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ABSTRACT
In this paper, the performance of turbo coded signals are investigated for different frame numbers
and encoder structures over Rician fading channels. The numerical results demonstrate the error
performance degradation due to fading channel frame numbers and the state of the encoder.
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OZET

Bu makal e de, farkly cerceve uzunluklary, kodlayycy 6zelliklerine gore dediptirilerek turbo kodlanmyp
iparetlerin Rician ortamlarda baparymy incelenmiptir. Benzetim sonuglary, sz konusu Rician ortamda

farkly parametreler icin dederlendirilmiptir.

Anahtar Kelimeler: Turbo kodlama, Rician Sonimleme Kanaly

I.INTRODUCTION

Turbo codes are a new class of error correction
codes that were introduced a long with a
practical decoding algorithm in [1]. The
importance of turbo codes is that they enable
reliable communications with power efficiencies
close to the theoretical limit predicted by Claude
Shannon [2]. Since their introduction, turbo
codes have been proposed for low-power
applications such as deep-space and satellite

communications, as well as for interference
limited applications such as third generation
cellular and personal communication services.

The main principle in the turbo coding scheme is
to use two codes in parallel. This means that the
information sequence is encoded twice, the
second time after a scrambling of the information
bits. The component codes are chosen as small
convolutional codes in the recursive systematic
form. With this encoding we are able to decode
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the two encoded streams with an iterative
process using two soft-in soft-out decoders, one
corresponding to each of the encoders. For the
simulations shown in this paper we have used a
MAP decoder. The decoders exchange
infformation as a priori probabilities for the
information bits.

I1.SYSTEM MODEL

The block diagram of the chennd modd thet we use
in this paper is shown in FHg. 1.The channd output
is

AWGN
X Uk
—>®—>$—,
a
fading
Figure 1. Channel Model
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Figure 2. Turbo Encoder for 1+ D"/ PRFC Model

In the encoder sructures we use Recursve Sydematic
Convolutiond (RSC) encoders as Turbo  encoders
Condde a hdf+ae RSC encoder with M memory
dze If the di is an input & time k the output X is
egud to
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Encoder
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which festback polynomd g%=7 ad fesdforward
polynomd  g®=5 thus ¢[111:101] is illusrated in Fig.
3andithesagenerator metrix
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[11. TURBO DECODING

The problem of etimding the date sequence of a
Markov process obsarved through noise has two wdl
knovn trdlisbesed solutions- Vitahi Algaithm (VA)
[8 ad the symbd-by-symbd maximum a pogeaion
(MAP) dgaitm. The key dffaence beween
dgorithms is that the dates edimated by the VA must
foom a connected path through the trdlis while the
dates esimated by the MAP dgorithm nead not to be
connected. When agpplied to digitd transmission
gdans the VA minmizes the frame arar rae
(FER), while the MAP dgoitm minmizes the hit
arorrae(BER)

sysianc Y@

data >® '

LC(O)T

Figure 4. Turbo Decoder

The problem of decoding turbo codes involves
the joint estimation of two Markov processes,
one for each constituent code. While in theory it
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is possible to model a turbo code as a single
Markov process, such a representation is
extremely complex and does not lend itself to
computationally tractable decoding algorithms.
Turbo decoding proceeds instead by first
independently estimating the individual Markov
processes. Because the two Markov processes
are defined by the same set of data, the estimates
can be refined by sharing information between
the two decoders in an iterative fashion. More
specifically, the output of one decoder can be
used as a priori information by the other decoder
(Fig. 4). If the outputs of the individual decoders
are in the form of hard-bit decisions, then thereis

litle advantage to sharing information.
However, if soft-bit decisions are produced by
the individual decoders, considerable

performance gains can be achieved by executing
multiple iterations of decoding [6].

A. Soft-Input, Soft Output (SISO) Decoding
IntheMAPdecoder, theoutput isgiven by
Plm, =1y] @)
Plm, =dy
mis message hit and v is recaved ssguence There are
three inputs for  Soft-lnput Soft-Output (SS0)
decoder. Y is the systematic obsarvation, & is the
paity infformetion and z is the prioi informaion
which is deived from the other decoder's output. The
logHikelihood & the output of a SISO decoder usng
the chennd modd can be factored into three terms as
o (s) (s)
Ly - 4a cos( )&, Y + 2z +l, Y

No

whae the tam |y is cdled the extrindc infformation, ay
is fading amplitude, E; is the energy per code symbal
and Ny is the noise powe. The prior information a
the input of one decoder is found by subtracting two
vaues from its output to prevent "postive feadback
problem” as shown in FHg. 4 of M.C. Vdenti dudy [6].
Hra of dl wemakethefallowing natation;

L,=In

L = 4a, cos@y ) E, ®
No

whichiscdled therdighility of thechannd, and

Ik = Lk - L(cS)yﬁS) -4 C)

The MAP dgaithm atempts to find the mogt likdy

individud datesgiveny

8 :argi max P[sK|y]g 19
S

Before findng the a poderiori probebilities (APP) for
the messsge bits the MAP dgoithm finds the
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probebllity of  pfs, ® SMIY] o exch vdid dae
trangtion giventhenoisy channd obsarvationy.

Pls. ® 5..jy] =2l Cf)yswﬂ w

B. Log-MAP Algorithm

The maximum a podgioi (MAP) dgoitm can
cdauate the a pogteion probability of each hit with a
pafed pafomence However thee ae known
problems as the number of cdoulaion depending on
the menory dates  These problems can be solved by
pafoming the etire dgoitm in the log doman
[9[10]. To illusrde how pafomed in the log
domain, condder theJacobian Logarithm
In(e*+e’) = max(x,y) + In(1 + exp{-ly-x})
= max(xy) + fo(peyl)
this equation describes the logMAP dgarithm with a
correctionfunctionf,,
Leg(s, ® s,.,) denotedthendurd logarithmof

ds ®s.)

(12)

(s, ® s,)=Ing(s, ® s,,) 6K)

=InP[m,] +In P[yk|ka ()
InP[m,]=zm, - In1+¢€*) »
adl (14) beomes

_ 1
G(s ® 8.0 =InPlm]- ZIn(eN, /E,)
n-1
=Y Y [y.ﬁq) - (- abg(a@x@ cosg®) +1)]2

No g=0
=1 (s, ® s.,) (16
Now let (s, ) bethenaturd logaithmofa (s, ) ,
a(s) =Ina(s,) ()
ing & eolats.) a5 e sy @
| Scad A
= max* [(s..1) +3(5.: ® )] @

wheareAisthesst of satess that areconnected tothe
daes.
Now let (s, ) bethenaturd logaithmof (s, ) ,

B(s)=Inb(s) @

=i § eplb(s.)+a(s ® sm)]g @
I Sl B

= max* [B(s.) +9(5 @ S0 @

whee B is the st of dates s+ thet are connected to
dae s , ad we can cdadae the Log Likdihood
Ratio (LLR) by usng
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& epla(s) +3(s ® s.,)+b(s0)]
S

L, = @

& er(5) 4305, ® 5.0+ (5.0)]
So
where §{s ®s,:m =} is the set of dl tate transitions

asncaed with a mesge ht of 1, ad
S9s®s,,:m=0 is the st of dl sae tarsitions

asndatedwithamessagehit of 0.

At the lag iteration we meke the herd dedson by

using the second decoder output L @,

.11 ifL®so

o= Tt @
10 if L <0

V. PERFORMANCE OF

TURBO CODED SIGNALS

In this section, the perfformance of turbo coded Sgnds
ae evduged for diffeet frame numbes ad
memory conddldions over Ridan fading chennds(
Fgures5-14).

In our exanpe 12 ad 13 rae turbo encoders with
dffeet memoy coffiguraions ae  investigaed.
Hae we uxe the gagaor marix g111:101],
1011 ad gMIT10001], a random
interleaver is usd and the frame dze N=500. It is
dear that for a condant iteration nunber, & K
incesses, pafomance improves for the same S\R
vadues And d=0 the frame number is the important
effect for improving the peformence as down in
Foue7and8.
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Figure 5. Bit error performance for K=10,
0=[111:101] and N=500
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Figure 6. Bit error performance for K=10,
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Figure 10. Bit error performance for r=1/2,
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Figure 11. Bit error performance for r=1/2,
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Figure 12. Bit error performance for r=1/2
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Figure 13. Bit error performance for r=1/2
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V. CONCLUS ON

In this paper we show how encoder structures encoder
rae and frame number can be dterad the parformance
while Riden channd is under condderation. As an
exanple the paformance of turbo coded dgnds ae
smuaed ove Ridan chand with dffeet fading
parander, iteration number and datablodk SzeN.
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