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ABSTRACT 
 

The most of researchers dealing with genetic algorithms apply variation on the genetic operators. 
Some of them propose new genetic algotihm types. However, none of them deals with generating 
population of good quality, initially. In this paper, we propose a method for generating initial 
population and the method includes all types of chromosome encoding. The goodness of generated 
population by proposed method is also illustrated by applying this population and random initial 
population to multi-modal functions such as Griewank, Michalewicz and Rastrigin. For the sake of 
simplicity, all functions are selected as functions of two variables. 
 
 
Keywords: Genetic Algorithms, multi-modal functions 

 
 

1. INTRODUCTION  
Genetic Algorithms (GAs) have been proven 
useful in solving NP-Complete and NP-Hard 
problems. GA is an evaluation method to 
generate random solutions for a problem and 
then applying genetic operators to random 
solutions to force them to be better solutions at 
each generation. So, sufficiently good 
solution/solutions can be obtained eventually. 
 
In the conventional genetic algorithm model, a 
population of strings (chromosomes, individuals) 
codifying the possible solutions for the problem 
at hand passes through a cyclic process in which 
new candidates are constantly generated and 

evaluated according to some adequacy measure 
known as fitness. Parents are charged by 
computational operators, very much resembling 
natural evolutive reproduction, selection and 
mutation being progressively replaced by more 
adapted newcomers. The population fitness tends 
to converge on the course of the process and best 
or sub-best solutions are obtained at final stages. 
 
The GA is a type of structured random search 
algorithm so-called by most of researchers who 
used GAs that mimics the process of biological 
evolution. The algorithm begins with a collection 
of parameter estimates (called a chromosome or 
individual) and each is evaluated for its fitness in 
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solving the given minimization or maximization 
task. At each generation (algorithm time-step), 
the most fit chromosomes are allowed to mate 
and bear offspring. The biological analogy 
suggests that such a procedure will be likely to 
lead to workable solution for complex non-linear 
problems. 
 
A GA traditionally contains three types of 
operators: selection, crossover and mutation. A 
simple GA executes as follows: 
 

a) Start with a randomly generated 
population of n k-bit chromosomes. 
These are the candidate solutions to 
the problem. 

b) Calculate the fitness F(x) of each 
chromosome x in the population. 

c) Repeat the following steps until n 
offspring have been created. 

i. Select a pair of chromosome 
playing the role as parents. The 
probability of an individual been 
selected is usually a function of 
fitness. The fitter the individual 
is, the more likely it will be 
selected to reproduce. 

ii. With a probability Pc (the 
crossover rate), crossover the pair 
at a randomly chosen point to 
form two offspring. If no 
crossover takes place, form two 
offspring that are exact copies of 
their respective parents. 

iii. Mutate the some worse 
individuals in the population at 
each locus with probability Pm 
(the mutation rate) and place the 
resulting chromosomes in the 
new population. 

d) Replace the current population with 
the new population. 

e) Go to step b. 
 
Random search algorithms have achieved 
increasing popularity as researchers recognise 
the shortcomings of calculus-based and 
enumerative schemes. Random walks and 
random schemes that search and save the best 
must be discounted because of efficiency 
requirements. Random searches, in the long run, 
can be expected to do no better than enumerative 
schemes. Random search methods are distinct 
from randomised  techniques. A GA is an 
example of a search procedure that uses random 

choice as a tool to guide a highly exploitative 
search through a coding of a parameter space.  
 
Many search techniques require auxiliary 
information in order to work properly. GAs have 
no need for all this auxiliary information; they 
are blind. They only require payoff values 
associated with individual strings in performing 
an effective search for better and better 
structures. This characteristic makes a GA a 
more canonical method than many search 
schemes. 
 
Many researchers have tried to improve the GAs 
performance by handling some modifications on 
the genetic operators and analyzing 
chromosomes space properties: dealing with 
genotype-phenotype mapping [1, 2], analyzing 
schema theory at aim of catching some idea for 
improving GAs performance [3, 19]. Some 
researchers investigated the effects of GAs 
operators and tried to modify GAs operators [4-
8, 15-18, 21]. Some people defined the new 
version of GAs [9-14, 20-22]. In noisy 
environment, fitness of an individual cannot be 
evaluated precisely, but its fitness has to be 
estimated [16]. 
 
Most of researchers used GAs applied 
modifications on the GA operators to improve 
the performance of GAs. However, there are 
some problems related to GAs such as to be 
trapped in local solution/solutions or diverging 
from best or sub-best solution. These are 
important points for improving the performance 
of GAs.  
 
In this paper, we have proposed a new method 
for generating initial population [12,13]. This 
method uses divide-and-conquer to generate an 
initial population of good quality. By this 
method, chromosomes are distributed over 
chromosomes space, so, improving population 
for catching solution takes less time than random 
initial population. Because of chromosomes 
distributed over space, to be trapped in local 
solution is impossible. Consequently, best or 
sub-best solution can be obtained in this way. 
 
This paper is organized as follows. Section 2 
describes the method of generating homogeneous 
population and Section 3 illustrates the results of 
this method to some multi-modal functions and 
comparison of this method to random initial 
method. Finally, the paper is concluded. 
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2. UNIFORM POPULATION 
METHOD (UP) 
UP is a method to generate a population of good 
quality in order to overcome some 
aforementioned problems of genetic search. This 
method works as follows. Initially, a dividing 
factor, let r denote dividing factor, is determined 
by user or program, then a chromosome is 
randomly generated and it is divided into r parts. 
There are 2r ways to take complement of one part 
or more than one part. So, it is possible to get 2r-1 
chromosomes from one randomly generated 
chromosome. UP is described for values of r=1, 2,  
and 3 in the following parts. 
 
When r=1: 
A chromosome is generated randomly and if the 
dividing factor is 1, then the inversion of 
randomly generated chromosome will be another 
individual in the initial population. This case is 
shown in Fig. 1(a). In this case, if there are n 
randomly generated chromosomes, then the size 
of initial population will be 2n. 
 

 
 

010 CCA =

011 CCA =  
 

(a) 

011 CCA =

012 CCA =

010 CCA =

013 CCA =  
(b) 

Fig. 1. Generating individuals from randomly 
generated individuals in case of r=1 and r=2. 
 
When r=2: 
If the dividing factor is 2, then, initially, a 
chromosome is randomly generated and then this 
chromosome is divided into two parts. The 
generated chromosome is an  individual in 
population and its inversion is also another 
individual in initial population. After that, 
combining the inversion of rightmost part, and 
leftmost part without inversion will be an 
individual in initial population and combining 

inversion of leftmost part, and rightmost part 
without inversion will be another individual in 
population. So, there are three new generated 
individuals from randomly generated individual.  
If each randomly generated chromosome is 
divided into two parts and there are n randomly 
generated chromosomes, then there will be 4n 
individuals in the initial population, because there 
are three individual generated from each 
randomly generated chromosome. This case is 
shown in Fig. 1(b). 
 
When r=3 
If randomly generated chromosome is C0 and it 
will be divided into three parts then deriving other 
individual from this chromosome is handled in 
same manner as starting from zero in binary 
coding and increasing by one in each step and this 
case is shown in Fig. 2. For each individual, 
derived individuals number is 7. So, if randomly 
generated chromosomes number is n, then the size 
of initial population will be 8n. 
 
 

0120 CCCA =

0121 CCCA =

0122 CCCA =

0123 CCCA =

0124 CCCA =

0125 CCCA =

0126 CCCA =

0127 CCCA =
 

 
Fig. 2. Dividing initially random generated 
chromosome into three parts and deriving other 
individuals from this chromosome. 
 
When r=General Case 
If each randomly generated chromosome is 
divided into r parts, then the number of derived 
chromosomes from randomly generated 
chromosome is 2r-1. So, the number of 
chromosomes in the initial population will be (the 
number of randomly generated chromosomes is n) 
 

(2r-1)n+n=n2r (1) 
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Hence, UP distributes the initial population 
individuals over hyperspace in uniform manner. 
Up to this point, we mentioned about binary or 
integer encoding UP method. At this point we will 
briefly describe the other types of encoding types 
in UP. 
 
Floating-Point Based Encoding. In this 
encoding method, each gene is represented by a 
floating-point number. Let R be a chromosome 
and R=(r0r1r2...rn-1) is a chromosome of length n 
and for 0≤k≤n-1. rk is a floating point number, so, 
it consists of two parts: mantissa and  exponent. 
The mantissa may be a fraction or an integer. The 
floating-point numbers used in this method are 
normalized. Let rk=rmnrm(n-1)...rm1.resre(s-1)...re1 and  
 

1-n10 r...rrR =  
                      

)r9)...(r9).(r9)...(r9(r 1ees1mmnk −−−−=  (2) 
 
Each floating-point number in the chromosome is 
regarded as similar to bit in the binary encoding. 
Application of UP to integer-based encoding is 
same as floating-point type encoding. Another 
way for taking complement of a floating-point 
number is to subtract variable value from its 
upper bound. 
 
String-Based Encoding. In this encoding 
method, each chromosome is represented by a 
sequence of alphabetic characters. Let R be a 
chromosome  and R=cncn-1...c1. So, the 
complement of  R is  
 

11nn cccR L−=  and for 1≤k≤n 
                            

[ ])A(ord)c(ord)Z(ord)c(ord kk −−=   (3) 
 
where function ord(.) returns the ASSCI value of 
parameter. Each character in the string is handled 
as similar to bit in the binary encoding. 
 
So, UP method can be applied to each encoding 
types and the most important two problems of 
GAs can be dealt with. The key point is that 
dealing with GA problems will result in solution. 
 
 
 
 

 
3. EXPERIMENTAL RESULTS 
In order to illustrate the UP and random initial 
population method (RIP), we will use three 
multi-modal functions: Griewank, Michalewicz 
and Rastrigin Functions. Fig. 3, Fig. 4 and Fig. 5 
denote Griewank, Michalewicz and Rastrigin 
Functions, respectively. The aim of selecting 
these functions is that these functions have more 
than one extreme point. 
 
The Griewank function is  

     

 
(a) 

 
(b) 

Fig. 3. Griewank Function. 
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where n is the number of variables, and in this 
study, we used two-variable Griewank function 
and this function is depicted below. 
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and x1,x2∈[-5.0, 6.0]. 
 
The Michalewicz function is defined by equation 
(5) 
                          

∑
=





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
π

=
n

1i

2
i20

in1

ix
sin)xsin()x,,x(f L     (5) 

 
 

 
(a) 

 
(b) 

 
Fig. 4. Michalewicz Function. 

where n is the number of variables used in 
function and Michalewicz function used in this 
study is as follows. 
 









π

+









π

=

2
220

2

2
120

121

x2sin)xsin(

x
sin)xsin()x,x(f

 

 
and x1,x2∈[-3.0, 4.0], and the graph of this 
function is shown in Fig. 4. 
 
The Rastrigin function is defined by 
equation (6). 
                        

( )∑
=

π−+=
n

1i
i

2
in1 )x2cos(10xn10)x,,x(f L (6) 

 
(a) 

 
(b) 

Fig. 5. Rastrigin Function. 
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where n is the number of variables. The Rastrigin 
function used in this study is as follows. 
 

( )
( ))x2cos(10x

)x2cos(10x20)x,x(f

2
2
2

1
2
121

π−+

π−+=
 

and x1, x2∈[-5.0, 6.0], and the graph of this 
function is shown in Fig. 5. 
 
With respect to experimental results, UP and RIP 
can be compared in two ways: Based on the 
number of iterations and the obtained  
 

 
(a) 

 
(b) 

 
Fig. 6. (a) shows the values of function for both 
methods and (b) shows the number of iterations of 
both methods. Thick line (black) is beyond to UP 
and dashed line (green) is beyond to RIP. These 
figures were obtained after applying 50 times both 
methods to Griewank function. 
 
 
 

function results. We tried to obtained global 
minimum points of each function under the range 
of variables. Let C be a chromosome and then 
each chromosome represents variables of 
functions as follows. 
 
C=A2m|A2e|A1m|A1e 
 
where A2m is mantissa of x2, A2e is exponentiation 
of x2, A1m is mantissa of x1, A1e is exponentiation 
of x1, and | denotes concatenation of strings. 
 
Fig. 6 shows the graphs of number of iterations 
and function values of both methods for Griewank 
function.  

 
(a) 

 
(b) 

Fig. 7. (a) shows the function values of both 
methods and (b) shows the number of iterations of 
both methods. Thick line is beyond to UP and 
dashed line is beyond to RIP. These figures were 
obtained after applying 50 times both methods to 
Michalewicz function. 
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While applying both methods to Griewank 
function, selection type is radiused selection*  
crossover type is uniform, mutation type is 
random, the population size is 96, and r=5 for 
UP1. UP takes less number of iterations than RIP 
and it also found better solution than RIP. 
Without changing any genetic operators, both 
methods were applied to Michalewicz and 
Rastrigin functions. UP is again better than RIP 
with respect to optimal solution and number of 
iterations. The consequences are shown in Fig. 7 
and Fig. 8, respectively. With respect to number 
of iterations, UP is 7.5846% better than RIP for 
Griewank function, UP is 6.6332% better than 
RIP for Michalewicz function, and UP is also 
8.0721% better than RIP for Rastrigin function. 
 
Theorem 1: Generating initial population by UP 
will result in a population of good quality. 
 
Proof: In order to proving this theorem, let us 
investigate the expected value of initial 
population P. If r=2 then, we can generate 3 extra 
chromosomes from a randomly generated 
chromosome X1=A1A2, and without losing 
generalization, let these chromosomes be 

X1=A1A2, X2= 21AA , X3= 21AA ,  X4= 21AA  
and |X1|=n. Then, the value of largest 
chromosome in this population is at most 2n. So, 
 
 X1+X4=2n and X2+X3=2n. 
 
In the case of r=4, there are 15 extra 
chromosomes generated from randomly generated 
chromosome X1=A1A2A3A4. Then  
 

43212 AAAAX =  43213 AAAAX =  

43214 AAAAX =  43215 AAAAX =  

43216 AAAAX =  43217 AAAAX =  

43218 AAAAX =  43219 AAAAX =  

432110 AAAAX =  432111 AAAAX =  

432112 AAAAX =  432113 AAAAX =  

432114 AAAAX =  432115 AAAAX =  

432116 AAAAX =  
and 
 
X1+X16=2n X2+X15=2n X3+X14=2n 

X4+X13=2n X5+X12=2n X6+X11=2n 
X7+X10=2n X8+X9=2n 

For all values of r, these equalities are held. 
 
Hence, E[P]=(2n+2n)/2=2n-1 where E[P] is the 
expectation of population. 
 

 
(a) 

 

 
(b) 

 
Fig. 8. (a) shows the function values of both 
methods and (b) shows the number of iterations of 
both methods. Thick line is beyond to UP and 
dashed line is beyond to RIP. These figures were 
obtained after applying 50 times both methods to 
Rastrigin function. 
 
The first point for illustrating goodness of 
population is its expectation and second point is 
to compute change coefficient and third moment 
of population. The variance of population is  
 

∑
=

−=σ
|P|

1i

2
i

2 ])P[EP()P(  
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and then change coefficient σ(P) will be less than 
expectation of population. So, 
 

1
]P[E
)P(

<
σ

 

 
 
This means that the population does not widen 
rapidly. Another important point is to denote the 
uniformity of population. If third moment of 
population is equal to zero, then the population is 
uniform. So, 
 

∑
=

−=σ
|P|

1i

3
i

3 ])P[EP()P(  

 
and it is trivial to observe that  
 

P1-E[P]=-(P|P |-E[P]) 
P2-E[P]=-(P|P |-1-E[P]) 

………….. 
P|P|/2-E[P]=-(P|P|/2+1-E[P]) 

 
Hence, σ3(P)=0. 
 
So, the obtained population chromosomes are not 
crowded in one part of space and they are 
distributed over space uniformly/homogeneously 
♦  
 
Theorem 2: UP preserves at least one 
chromosome nearest to solution chromosome than 
RIP in general. 
 
Proof: Let population P1 be generated by UP and 
population P2 be generated by RIP. P1∩P2=P3, 
and  let S be solution chromosome. Then min 
(H(P1,S)) and min(H(P2,S)) are minimum 
Hamming distances between P1 and S, P2 and S, 
respectively. If |S|=n, then maximum Hamming 
distance is n. P1 preserves the chromosome of 
Hamming distance n-min(H(P3,S)) and this 
chromosome is not included in P2 ♦  
 
Important Point: Let variables be embedded into 
a chromosome as seen in Fig. 9. If each 
chromosome in UP is divided into r parts, and 
then there are r-1 dividing points in each 
chromosome. Dividing points separate two 
adjacent parts in a chromosome. 
 

vn ......... v2 v1

Separation Point 1

Separation Point 2Separation Point k
 

 
Fig. 9. Variables representation in each 
chromosome and separation points of variables 
coincide with dividing points in UP. 
 
If dividing points coincide with separation points, 
then increasing r does not matter. In this case, 
population obtained by UP for each possible 
values of r is same the population obtained by UP 
for r=1. So, in fact, someone cannot get the 
performance of UP in this case. However, this 
case is rarely and it is not often met. 
 
4. CONCLUSION 
UP and RIP were applied to multi-modal 
functions. UP method distributes initial 
population over chromosomes space uniformly, 
so, time of GA progressing decreases and 
obtained function result is better than RIP result. 
 
Initial population is distributed over chromosomes 
space and then solution point has at least one 
chromosome of δ-neighbourhood where 
δ=hamming distance between solution point 
chromosome and the nearest chromosome to 
solution chromosome. However, RIP method will 
not guarantee this case. 
 
It can be seen from the expectation of population 
generated by UP, and its expectation is average 
of all encodable chromosomes in chromosomes 
space. Another important point is that, when all 
chromosomes in population have values 2n-1, 
expectation of this population is also the average 
of all encodable chromosomes in chromosomes 
space. But the population generated by UP 
cannot have such a collection of chromosomes. 
This means that all chromosomes are distributed 
over chromosomes space. 
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