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ABSTRACT

In this work, we present a discrete fractional Gabor representation on a general, non-rectangular
time-frequency lattice. The traditional Gabor expansion represents a signal in terms of time and
frequency shifted basis functions, called Gabor logons. This constant-bandwidth analysis uses a fixed,
and rectangular time-frequency plane tiling. Many of the practical signals require a more flexible,
non-rectangular time-frequency lattice for a compact representation. The proposed fractional Gabor
method uses a set of basis functions that are related to the fractional Fourier basis and generate a
non-rectangular tiling. Simulation results are presented to illustrate the performance of our method.
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1. INTRODUCTION rectangular TF plane tiling. However, if the
Time-frequency (TF) analysis provides a Signal to be represented is not modeled well by
characterization of signals in terms of joint time  this constant-bandwidth analysis, its Gabor
and frequency content [1]. One of the representation displays poor TF localization
fundamental issues in the TF anaysis is [4L.[5].[6]. Many of the practical signals such as
obtaining the distribution of signal energy over ~ Speech, music, biological, and seismic signals
joint TF plane with a delta function have time-varying frequency nature that is not
concentration [1]. The discrete Gabor expansion ~ appropriate for sinusoidal analysis[4],[6]. Thus
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the traditional Gabor expansion of such signals
will require large number of coefficients yielding
a poor TF localization. The compactness of the
Gabor representation is improved if the basis
functions match the time-varying frequency
behavior of the signal [6],[7],[8]. Here we
present a new, fractional Gabor expansion that
uses a more flexible, non-rectangular TF lattice.
The basis functions of the proposed expansion
arerelated to the fractional Fourier basis.

2. THE DISCRETE GABOR
EXPANSION

The traditiona Gabor expansion [2],[3]
represents a signa in terms of time and
frequency shifted basis functions, and has been
used in various applications to analyze the time-
varying frequency content of a signal [9]. Basis
functions of the Gabor representation are
obtained by translating and modulating with
sinusoids a single window function. The discrete
Gabor expansion of a finite-support signal
x(n),0En£ N -1 isgivenby [3]

Mo»l Ko-l -
X(n) = a a. Cm,kgm,k (n) (1)

m=0 k=0
where the basis function
Ik (M =9g(n- mL)e

jwgn

@

and w, =2pkL /N . The Gabor expansion
parameters M,K,L, and L’ are positive integers
constrained by ML=KL'=N where M and K are
the number of analysis samples in time and
frequency, respectively, and L and L' are the
time and frequency steps, respectively.
Bxistence, uniqueness and numerical stability of
the representation depend on the choice of
parameters L and L. For numericaly stable
representations, L and L' must satisfy L L' N, or
equivalently that L O K. The case where L=K, is
called the critical sampling, and thecase L< K is
called the over-sampling. The synthesis window
g(n)is a periodic extension (by N) of g(n)
which is normalized to unit energy for
definiteness[3].

In general, the set of time and frequency shifted
window functions, i.e., Gabor logons, { g,,,(n) }

forms a non--orthogonal basis for the square--

summable sequences space ¢2(A). Hence the
calculation of the Gabor coefficients is not a
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simple task since projection by the usual inner
product cannot be used. One of the methods [3],

uses an auxiliary function g(n)caled the
biorthogonal window or dual function of. g(n)
Then the Gabor coefficients {c,,} can be
evaluated by

N-1

Cok = @ X(MG* i (N) ©)
n=0

where the analysis functions are

Gni(N)=g(n- mL)e™™" 4

where again g(n) is a periodic version of the
dual window g(n). Completeness condition of

the basis set is obtained by substituting (3) into
(2) to get that

& & G (NG* i () =d(n- 1) ®

m=0k=0

where d(.) denotesthe Dirac deltafunction. The
above completeness relation yields equivalent
but simpler bi- orthogonality condition between
the analysis and synthesis basis sets via the

discrete Poisson-sum formula[3]:
2p

Nl - L
agn+nKje g*(n) =?dmdk ©)
n=0

forOOmOL-1, 00k0O L-1. Theanalysis
window g(n) isobtained by solving the
equation system of the above biorthogonality
condition.

Gabor analysis basis { g, (n)} with a fixed

window and sinusoidal modulation tiles the time-
-frequency plane in arectangular fashion causing
a constant bandwidth analysis. Constant
bandwidth methods, such as spectrogram [1] and
the  Gabor expansion provide signa
representations  with  poor time-frequency
resolution [4]. Recently, representations on a
non-rectangular TF grid has aftracted a
considerable attention [6],[10]. A  non--
rectangular lattice is more appropriate for the TF
analysis of signals with time-varying frequency
content. Thus the motivation for a fractional
Gabor analysis.

3. AFRACTIONAL GABOR
EXPANSION

We define a discrete fractional Gabor expansion
for x(n),0EnN£ N -1, asfollows:
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M-1K-1

X(N) = & & Cmia Imka (N @)

m=0k=0
where cmi4 are the fractional Gabor coefficients,
a is the order of the fraction, and the basis
functions are
gm,ka (n) = g(n- mL)Wa,k(n)
Here g(n) is aperiodic version of a unit energy
Gabor window g(n) and W, , (n) isthefractional

kernd,

Je _(n +ny sna) )cotawn
W, (n)=e*?
where w, = 2pk/ K . The kernel above is similar

to the Fractional Fourier Series basis functions
[11]. The expansion in (7) reduces to the
traditional Gabor for 4=0/2. The parameters M,
K, L, and L', are same as in the traditional Gabor
expansion. In our derivations, we aways
consider the general, oversampled casg, i.e.,, L<
K. The Gabor coefficients can be evaluated as
before by

a X(n)g mk,a (n) (8)

mka

where the analysisfunctions are

Gnka (M) =g(n- ML)W, , (n)

and g(n) is periodic version of a g(n) that is
solved from a fractional biorthogonality
condition between g(n) and g(n)

The completeness condition for the fractional
Gabor basis, is obtained by substituting (8) in
@),

X(n) = & & TR X()F* (£~ MW*, , (f)—

m=0k=0@ (=0
“g(n- mL)W, (n)

-1K-1

2 G(n- mL)g* (- mL)

0k=0
2

o

N-1
_ o
=a

1=0

3
il

N/LH

,S, - (2 )cota +wy (n- é)u
ot

Then we obtain that the windows must satisfy the
following conpleteness relation:

Mo 1K° 1_ - -—(n -/ )cotag
aagn-m)g*(- mL)e !
m=0k=0

“ e =d(n- 1) ©)
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10.1 A Gauss synthesis window (top figure), and its
biorthogonal windowsin critical (middle) and oversampling
(bottom) cases.

The fractional biorthogonality condition that we
need to solve the analysis or dual function g(n)
is obtained from the above completeness relation
usi ng discrete Poisson sum formula as

i —(n mK) _
a g*(n+nmK)e I

n=0

2,2
j(an+m K ) cota

L
=—d
i ndk

0OOmOL-1, 00 kOL1

Completeness and biorthogonality conditions
given in equations (9) and (10) reduce to the
conditions in the traditional case [3] for a=4/2.
Thisindicates that the above fractional expansion
is a generdization of the discrete Gabor
expansion. In Fig. 1, we show a Gauss window
g(n), n=0,1,... 127 on the top figure, and its
biorthogonal g(n) for two different set of

sampling parameters obtained by solving
equation (10) with 4=0/4. The window in the
middle is obtained using L=16, K=16 that is the
critical sampling and the window at the bottom is
calculated with L=8, K=64 as an example of the
oversampling.

4. SSIMULATION RESULTS

We consider a signal composed of two linear
chirps. Using our fractional Gabor method, we
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analyzed the signal with two different fractional
orders. Figs. 2 and 3 show the magnitude squared
fractional Gabor coefficients, |Cm’kyéI2, of this
two-chirp signa with 4=0/4 and a=30/8
respectively. Notice that, the component that is
matched by the analysis angle becomes a
narrow-band signal and represented with higher
resolution.

5. CONCLUSIONS

In this paper, we present a discrete fractional
Gabor expansion on a flexible, non--rectangular
TF plane for the analysis of non--stationary
signals. We give the completeness and
biorthogonality conditions of this new expansion.
Simulations show that the fractional expansion
gives high resolution representations.
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Fig.2. Gabor coefficients of the two-chirp signal using fractional order a=09/4
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