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ABSTRACT 

 
Currently, almost all efforts for using artificial neural networks for control oriented process 
identification are based on feed-forward networks. Provided the system order or the upper limit of the 
order is known, a neural network design is feasible for which all the collection of previous values of 
the inputs and outputs of the system to be identified can be used as input data to train in the network 
computing structures to learn the input-output map. This work reports on a novel technique that 
makes use of memory artificial neural network architecture that can learn and transform so as to 
emulate any non-linear input-output map for multi-input-multi-output systems when no prior 
knowledge on specific system features exists. 
 
Keywords: Artificial neural-net computing structures, memory artificial neural networks, non-
linear input-output maps, system emulation identification. 
 
 
 
I. INTRODUCTION 
In engineering and technology, model 
identification of certain system structures 
requires searching for some class of functions for 
approximation of the system input-output law of 
behavior, generally highly nonlinear, in the 
"best" possible way [4]. In most situations, such 
as in control process identification, pattern 
recognition etc., the value of the output of the 
representation model of the observed system is 

some function of the previous values of outputs 
and inputs.  
 
By and large, the input-output view on model 
identification, in contrast to the input-state-
output one (see Figure 1), has been exploited in 
industrial applications for identifying and control 
design of complex nonlinear plants [4]. Hence 
the formalism of artificial neural networks 
(ANN) has attracted much attention by 
researchers in systems and control engineering so 
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that dedicated monographs have appeared [12], 
[14] in addition to the standard books as [5], 
[10].  
 

 
Figure 1. The input-output view on general 
system assumes only spaces of admissible 
inputs and sustainable outputs are available, 
most adequate in emulation modeling by ANN 
computing.  

 
It has been shown by Narendra and Parthasarathy 
in [13] that some huge class of models can be 
constructed by using neural networks and linear 
filters interconnected in cascades and/or 
feedback configurations. Neural networks does 
match non-linear part of the system, and, linear 
filter gives dynamics to the system representation 
model. They worked on method for 
backpropagation-through-time of the error 
signal, so called dynamic back propagation. 
Using simulations they showed these kinds of 
models could identify some complex non-linear 
dynamic systems. This is the elegant way for 
understanding model dynamics, but there are 
some disadvantages. Namely, the knowledge of 
the system structure is prerequisite in order of the 
system to develop design combination of non-
memory transformation and linear filters that are 
designed appropriately for emulating the 
representation model [2], [7].  
 
In the course of development of artificial neural 
network theory, in parallel, there have been 
present considerable interests and research 
efforts about engaging neural networks in model 
identification for control and the software design 
and implementation of such soft-computing 
structures [5], [9], [10], [17]. This paper reports 
on such a designed realization based on a class of 
recurrent neural networks employing the 
neuronal architecture of memory ANN’s [16] as 
a control oriented computational model for 
emulation identification of inherently generic 
nonlinear input-output (I/O) maps of either 

controlled objects or controller laws [2]. The aim 
of this paper is present an innovated design of a 
memory ANN computing structure for neural 
emulation identification of controller or object 
system nonlinear I/O maps for the purpose of 
complex systems control a well as to 
demonstrate the potential computational models 
with recurrent neural networks.  
 
The memory artificial neural networks were 
invented and introduced in the literature on 
neural networks by Sastry and co-authors [16]. 
These represent a class of recurrent networks 
created via adding new elements in classic feed-
forward ANN’s, which can be trained by means 
of time sequences and which are able to 
memorize its previous activities. By making use 
of these abilities, these neural networks can 
identify dynamic systems with no need for 
previous values of the inputs and outputs. Thus 
they able even to identify dynamic systems with 
unknown specific features such as order or time 
delay [3], [8] , [16].  
 
The organization of the paper is as follows. In 
Section II, in two subsections, an outline 
presentation of memory ANN’s along with some 
of the implementation details on our memory 
ANN computing structure are given as well as a 
brief discussion on details of the training 
algorithm as adjusted for the implemented 
memory ANN computing structure. Section III, 
also in two subsections, presents an analysis of 
the emulation identification strategy along with 
the results for two examples of highly nonlinear 
I/O maps known as benchmark cases in the 
literature. Section IV discusses the performance 
of this ANN computing structure for emulation 
identification of nonlinear I/O maps via two 
characteristic examples. Conclusions are 
presented in Section V, and references follow 
thereafter.  
 
II. AN OUTLINE OF MEMORY 
ANN COMPUTING STRUCTURES  
 
To implement dynamics direct into the network 
structure, the network to be endowed with some 
"internal memory" and a learning algorithm for 
recurrent network. As for the learning algorithm, 
there is no much detail to present about possible 
strategies for system model emulation or for 
training a controller system. Both least-square 
and back-propagation learning alternatives have 
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been explored with similar success [6], [8], [11], 
[15], [18]. However, in this work the rather 
common strategy of back-propagation-through-
time [18] has been found more adequate and 
employed in our memory ANN based technique 
[2]. Nonetheless, we emphasize that back-
propagation combined with feed-forward neural 
networks can give erroneous results when current 
value of the output of the system depends on 
more than one of the previous inputs and 
especially when the case is an multi-input-multi-
output (MIMO) system. And, MIMO systems 
precisely are of main concern in our work. That 
is to say, our focus was put on exploring the 
emulation of MIMO non-linear I/O maps of 
dynamical processes, where the values of some 
or of all the outputs essentially depend on more 
than one of the inputs. 
 
II. 1. On Memory ANN Architecture  
 
In the memory ANN architecture [16], each 
neuron has its own memory neuron and its output 
summarize the history of the previous actions of 
the neuron. These memory neurons or more 
precisely weight of the links presents the 
elements of dynamics for training of the model. 
Because links between neurons and their 
memory neurons are back-propagation links, the 
network from global point of view is indeed 
recurrent as pointed out in [1]. Also, it has been 
shown through a number of simulation 
experiments that the amount of internal memory 
and elements for training during the time are 
enough for identification of arbitrary non-linear 
I/O maps [16], [2].  
 
The architecture of memory ANN based systems, 
proposed by Sastry et al. in [16], is presented in 
Figure 1 above. It is seen that their structure is 
similar to feed-forward networks with a new 
element - memory neurons, presented with little 
solid circles, connected on every network 
neuron, presented by big outlined circles. In 
order to make difference between these two 
kinds of neurons we should use titles network 
and memory neuron. 

 
 
Figure 2. Directed graph representation of the 
architecture of memory artificial neuron 
networks. 
 
 
As shown in Figure 2, on every level of the 
network, except the output level, every network 
neuron has one memory neuron connected. 
Memory neuron gets their input from its network 
neuron, and also they have own feedback. With 
this kind of propagation, data that are computed 
at the network neurons can be stored in memory 
neurons. Network, and memory neurons, from 
every level they send their output into the 
network neurons of the next level. In the output 
level, every network neuron can have cascade of 
memory neurons and each of them sends its 
output to the network neuron of the output level. 
Figure 2 presents a  memory ANN with 2 input 
and 1 output node and one "hidden" level. This 
ANN computing structure is self-explained 
through the notation and comments given below: 

•  - number of the network level with the 
level  as input and level  as output 
levels; 

L
l L

l

k

•  - number of network neurons on level 

; 
lN

l
•  - network input in j network neuron 

on level  in the time period following 
instant ; 

)(kxl
j

k
l•  - output of the memory neuron from j 

network neuron of level l  in the time period 
following instant ; 

)k(v j
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)k

)k

l

•  - "weight" of the connection 

between i network neuron of level l  and j 
network neuron on level l  in the time 
period following instant ; 

(w l
ij

1+
k

•  - "weight" of the connection between 
memory neuron of the i network neuron of 
level  and j network neuron of 

(f l
ij

1+l
k

 level 
in the time period following instant ; 

•  - "weight" of the connection between 

j network neuron of level l  and its memory 
neuron in time period following instant ; 

,  

)k

L
)k

)k

)k

jM

(.)

L

l
oj

l
ov

s

(l
jα

≤1
L

k
l <

• - "weight" of the connection of (j-1) 
memory neuron to j memory neuron of i 
network neuron in output level in the time 
period following instant ; 

(jα

L
k

•  - output of j memory neuron of i 
network neuron of the output level in the 
time period following instant k ; 

(v j

•  - "weight" of the connection between 
j memory neuron of i network neuron and i 
network neuron of the output level in the 
time period following instant k ; 

(L
ijβ

•  - number of the memory neurons 
connected to j network neuron of the output 
level; 

•  - activation function of the network 
neurons. 
g

• Coefficients  should be 
considered as memory coefficients.  

L
ij

L
ij

l
j ,, βαα

 
Network input in j network neuron from level , 

, in the time period following instant 
; 

l
l <≤1

k
is given as: 

∑ ∑
−

=

−

=

−−−− +=
1Nl

0i

1Nl

1i

1l
i

1l
ij

1l
i

1l
ij

l
j )k(v)k(f)k(s)k(w)k(x    (1) 

In equation (1) we should accept  for every 

l, and  is the beginning condition for j 
network neuron of level l+1. These zero neurons 
of each level are given in accordance with 
beginning condition and that network neuron 

should not have memory neuron. That's why  
does not exist and index of second sum begins 
from 1. The output of the network neuron is 
given with the following equation (2): 

1sl
0 =

w

))k(x(g)k( l
j

l
j = , 1≤l<L.                (2) 

We use two different types of activation 
functions  

,
)xkexp(1

1c)k(g
1

11 −+
=

  
(3) 

)xkexp(1
)xkexp(1

c)k(g
2

2
22 −+

−−
=  

in our ANN computing emulation and simulation 
technique. In here, is implemented for all 
nodes in hidden level, and for output nodes. 
In equations (3)  are parameters 
of activation function.  

1

1k,c

g
g

L
iv

w

2

2k21 andc,  

Network neurons from output level, gets their 
input values according to following equation 
(4): 

∑ ∑ ∑
−

=

−

= =

−−− β++=
1Nl

0i

1Nl

1i

M

1i

L
ji

L
ji

1L
i

1L
ij

1L
i

L
j

j

)k(v)k()k(vf)k(s)k(x  

(4) 
Output of all memory neurons except memory 
neurons from output level is computed as 
following: 

)1k(v))k(1()1k(s)k()k(v l
j

l
j

l
j

l
j

l
j −α−+−α=  (5) 

The output of the memory neurons from output 
level is computed as (6): 

)1k(v))k(i1()1k(v)k()k(v L
ij

L
ij

L
1ij

L
ij

L
ij −α−+−α= − , (6) 

where according to accepted notation . 
For safe stability of the network dynamics 
following constraints are implemented: 

L
is=0

1,,0 ≤≤ L
ij

l
i

L
ij βαα .                 (7) 

From the previous text and this equations it is 
easy to note the similarities between feed-
forward and memory neural networks. At the 
memory neural networks, network neurons are 
connected through weights  creating feed-
forward network. Every memory neuron 

l
ij
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2

)

g′

f

memorizes combination of all of the previous 
actions that happened in the network neuron.  
 
The output value of the memory neuron is 
computed as output from a first-order filter. By 
keeping memory coefficients into the interval (0, 
1) the stability of this filter is ensured. These 
outputs are easy to compute locally, by storing 
values of one time interval, using equations (5) 
and (6). Because outputs from memory neurons 
gives contribution to the input of the network 
neurons of the next level, interval memory of the 
network plays significant role in determining the 
output of the network in every time interval. 
Memory neurons of the output level allow direct 
dependence of the current input of the network 
from its previous output values.  
 
According what is presented above, these kinds 
of artificial neural networks are recurrent, and 
the computation of the output values is similar to 
the one of the "feed-forward" networks. 
Therefore there is no waiting for the network to 
get in stable condition. So, the output of the 
network in any time interval is dependent of all 
previous network inputs (as we can see from (5) 
and (6)). The degree of dependence should be 
determined by means of the values of the 
memory coefficients. 
 
II. 2. On Training algorithms for Memory 
ANN Computing Structures  
 
As it is explained earlier in this text, on every 
new time interval network gets new input value 
and computes output using equations (1)-(6). On 
the output level network gives signal for 
adjusting which is involved in the error 
computation of the output level and according to 
error values, network makes adjustment on all 
"weights" in the network. It uses common 
criteria for square error given as 

j

Nl

1j

L
j ))k(y)k(s()k(e −= ∑

=

,                           (8) 

where  is the training signal of the j-th 
output node in time instant k.  

(ky j

 
This network uses training algorithm of error 
back- propagation type [18]. Everything that the 
network need is the error derivation , with 
respect to the network weights. According to 

attendance of the memory neurons, it is not an 
easy task to compute precise partial derivation 
through back-propagation in only one time 
interval. The strategy is approximately to 
develop a network with connected input of one 
time step, and the computed error to put in back 
propagation. That means that all the weights can 
be adjusted in time interval k with no need for 
additional input of the previous actions of the 
lines that are the essence for implementation of 
(5) and (6).  

)(ke

 
The final equations for adjusting the weights are 
given with the following equations: 

)k(s)k(e)k(w)1k(w l
i

1l
j

l
ij

l
ij

+η−=+ , 1≤l<L,    (9) 

where η is the step 

))k(x(g))k(y)k(s()k(e L
j

'
j

L
j

L
j −= ,              (10a) 

∑
+

=

+′=
1Nl

1p

l
jp

1l
p

l
j

l
j )k(w)k(e))k(x(g)k(e , 1≤l<L, (10b) 

The previous equations are given for the standard 
error back-propagation processing with no 
respect to the memory neurons. Function  is 
the derivation of the activation function of the 
network neurons, and we should use proper 
function according to the indicating number of 
the level.  

(.)

 
The adjustments that needed for  are similar to 
ones for w , with some differences for the 
connected memory neuron. Namely, in this case 
the following equation  

)k(v)k(e)k(f)1k(f l
i

1l
j

l
ij

l
ij

+η−=+ , 1≤l<L,      (11) 

is employed. Different memory coefficients can 
be adjusted according to following equations: 

),k(
v

)k(
v
e)k()1k(( l

j

l
j

l
j

l
j

l
j

α∂

∂

∂
∂

η′−α=+α  1≤l<L,     (12) 

),k(
v

)k(
v
e)k()1k(( L

ij

l
j

l
ij

L
j

L
ij

α∂

∂

∂
∂

η′−α=+α  1≤l<L,  (13) 

)k(v)k(e)k()1k( L
ij

L
i

L
ij

L
ij η′−β=+β ,                (14) 

where: 
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∑
+

=

+=
∂
∂ 1Nl

1s

1l
s

l
jsl

j
)k(e)k(f

v
e ,                    (15) 

)1k(v)1k(s)k(
v l

j
l
jl

j

l
j −−−=

α∂

∂
,              (16) 

)k(e)k()k(
v
e L

i
L
ijL

ij
β=

∂
∂ ,                   (17) 

)1k(v)1k(v
v L

ij
L
ijL

ij

L
ij −−−=

α∂

∂
.              (18) 

In the previous equations, two different 
parameters are used as step parameters: η′  for 
memory coefficients and η  for all of the other 
weights. If the memory coefficients after 
previous computations went out of interval (0, 
1), these are put back in that interval to ensure 
stability of the network. 
 
III. AN INNOVATED MEMORY 
ANN COMPUTNG STRUCTURE 
FOR NONLINEAR SYSTEM 
EMULATION  
 
The overall conceptual model of this system 
identification structure [2], [12]-[14] is depicted 
in Figure 3. The presented schematic, for the 
sake of simplicity, depicts the case of SISO 
systems, where u  and  are the 
respective scalar-valued system input and output 
signals. However, it is valid for the MIMO case 
when  and , respectively are 
vector-valued time sequences. Also note that, for 
simplicity, we observe memory neural network 
with one input, one output, and one hidden layer 
levels.  

)

)

(k

y

)(ky p

(ku )(kp

 
 

Figure 3. Schematic diagram of emulation 
simulation of the unidentified system. 

 

 
III.1. An Analysis of the Algorithm and 
Conceptual Model of System Identification  
In time period between two consecutive time 
instances, let the input value be connected to 

 and the output of the network be . 

 should be used as a training signal in 

time period implied by time instant . 
Accordingly, the following approximation 
expression applies  

)(ku
)(ky p

)(kp

k

ŷ

ŷp

ŷ

)....)2k(ŷ),1k(ŷ),....,1k(u),k(u(F)k(ŷ ppp −−−=

,  
(19) 

where  is the nonlinear transformation 
performed by the memory ANN structure. As it 
is written,  depends of the previous input 
values (from the memory neurons of input and 
hidden level and previous values of the outputs). 
Model presented with (19) is known as a model 
with parallel identification.  

F

ŷ )(kp

 
Now, if the input of the system is the same as 
then current network input and if system output 
is used as a training signal, then the memory 
neural network is a model with parallel 
identification. This is not case in the networks 
based on feed-forward strategy, where one 
should decide how many of the previous values 
should be connected on the network input and 
how many of the previous outputs should be put 
in backward connection to have model with 
parallel identification.  
 
Should there be allowed that value of the model 
output depends on several previous values of the 
system output, then the so called serial-parallel 
model for identification is obtained. In this paper 
we present serial-parallel model by using 
network with two inputs u  and . 

The network output is . Writing the 
network output with two inputs as function of all 
of the previous inputs, similarly to (19), one 
obtains: 

)(k
)k(p

)1k( −

),1k(ŷ),...,1k.(yp),1k(u),k(u(F)k(ŷ pp −−−=

)....)2k(ŷp −

)k(ŷp

 

                                                   (20) 

It is an easy task to see that  will depend 
on previous values of the inputs and outputs of 
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the system and on the current input too. Network 
output depends on its previous values. This 
dependence can be cast off by simple 
disconnecting of the memory neurons from the 
output level. We should emphasize once more 
that, to get serial-parallel model, we do not need 
to know the system order. The network will 
automatically learn the relative "weights" which 
should be assigned to different previous values 
and these "weights" are available through 
memory neurons. It is well known that serial-
parallel model can be engaged in generating of 
the stable adaptive laws. For identification of the 
system with m inputs and p outputs we should 
use network with m+p inputs and p outputs. 
Current outputs of the system in every time 
interval are taken as training signals.  
 
In proving the convergence of the given 
identification algorithm, it is essential to 
determine if the derivations computed with the 
algorithm are valid and can we expect good 
following of the gradient according to given 
algorithm. "In this case we can say that 
approximations made by construction of the 
network in time period of one step should be 
satisfied. More analysis are necessary to find 
what class of systems these approximations do 
not satisfy.  
 
Second and vary important aspect of 
convergence encompass basic techniques for 
identification using gradient methods and models 
of neural networks. All these methods compute 
the gradient of the current error  using it 
for calibration of the "weights". For justification 
of the identification model, we need to show that 
following of the gradient of current error will 
result by algorithm, which will minimize some 
important errors. It can be proved that algorithm 
that follows gradient of the current error results 
in minimization of the expected value of the 
error, if the system input is independent and 
uniform distributed sequence and the unknown 
system is stable in sense limited input limited 
output and controllable. It should be noted that 
here we do not prove the level of accuracy of the 
identification method.  

)(ke

 

 
 
Figure 4. A simplified flow diagram 
representation of the designed software 
implementation of memory ANN computing 
structures. 
 
Let assume that an independent and uniform 
distributed input time sequence in interval [-1, 1] 
is used for training the ANN structure. Then, 
proved [2] that algorithm minimize the expected 
value of the error between system to be emulated 
and the memory ANN for this normalized input. 
For better network representation of the system 
with other signals it is necessary, however, to 
have "enough amount" for input during the 
training time. So, this way, the training 
procedure will converge to an ANN computing 
structure that is the closest one to the system to 
be emulated.  
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If the training parameter is small, than algorithm 
has the same asymptotic behavior as algorithm 
for the gradient following, which makes use of 
average error rather than current error. The input 
sequence should be stationary, in order to get 
average effects. In addition, stability is needed in 
sense limited input, limited output and 
controllable of the system just to insure that all 
other signals in the network should be stationary 
and according to that to provide existence of 
invariant act necessary for proving convergence 
of the error.  
 
III.2. On the Application Software 
Implementation  
This application has been implemented on a 
standard PC platform and works with minimum 
requirements of a VGA graphic card [2]. Figure 
4 depicts a simplified operational flow diagram 
of the package. The overall constructive 
composition of modules with the respective 
information processing engines can be inferred 
from this figure. It has been written in C+ 
language.  
 
Upon activation of the application software, all 
weights in the memory ANN structure are set to 
have value 0.5. After the start initialization of 
this application software, the execution control 
of information processing performed is managed 
by the user via appropriate pressed keys within 
the sequence of user’s actions. By pressing key 
'1' network training is activated, key '2' is for 
network testing, key '3' displays the weights 
matrix for layer 1 and 2 of the network, and key 
'Esc' is aimed at terminating the current 
investigation experiment. 
 
 
IV. EXAMPLES: PERFORMANCE 
OF MEMORY ANN SYSTEM 
EMULATION  
 
In the sequel we present two rather characteristic 
examples of nonlinear systems identified by 
memory ANN computing structure. In these 
examples we use serial-parallel conceptual 
model for identification. The overall system 
identification structure is presented in Figure 3.  
 
In its present implementation on a standard PC 
platform, memory ANN structure employs only 
one hidden layer. The standard notation m:n 
denotes a memory ANN having m hidden 

network neurons and n memory neurons on each 
node of the output layer. The number of input 
and output nodes is determined according to the 
system to be emulated; e.g., for a systems with 
one input and one output we should have two 
inputs and one output. However, the number of 
the inputs in this conceptual model for ANN 
emulation of unknown systems does not depend 
on the system order. In contrast to other methods, 
this emulation identification algorithm does not 
need to ‘know’ the structure of the system or of 
any of its subsystems. 
 
The two examples taken into consideration for 
illustrating the performance of this technique 
represent complex nonlinear systems, which are 
stable in sense limited input, limited output. 
These are known in the literature and may well 
be said that serve some kind of benchmark 
purpose. First example system is a SISO system 
model of an executive control law for 
manipulating a robot arm. The second one, the 
MIMO system model, is found among the 
examples in [ ] used by Narendra and 
Parthasarathy (1990), and represents a system 
with two inputs and two outputs. In both cases, 
the same ANN computing structure and training 
sequence were applied so that the obtained 
results are amenable for comparison discussion. 
For the both examples network structure is an 6:1 
memory ANN computing structure.  
 
As it was explained earlier in this text, memory 
neurons in the output layer do not play any 
significant role. The network makes use of one 
or zero memory neurons. In the following text 
we present results of one considerably large 
memory ANN computing structure. This network 
is a 6:1 structure, meaning that it has six network 
neurons in hidden layer and one memory neuron 
in the output layer. The speed of learning for 
both of the systems is by step 1.0'=η  for the 
memory coefficients, and step 2.0=η  for all 
of the rest weights. Also, both networks employ 
the same activation functions:  for the hidden 

nodes, and  for the output nodes, with 
parameters c

1g

2g
1=c2=1 and k1=k2=1, respectively. 

The memory ANN has an embedded constant for 
the system output that keeps the network signal 
in the interval [-1, 1]. However, this has no 
influence whatsoever on the identification 
process. It is an easy matter to note that the main 
purpose is to explain in general the structure of 
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the network. So, each problem, any calibration 
will be within in the framework of the numbers 
of the training iterations.  
 
For training the network we use 62000 or 77000 
time intervals, or long sequence for training for 
complex systems. Network training begin with 
200 iterations for zero input, after that 2/3 of 
remaining time for training the input value is 
uniform sequence in the interval [-1, 1] and the 
rest of the training time input value is the 
sinusoid given by sin(πk/45). Upon the 
completion of the training session, we made s 
comparison of the output of the memory ANN 
emulation structure with that of math-analytical 
based system output by making use of test-signal 
time sequence of 1000 time steps. Typically, the 
test signal used is a blended mix of sinusoidal 
and constant input values generators.  
 
 
Example 1. First example is a single-input-
single-output (SISO) system model, taken from 
the literature, represents a given manipulation 
law of an robot arm. The system model is given 
with following equation: 

)k(u2.1))k(y2sin(8.0)1k(y 1pp +⋅=+        (21) 

In order to insure operating stability of the 
network, output is scaled to be in [-1, 1] interval. 
Through the training procedure, network 
computes the proper values of the memory 
coefficients in order to reproduce the behavior of 
the system for the input sequence (22). 
 
As a test-signal sequence we have used a typical 
time sequence for exploring the performance of 
ANN based identification methods. In order to 
generate the test signal a standard dynamic 
neural network employing first-order filter has 
been used. The test-signal sequence is generated 
by the following mathematical representation: 
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 (22) 

The computed outputs (relative to the time) of 
this example system, Eq. (21), via both MAN 
based simulation (blue graphic) and memory 
ANN based identification (red graphic) are 

presented in Figure 5 (a) below. These are 
superimposed on each other, hence it is clearly 
seen that there is almost no discrepancy among 
them indeed, demonstrating the achieved very 
high accuracy of the implemented memory ANN 
computing structure.  
 
 
Example 2. The other test example is a multi-
input-multi-output (MIMO) system model, 
notably with 2 inputs and 2 outputs, also taken 
from the literature. For this example, a memory 
ANN computing structure employing 4 neurons 
in the input layer and two neurons in the output 
layer has been used. The example of a MIMO 
system is represented by equations:  
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In Figure 5 (b), there is depicted a comparative 
presentation of superimposed systems outputs 
computed via the math-analytical model (red 
graphics) and the memory ANN emulation 
structure (blue graphics) for the test signal given 
by Eq. (22). It is easy to see that emulation 
identification of the system with two inputs and 
two outputs is as good as for the SISO case. In 
the sequel, we discuss possible errors that can 
happen during the programming of the memory 
ANN computing structures [2].   
 
Input values of the memory neural networks 
should be in the interval [-1,1], and so we should 
check the network output to be in specified 
interval. If the system formula leads the system 
output out of the interval [-1,1] then we project 
that values back to the specified interval. Also 
we should take care for the values of the memory 
coefficients . If any of these 
coefficients went out of the (0, 1) interval they 
should be projected back to that interval. 
According to their values current actions of the 
network depends more or less on the previous 
ones, so that's why projection procedure is very 

L
ij

L
ij

l
j  and , βαα
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important in order to keep ratio between the 
values of these memory coefficients. 
 
 
 
(a) 

 
(b) 

 
 Simulated system model  
 MANN identified system  

 
Figure 5. Computational performance: Output 
results of math-analytical numerical and memory 
ANN computing for the nonlinaer SISO and 
MIMO system examples. 
 
 
IV. CONCLUSION 
 
An memory neural-network computing structure 
for emulation identification of highly nonlinear 
unknown systems that makes use of the so called 
serial-parallel model of system identification [2] 
has been presented in this paper. First, a brief 
outline the original results on memory ANN 
architecture [16] and the respective 
representation equations has been given, and a 
discussion on the learning-training algorithm has 
been presented. Thereafter a summary reference 
on the applications software design by making 

use of a simplified flow diagram has been 
presented. The details the performance of this 
ANN computing structure have been discussed 
along with results on two well-known example 
system models, one for the SISO and another for 
MIMO cases of unknown systems..  
 
In this research we have worked with the typical 
test signal time sequence, given by Eq. (22) to 
emulate nonlinear system models. It should be 
noted that dynamic neural networks are the 
closest to memory neural networks. Advantage 
of the memory neural networks in comparison to 
those with dynamics is the fact that knowledge of 
the system order is not needed a-priori for the 
system identification.  
 
The results achieved in emulation identification 
of two examples of notoriously nonlinear system 
models have demonstrated a high-quality 
performance. The is no noticeable discrepancy 
between the computed responses of the systems 
models and of the trained memory ANN 
computing structure. Memory ANN structures 
can be successfully trained to learn and emulate 
nonlinear input-output system mappings of 
arbitrary complexity  
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