instant ;

(jα

L
k

• - output of j memory neuron of i
network neuron of the output level in the
time period following instant k ;

(v j

• - "weight" of the connection between
j memory neuron of i network neuron and i
network neuron of the output level in the
time period following instant k ;

(L
ijβ

• - number of the memory neurons
connected to j network neuron of the output
level;

• - activation function of the network
neurons.
g

• Coefficients should be
considered as memory coefficients.

L
ij

L
ij

l
j ,, βαα

Network input in j network neuron from level ,

, in the time period following instant
;

l
l <≤1

k
is given as:

∑ ∑
−

=

−

=

−−−− +=
1Nl

0i

1Nl

1i

1l
i

1l
ij

1l
i

1l
ij

l
j)k(v)k(f)k(s)k(w)k(x (1)

In equation (1) we should accept for every

l, and is the beginning condition for j
network neuron of level l+1. These zero neurons
of each level are given in accordance with
beginning condition and that network neuron

should not have memory neuron. That's why
does not exist and index of second sum begins
from 1. The output of the network neuron is
given with the following equation (2):

1sl
0 =

w

))k(x(g)k(l
j

l
j = , 1≤l<L. (2)

We use two different types of activation
functions

,
)xkexp(1

1c)k(g
1

11 −+
=

(3)

)xkexp(1
)xkexp(1

c)k(g
2

2
22 −+

−−
=

in our ANN computing emulation and simulation
technique. In here, is implemented for all
nodes in hidden level, and for output nodes.
In equations (3) are parameters
of activation function.

1

1k,c

g
g

L
iv

w

2

2k21 andc,

Network neurons from output level, gets their
input values according to following equation
(4):

∑ ∑ ∑
−

=

−

= =

−−− β++=
1Nl

0i

1Nl

1i

M

1i

L
ji

L
ji

1L
i

1L
ij

1L
i

L
j

j

)k(v)k()k(vf)k(s)k(x

(4)
Output of all memory neurons except memory
neurons from output level is computed as
following:

)1k(v))k(1()1k(s)k()k(v l
j

l
j

l
j

l
j

l
j −α−+−α= (5)

The output of the memory neurons from output
level is computed as (6):

)1k(v))k(i1()1k(v)k()k(v L
ij

L
ij

L
1ij

L
ij

L
ij −α−+−α= − , (6)

where according to accepted notation .
For safe stability of the network dynamics
following constraints are implemented:

L
is=0

1,,0 ≤≤ L
ij

l
i

L
ij βαα . (7)

From the previous text and this equations it is
easy to note the similarities between feed-
forward and memory neural networks. At the
memory neural networks, network neurons are
connected through weights creating feed-
forward network. Every memory neuron

l
ij

A Memory Ann Computing Structure For Nonlinear Systems Emulation Identification 909

Georgi M. DIMIROVSKI, Cvetko J. ANDREESKI

2

)

g′

f

memorizes combination of all of the previous
actions that happened in the network neuron.

The output value of the memory neuron is
computed as output from a first-order filter. By
keeping memory coefficients into the interval (0,
1) the stability of this filter is ensured. These
outputs are easy to compute locally, by storing
values of one time interval, using equations (5)
and (6). Because outputs from memory neurons
gives contribution to the input of the network
neurons of the next level, interval memory of the
network plays significant role in determining the
output of the network in every time interval.
Memory neurons of the output level allow direct
dependence of the current input of the network
from its previous output values.

According what is presented above, these kinds
of artificial neural networks are recurrent, and
the computation of the output values is similar to
the one of the "feed-forward" networks.
Therefore there is no waiting for the network to
get in stable condition. So, the output of the
network in any time interval is dependent of all
previous network inputs (as we can see from (5)
and (6)). The degree of dependence should be
determined by means of the values of the
memory coefficients.

II. 2. On Training algorithms for Memory
ANN Computing Structures

As it is explained earlier in this text, on every
new time interval network gets new input value
and computes output using equations (1)-(6). On
the output level network gives signal for
adjusting which is involved in the error
computation of the output level and according to
error values, network makes adjustment on all
"weights" in the network. It uses common
criteria for square error given as

j

Nl

1j

L
j))k(y)k(s()k(e −= ∑

=

, (8)

where is the training signal of the j-th
output node in time instant k.

(ky j

This network uses training algorithm of error
back- propagation type [18]. Everything that the
network need is the error derivation , with
respect to the network weights. According to

attendance of the memory neurons, it is not an
easy task to compute precise partial derivation
through back-propagation in only one time
interval. The strategy is approximately to
develop a network with connected input of one
time step, and the computed error to put in back
propagation. That means that all the weights can
be adjusted in time interval k with no need for
additional input of the previous actions of the
lines that are the essence for implementation of
(5) and (6).

)(ke

The final equations for adjusting the weights are
given with the following equations:

)k(s)k(e)k(w)1k(w l
i

1l
j

l
ij

l
ij

+η−=+ , 1≤l<L, (9)

where η is the step

))k(x(g))k(y)k(s()k(e L
j

'
j

L
j

L
j −= , (10a)

∑
+

=

+′=
1Nl

1p

l
jp

1l
p

l
j

l
j)k(w)k(e))k(x(g)k(e , 1≤l<L, (10b)

The previous equations are given for the standard
error back-propagation processing with no
respect to the memory neurons. Function is
the derivation of the activation function of the
network neurons, and we should use proper
function according to the indicating number of
the level.

(.)

The adjustments that needed for are similar to
ones for w , with some differences for the
connected memory neuron. Namely, in this case
the following equation

)k(v)k(e)k(f)1k(f l
i

1l
j

l
ij

l
ij

+η−=+ , 1≤l<L, (11)

is employed. Different memory coefficients can
be adjusted according to following equations:

),k(
v

)k(
v
e)k()1k((l

j

l
j

l
j

l
j

l
j

α∂

∂

∂
∂

η′−α=+α 1≤l<L, (12)

),k(
v

)k(
v
e)k()1k((L

ij

l
j

l
ij

L
j

L
ij

α∂

∂

∂
∂

η′−α=+α 1≤l<L, (13)

)k(v)k(e)k()1k(L
ij

L
i

L
ij

L
ij η′−β=+β , (14)

where:

A Memory Ann Computing Structure For Nonlinear Systems Emulation Identification 910

Georgi M. DIMIROVSKI, Cvetko J. ANDREESKI

∑
+

=

+=
∂
∂ 1Nl

1s

1l
s

l
jsl

j
)k(e)k(f

v
e , (15)

)1k(v)1k(s)k(
v l

j
l
jl

j

l
j −−−=

α∂

∂
, (16)

)k(e)k()k(
v
e L

i
L
ijL

ij
β=

∂
∂ , (17)

)1k(v)1k(v
v L

ij
L
ijL

ij

L
ij −−−=

α∂

∂
. (18)

In the previous equations, two different
parameters are used as step parameters: η′ for
memory coefficients and η for all of the other
weights. If the memory coefficients after
previous computations went out of interval (0,
1), these are put back in that interval to ensure
stability of the network.

III. AN INNOVATED MEMORY
ANN COMPUTNG STRUCTURE
FOR NONLINEAR SYSTEM
EMULATION

The overall conceptual model of this system
identification structure [2], [12]-[14] is depicted
in Figure 3. The presented schematic, for the
sake of simplicity, depicts the case of SISO
systems, where u and are the
respective scalar-valued system input and output
signals. However, it is valid for the MIMO case
when and , respectively are
vector-valued time sequences. Also note that, for
simplicity, we observe memory neural network
with one input, one output, and one hidden layer
levels.

)

)

(k

y

)(ky p

(ku)(kp

Figure 3. Schematic diagram of emulation
simulation of the unidentified system.

III.1. An Analysis of the Algorithm and
Conceptual Model of System Identification
In time period between two consecutive time
instances, let the input value be connected to

 and the output of the network be .

 should be used as a training signal in

time period implied by time instant .
Accordingly, the following approximation
expression applies

)(ku
)(ky p

)(kp

k

ŷ

ŷp

ŷ

)....)2k(ŷ),1k(ŷ),....,1k(u),k(u(F)k(ŷ ppp −−−=

,
(19)

where is the nonlinear transformation
performed by the memory ANN structure. As it
is written, depends of the previous input
values (from the memory neurons of input and
hidden level and previous values of the outputs).
Model presented with (19) is known as a model
with parallel identification.

F

ŷ)(kp

Now, if the input of the system is the same as
then current network input and if system output
is used as a training signal, then the memory
neural network is a model with parallel
identification. This is not case in the networks
based on feed-forward strategy, where one
should decide how many of the previous values
should be connected on the network input and
how many of the previous outputs should be put
in backward connection to have model with
parallel identification.

Should there be allowed that value of the model
output depends on several previous values of the
system output, then the so called serial-parallel
model for identification is obtained. In this paper
we present serial-parallel model by using
network with two inputs u and .

The network output is . Writing the
network output with two inputs as function of all
of the previous inputs, similarly to (19), one
obtains:

)(k
)k(p

)1k(−

),1k(ŷ),...,1k.(yp),1k(u),k(u(F)k(ŷ pp −−−=

)....)2k(ŷp −

)k(ŷp

 (20)

It is an easy task to see that will depend
on previous values of the inputs and outputs of

A Memory Ann Computing Structure For Nonlinear Systems Emulation Identification 911

Georgi M. DIMIROVSKI, Cvetko J. ANDREESKI

the system and on the current input too. Network
output depends on its previous values. This
dependence can be cast off by simple
disconnecting of the memory neurons from the
output level. We should emphasize once more
that, to get serial-parallel model, we do not need
to know the system order. The network will
automatically learn the relative "weights" which
should be assigned to different previous values
and these "weights" are available through
memory neurons. It is well known that serial-
parallel model can be engaged in generating of
the stable adaptive laws. For identification of the
system with m inputs and p outputs we should
use network with m+p inputs and p outputs.
Current outputs of the system in every time
interval are taken as training signals.

In proving the convergence of the given
identification algorithm, it is essential to
determine if the derivations computed with the
algorithm are valid and can we expect good
following of the gradient according to given
algorithm. "In this case we can say that
approximations made by construction of the
network in time period of one step should be
satisfied. More analysis are necessary to find
what class of systems these approximations do
not satisfy.

Second and vary important aspect of
convergence encompass basic techniques for
identification using gradient methods and models
of neural networks. All these methods compute
the gradient of the current error using it
for calibration of the "weights". For justification
of the identification model, we need to show that
following of the gradient of current error will
result by algorithm, which will minimize some
important errors. It can be proved that algorithm
that follows gradient of the current error results
in minimization of the expected value of the
error, if the system input is independent and
uniform distributed sequence and the unknown
system is stable in sense limited input limited
output and controllable. It should be noted that
here we do not prove the level of accuracy of the
identification method.

)(ke

Figure 4. A simplified flow diagram
representation of the designed software
implementation of memory ANN computing
structures.

Let assume that an independent and uniform
distributed input time sequence in interval [-1, 1]
is used for training the ANN structure. Then,
proved [2] that algorithm minimize the expected
value of the error between system to be emulated
and the memory ANN for this normalized input.
For better network representation of the system
with other signals it is necessary, however, to
have "enough amount" for input during the
training time. So, this way, the training
procedure will converge to an ANN computing
structure that is the closest one to the system to
be emulated.

A Memory Ann Computing Structure For Nonlinear Systems Emulation Identification 912

Georgi M. DIMIROVSKI, Cvetko J. ANDREESKI

If the training parameter is small, than algorithm
has the same asymptotic behavior as algorithm
for the gradient following, which makes use of
average error rather than current error. The input
sequence should be stationary, in order to get
average effects. In addition, stability is needed in
sense limited input, limited output and
controllable of the system just to insure that all
other signals in the network should be stationary
and according to that to provide existence of
invariant act necessary for proving convergence
of the error.

III.2. On the Application Software
Implementation
This application has been implemented on a
standard PC platform and works with minimum
requirements of a VGA graphic card [2]. Figure
4 depicts a simplified operational flow diagram
of the package. The overall constructive
composition of modules with the respective
information processing engines can be inferred
from this figure. It has been written in C+
language.

Upon activation of the application software, all
weights in the memory ANN structure are set to
have value 0.5. After the start initialization of
this application software, the execution control
of information processing performed is managed
by the user via appropriate pressed keys within
the sequence of user’s actions. By pressing key
'1' network training is activated, key '2' is for
network testing, key '3' displays the weights
matrix for layer 1 and 2 of the network, and key
'Esc' is aimed at terminating the current
investigation experiment.

IV. EXAMPLES: PERFORMANCE
OF MEMORY ANN SYSTEM
EMULATION

In the sequel we present two rather characteristic
examples of nonlinear systems identified by
memory ANN computing structure. In these
examples we use serial-parallel conceptual
model for identification. The overall system
identification structure is presented in Figure 3.

In its present implementation on a standard PC
platform, memory ANN structure employs only
one hidden layer. The standard notation m:n
denotes a memory ANN having m hidden

network neurons and n memory neurons on each
node of the output layer. The number of input
and output nodes is determined according to the
system to be emulated; e.g., for a systems with
one input and one output we should have two
inputs and one output. However, the number of
the inputs in this conceptual model for ANN
emulation of unknown systems does not depend
on the system order. In contrast to other methods,
this emulation identification algorithm does not
need to ‘know’ the structure of the system or of
any of its subsystems.

The two examples taken into consideration for
illustrating the performance of this technique
represent complex nonlinear systems, which are
stable in sense limited input, limited output.
These are known in the literature and may well
be said that serve some kind of benchmark
purpose. First example system is a SISO system
model of an executive control law for
manipulating a robot arm. The second one, the
MIMO system model, is found among the
examples in [] used by Narendra and
Parthasarathy (1990), and represents a system
with two inputs and two outputs. In both cases,
the same ANN computing structure and training
sequence were applied so that the obtained
results are amenable for comparison discussion.
For the both examples network structure is an 6:1
memory ANN computing structure.

As it was explained earlier in this text, memory
neurons in the output layer do not play any
significant role. The network makes use of one
or zero memory neurons. In the following text
we present results of one considerably large
memory ANN computing structure. This network
is a 6:1 structure, meaning that it has six network
neurons in hidden layer and one memory neuron
in the output layer. The speed of learning for
both of the systems is by step 1.0'=η for the
memory coefficients, and step 2.0=η for all
of the rest weights. Also, both networks employ
the same activation functions: for the hidden

nodes, and for the output nodes, with
parameters c

1g

2g
1=c2=1 and k1=k2=1, respectively.

The memory ANN has an embedded constant for
the system output that keeps the network signal
in the interval [-1, 1]. However, this has no
influence whatsoever on the identification
process. It is an easy matter to note that the main
purpose is to explain in general the structure of

A Memory Ann Computing Structure For Nonlinear Systems Emulation Identification 913

Georgi M. DIMIROVSKI, Cvetko J. ANDREESKI

the network. So, each problem, any calibration
will be within in the framework of the numbers
of the training iterations.

For training the network we use 62000 or 77000
time intervals, or long sequence for training for
complex systems. Network training begin with
200 iterations for zero input, after that 2/3 of
remaining time for training the input value is
uniform sequence in the interval [-1, 1] and the
rest of the training time input value is the
sinusoid given by sin(πk/45). Upon the
completion of the training session, we made s
comparison of the output of the memory ANN
emulation structure with that of math-analytical
based system output by making use of test-signal
time sequence of 1000 time steps. Typically, the
test signal used is a blended mix of sinusoidal
and constant input values generators.

Example 1. First example is a single-input-
single-output (SISO) system model, taken from
the literature, represents a given manipulation
law of an robot arm. The system model is given
with following equation:

)k(u2.1))k(y2sin(8.0)1k(y 1pp +⋅=+ (21)

In order to insure operating stability of the
network, output is scaled to be in [-1, 1] interval.
Through the training procedure, network
computes the proper values of the memory
coefficients in order to reproduce the behavior of
the system for the input sequence (22).

As a test-signal sequence we have used a typical
time sequence for exploring the performance of
ANN based identification methods. In order to
generate the test signal a standard dynamic
neural network employing first-order filter has
been used. The test-signal sequence is generated
by the following mathematical representation:



























<≤+
++

<≤−
<≤
<

=

1000750),10/(6.0
)32/sin(1.0)25/sin(3.0

750500,00.1
500250,00.1
250),25/sin(

)(

kk
kk

k
k
kk

ku

π
ππ

π

 (22)

The computed outputs (relative to the time) of
this example system, Eq. (21), via both MAN
based simulation (blue graphic) and memory
ANN based identification (red graphic) are

presented in Figure 5 (a) below. These are
superimposed on each other, hence it is clearly
seen that there is almost no discrepancy among
them indeed, demonstrating the achieved very
high accuracy of the implemented memory ANN
computing structure.

Example 2. The other test example is a multi-
input-multi-output (MIMO) system model,
notably with 2 inputs and 2 outputs, also taken
from the literature. For this example, a memory
ANN computing structure employing 4 neurons
in the input layer and two neurons in the output
layer has been used. The example of a MIMO
system is represented by equations:












+

+
⋅=+)(

)(1
)(

5.0)1(12
2

1
1 ku

ky
ky

ky
p

p
p ,(23)












+

+

⋅
⋅=+)(

)(1
)9)(

5.0)1(22
2

21
2 ku

ky
kyky

ky
p

pp
p

.

In Figure 5 (b), there is depicted a comparative
presentation of superimposed systems outputs
computed via the math-analytical model (red
graphics) and the memory ANN emulation
structure (blue graphics) for the test signal given
by Eq. (22). It is easy to see that emulation
identification of the system with two inputs and
two outputs is as good as for the SISO case. In
the sequel, we discuss possible errors that can
happen during the programming of the memory
ANN computing structures [2].

Input values of the memory neural networks
should be in the interval [-1,1], and so we should
check the network output to be in specified
interval. If the system formula leads the system
output out of the interval [-1,1] then we project
that values back to the specified interval. Also
we should take care for the values of the memory
coefficients . If any of these
coefficients went out of the (0, 1) interval they
should be projected back to that interval.
According to their values current actions of the
network depends more or less on the previous
ones, so that's why projection procedure is very

L
ij

L
ij

l
j and , βαα

A Memory Ann Computing Structure For Nonlinear Systems Emulation Identification 914

Georgi M. DIMIROVSKI, Cvetko J. ANDREESKI

important in order to keep ratio between the
values of these memory coefficients.

(a)

(b)

 Simulated system model
 MANN identified system

Figure 5. Computational performance: Output
results of math-analytical numerical and memory
ANN computing for the nonlinaer SISO and
MIMO system examples.

IV. CONCLUSION

An memory neural-network computing structure
for emulation identification of highly nonlinear
unknown systems that makes use of the so called
serial-parallel model of system identification [2]
has been presented in this paper. First, a brief
outline the original results on memory ANN
architecture [16] and the respective
representation equations has been given, and a
discussion on the learning-training algorithm has
been presented. Thereafter a summary reference
on the applications software design by making

use of a simplified flow diagram has been
presented. The details the performance of this
ANN computing structure have been discussed
along with results on two well-known example
system models, one for the SISO and another for
MIMO cases of unknown systems..

In this research we have worked with the typical
test signal time sequence, given by Eq. (22) to
emulate nonlinear system models. It should be
noted that dynamic neural networks are the
closest to memory neural networks. Advantage
of the memory neural networks in comparison to
those with dynamics is the fact that knowledge of
the system order is not needed a-priori for the
system identification.

The results achieved in emulation identification
of two examples of notoriously nonlinear system
models have demonstrated a high-quality
performance. The is no noticeable discrepancy
between the computed responses of the systems
models and of the trained memory ANN
computing structure. Memory ANN structures
can be successfully trained to learn and emulate
nonlinear input-output system mappings of
arbitrary complexity

ACKNOWLEDGEMENT

Professor Dimirovski would like to express his
gratitude to Prof. Dr. Kurt Schlacher, Head of
Department of Automatic Control & Control
Systems Tcehnology at Johennes Kepler
University in Linz, Austria, for providing
excellent working and living environment
inviting during his visiting position there when
the theoretical part of this work was elaborated.

REFERENCES

[1] F. Albertini and E. D. Sontag, “For neural

networks, function determines form.”
Neural Networks, vol. 6, pp. 975-990, 1992.

[2] C. J. Andreeski, C.J. and G. .M. Dimirovski,
Theory, Design and Implementation of
Memory ANN Based Computational
Technique for Identification of MIMO Non-
linear Dynamical Processes, ASE-FEE
Technical Research Rep. NNSID-03/ASE00.
Skopje, MK: SS Cyril & Methodius
University, 2000.

A Memory Ann Computing Structure For Nonlinear Systems Emulation Identification 915

Georgi M. DIMIROVSKI, Cvetko J. ANDREESKI

[3] V. I. Arnold, “Some questions of
approximation and representation of
functions.” In: Proceedings of the
International Congress of Mathematicians,
pp. 339-348. (Translation in English:
American Mathematical Society
Translations, Vol. 53). Moscow, RUS: MEI
Press, 1958.

[4] K. J. Aström, P. Albertos, M. Blanke, A.
Isidori, W. Schaufelberger, and R. Sanz,
Eds., Control of Complex Systems. London,
UK: Springer-Verlag, 2001.

[5] C. Bishop, Neural Networks for Pattern
Recognition. Oxford, UK: Clarendon, 1995.

[6] S. Chen, C. F. N. Cowan, and P. M. Grant,
”Orthogonal least squares learning algorithm
for radial basis function networks.” IEEE
Trans. Neural Networks, vol. 2, no. 2, pp.
302-309, 1991.

[7] T. Chen and H. Chen, “Approximation of
continuous functionals by neural networks
with applications to dynamic systems.”
IEEE Trans. Neural Networks, vol. 4, no. 3,
pp. 910-918, 1993.

[8] G. M. Dimirovski, I.I. Ivanoska, M.J.
Stankovski, R.A. Pessu, A. Zakeri and N.E.
Gough. “Life-like systems: ANN emulation
modelling in intelligent control systems.” In:
Proceedings of the 3rd APCA Intl. Conf. on
Automatic Control, A. Dourado et al., Eds.,
vol. 1, pp. 169-176. Coimbra, PT: Assoc.
Portuguesa de Controlo Automatico and
University of Coimbra, 1998.

[9] S. Haykin, Neural Networks: A
Comprehensive Foundation (2nd ed.). New
York, NY: Macmillan, 1999.

[10] H. Katsuura and D. A. Sprecher,
“Computational aspects of Kolmogorov’s

theorem.” Neural Networks, vol. 7, pp. 455-
461, 1994.

[11] S. Mcloone and G. W. Irwin, “Fast parallel
of-line training of multilayer perceptrons.”
IEEE Trans. Neural Networks, vol. 8, no. 3,
pp. 646-653, 1997.

[12] W. T. Miller, R. S. Sutton, and P. J. Werbos,
Neural Networks for Control. Cambrdige,
MA: MIT Press, 1992.

[13] K. S. Narendra and K. Parthasarathy,
“Identification and control using of
dynamical systems neural networks.” IEEE
Trans. Neural Networks, vol. NN-1, no. 1,
pp. 4-27, 1990.

[14] D. T. Pham and L. Xing, Neural Networks
for Identification, Prediction and Control.
London, UK: Springer-Verlag, 1997.

[15] R. Parisi, E. D. Diclandid, G. Orlandi, and
B. D. Rao, “A generalized learning
paradigm exploiting the structure of
feedforward neural networks.” IEEE Trans.
Neural Networks, vol. 7, no. 6, pp. 1450-
1460, 1996.

[16] P. S. Sastry, G. Santharam, and K. P.
Unnikrishnan, “Memory neuron networks
for identification and control of dynamical
systems.” IEEE Trans. Neural Networks,
vol. NN-5, no. 2, pp. 306 –319, 1994.

[17] D. A. Sprecher, “A numerical
implementation of Kolmogorov’s
superposition II.” Neural Networks, vol. 10,
pp. 447-457, 1997.

[18] P. J. Werbos, “Backpropagation through
time: What it does and how to do it.” IEEE
Proceedings, vol. 78, pp. 1550-1560, 1990.

	A MEMORY ANN COMPUTING STRUCTURE FOR NONLINEAR SYSTEMS EMULATION IDENTIFICATION
	Georgi M. DIMIROVSKI1 Cvetko J. ANDREESKI 2
	I. INTRODUCTION

