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ABSTRACT 
 

In this work, we present a discrete fractional Gabor representation on a general, non-rectangular 
time-frequency lattice. The traditional Gabor expansion represents a signal in terms of time and 
frequency shifted basis functions, called Gabor logons. This constant-bandwidth analysis uses a fixed, 
and rectangular time-frequency plane tiling. Many of the practical signals require a more flexible, 
non-rectangular time-frequency lattice for a compact representation. The proposed fractional Gabor 
method uses a set of basis functions that are related to the fractional Fourier basis and generate a 
non-rectangular tiling. Simulation results are presented to illustrate the performance of our method. 
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1. INTRODUCTION  
Time-frequency (TF) analysis provides a 
characterization of signals in terms of joint time 
and frequency content [1]. One of the 
fundamental issues in the TF analysis is 
obtaining the distribution of signal energy over 
joint TF plane with a delta function 
concentration [1]. The discrete Gabor expansion 
is a TF signal decomposition which represents a 
signal in terms of time and frequency translated  
basis functions called TF atoms [2],[3]. Gabor 
basis functions )(, ng km are obtained by shifting 

and modulating with a sinusoid a single window 
function )(ng , which results in a fixed and 

rectangular TF plane tiling. However, if the 
signal to be represented is not modeled well by 
this constant-bandwidth analysis, its Gabor 
representation displays poor TF localization 
[4],[5],[6]. Many of the practical signals such as 
speech,  music, biological, and seismic signals 
have time-varying frequency nature that is not 
appropriate for sinusoidal analysis [4],[6]. Thus  
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the traditional Gabor expansion of such signals 
will require large number of coefficients yielding 
a poor TF localization. The compactness of the 
Gabor representation is improved if the basis 
functions match the time-varying frequency 
behavior of the signal [6],[7],[8]. Here we 
present a new, fractional Gabor expansion that 
uses a more flexible, non-rectangular TF lattice. 
The basis functions of the proposed expansion 
are related to the fractional Fourier basis. 
 
2. THE DISCRETE GABOR 
EXPANSION 
The traditional Gabor expansion [2],[3] 
represents a signal in terms of time and 
frequency shifted basis functions, and has been 
used in various applications to analyze the time-
varying frequency content of a signal [9]. Basis 
functions of the Gabor representation are 
obtained by translating and modulating with 
sinusoids a single window function. The discrete 
Gabor expansion of a finite-support signal 

10),( −≤≤ Nnnx  is given by [3] 
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and NkLk /2 'πω = . The Gabor expansion 
parameters M,K,L, and L’ are positive integers 
constrained by ML=KL'=N where M and K are 
the number of analysis samples in time and 
frequency, respectively, and L and L’ are the 
time and frequency steps, respectively. 
Existence, uniqueness and numerical stability of 
the representation depend on the choice of 
parameters L and L'. For numerically stable 
representations, L and L' must satisfy L L' �N, or 
equivalently that L � K . The case where L=K, is 
called the critical sampling, and the case L < K is 
called the over-sampling. The synthesis window 

)(~ ng is a periodic extension (by N) of )(ng  
which is normalized to unit energy for 
definiteness [3]. 
 
In general, the set of time and frequency shifted 
window functions, i.e., Gabor logons, { )(~

, ng km } 
forms a non--orthogonal basis for the square--
summable sequences space )(2 ℜl . Hence the 
calculation of the Gabor coefficients is not a 

simple task since projection by the usual inner 
product cannot be used. One of the methods [3], 
uses an auxiliary function )(nγ called the 
biorthogonal window or dual function of. )(ng  
Then the Gabor coefficients { kmc , } can be 
evaluated by 
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where the analysis functions are 
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where again )(~ nγ  is a periodic version of the 
dual window )(nγ . Completeness condition of 
the basis set is obtained by substituting (3) into 
(1) to get that 
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where (.)δ  denotes the Dirac delta function. The 
above completeness relation yields equivalent 
but simpler bi- orthogonality condition between 
the analysis and synthesis basis sets via the 
discrete Poisson-sum formula [3]: 
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for 0 � m � L'-1 ,  0 � k � L-1. The analysis 
window )(nγ  is obtained by solving the 
equation system of the above biorthogonality 
condition. 
 
Gabor analysis basis { )(~

, nkmγ } with a fixed 
window and sinusoidal modulation tiles the time-
-frequency plane in a rectangular fashion causing 
a constant bandwidth analysis. Constant 
bandwidth methods, such as spectrogram [1] and 
the Gabor expansion provide signal 
representations with poor time-frequency 
resolution [4]. Recently, representations on a 
non-rectangular TF grid has attracted a 
considerable attention [6],[10]. A non--
rectangular lattice is more appropriate for the TF 
analysis of signals with time-varying frequency 
content. Thus the motivation for a fractional 
Gabor analysis. 
 
3. A FRACTIONAL GABOR 
EXPANSION 
We define a discrete fractional Gabor expansion 
for 10),( −≤≤ Nnnx , as follows:  



A Discrete Fractional Gabor Expansion for Time--Frequency Signal Analysis 
 

Yalçýn Çekiç, Aydýn Akan and Luis F. Chaparro 

485 

∑ ∑
−

=

−

=
=

1

0

1

0
,,,, )(~)(

M

m

K

k
kmkm ngcnx αα   (7) 

where cm,k,á are the fractional Gabor coefficients, 
á is the order of the fraction, and the basis 
functions are 

)()(~)(~
,,, nWmLngng kkm αα −=  

Here )(~ ng  is a periodic version of a unit energy 
Gabor window g(n) and )(, nW kα  is the fractional 
kernel, 
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where Kkk /2πω = . The kernel above is similar 
to the Fractional Fourier Series basis functions 
[11]. The expansion in  (7) reduces to the 
traditional Gabor for á=ð/2. The parameters M, 
K, L, and L', are same as in the traditional Gabor 
expansion. In our derivations, we always 
consider the general, oversampled case, i.e., L< 
K. The Gabor coefficients can be evaluated as 
before by 
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where the analysis functions are 
)()(~)(~

,,, nWmLnn kkm αα γγ −=  

and )(~ nγ  is periodic version of a )(nγ that is 
solved from a fractional biorthogonality 
condition between g(n) and )(nγ  
The completeness condition for the fractional 
Gabor basis, is obtained by substituting (8) in 
(7), 
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Then we obtain that the windows must satisfy the 
following completeness relation: 
. 

∑ ∑
−

=

−

=









−−
−−

1

0

1

0

cot)(
2
1 22

)(*~)(~M

m

K

k

nj

emLmLng
α

γ
l

l

)()( l−=× − ne lnj k δω    (9) 
 
 
 

 
 
 

Fig.1 A Gauss synthesis window (top figure), and its 
biorthogonal windows in critical (middle) and oversampling 
(bottom) cases.  
 
The fractional biorthogonality condition that we 
need to solve the analysis or dual function )(nγ  
is obtained from the above completeness relation 
using discrete Poisson sum formula as 
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0 � m � L’-1, 0 �  k � L-1 
Completeness and biorthogonality conditions 
given in equations (9) and  (10) reduce to the 
conditions in the traditional case [3] for á=ð/2. 
This indicates that the above fractional expansion 
is a generalization of the discrete Gabor 
expansion. In Fig. 1, we show a Gauss window 
g(n), n=0,1,… 127 on the top figure, and its 
biorthogonal )(nγ for two different set of 
sampling parameters obtained by solving 
equation (10) with á=ð/4. The window in the 
middle is obtained using L=16, K=16 that is the 
critical sampling and the window at the bottom is 
calculated with L=8, K=64 as an example of the 
oversampling. 
 
4. SIMULATION RESULTS  
We consider a signal composed of two linear 
chirps. Using our fractional Gabor method, we 
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analyzed the signal with two different fractional 
orders. Figs. 2 and 3 show the magnitude squared 
fractional Gabor coefficients, |Cm,k,á|2, of this 
two-chirp signal with á=ð/4 and á=3ð/8 
respectively. Notice that, the component that is 
matched by the analysis angle becomes a 
narrow-band signal and represented with higher 
resolution. 
 
5. CONCLUSIONS  
In this paper, we present a discrete fractional 
Gabor expansion on a flexible,  non--rectangular 
TF plane for the analysis of non--stationary 
signals. We give the completeness and 
biorthogonality conditions of this new expansion.  
Simulations show that the fractional expansion 
gives high resolution representations. 
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Fig.2. Gabor coefficients of the two-chirp signal using fractional order  á=ð/4 
 

 
Fig.3. Gabor coefficients using  á=3ð/8 
 
 
 
 


