

ISTANBUL UNIVERSITY ENGINEERING FACULTY
JOURNAL OF ELECTRICAL & ELECTRONICS

YEAR
VOLUME
NUMBER

: 2002
: 2
: 2

(495-504)

Received Date : 17.4.2002
Accepted Date: 29.5.2002

UNIFORM POPULATION IN GENETIC ALGORITHMS

1,2 Ali KARCI and Ahmet ARSLAN

1,2 Firat Üniversitesi, Mühendislik Fakültesi, Bilgisayar Mühendisliði Bölümü,
23119, Elazig/Turkey

 1E-mail: akarci@firat.edu.tr 2E-mail: aarslan@firat.edu.tr

ABSTRACT

The most of researchers dealing with genetic algorithms apply variation on the genetic operators.
Some of them propose new genetic algotihm types. However, none of them deals with generating
population of good quality, initially. In this paper, we propose a method for generating initial
population and the method includes all types of chromosome encoding. The goodness of generated
population by proposed method is also illustrated by applying this population and random initial
population to multi-modal functions such as Griewank, Michalewicz and Rastrigin. For the sake of
simplicity, all functions are selected as functions of two variables.

Keywords: Genetic Algorithms, multi-modal functions

1. INTRODUCTION
Genetic Algorithms (GAs) have been proven
useful in solving NP-Complete and NP-Hard
problems. GA is an evaluation method to
generate random solutions for a problem and
then applying genetic operators to random
solutions to force them to be better solutions at
each generation. So, sufficiently good
solution/solutions can be obtained eventually.

In the conventional genetic algorithm model, a
population of strings (chromosomes, individuals)
codifying the possible solutions for the problem
at hand passes through a cyclic process in which
new candidates are constantly generated and

evaluated according to some adequacy measure
known as fitness. Parents are charged by
computational operators, very much resembling
natural evolutive reproduction, selection and
mutation being progressively replaced by more
adapted newcomers. The population fitness tends
to converge on the course of the process and best
or sub-best solutions are obtained at final stages.

The GA is a type of structured random search
algorithm so-called by most of researchers who
used GAs that mimics the process of biological
evolution. The algorithm begins with a collection
of parameter estimates (called a chromosome or
individual) and each is evaluated for its fitness in

Uniform Population In Genetic Algorithms

Ali KARCI and Ahmet ARSLAN

496

solving the given minimization or maximization
task. At each generation (algorithm time-step),
the most fit chromosomes are allowed to mate
and bear offspring. The biological analogy
suggests that such a procedure will be likely to
lead to workable solution for complex non-linear
problems.

A GA traditionally contains three types of
operators: selection, crossover and mutation. A
simple GA executes as follows:

a) Start with a randomly generated
population of n k-bit chromosomes.
These are the candidate solutions to
the problem.

b) Calculate the fitness F(x) of each
chromosome x in the population.

c) Repeat the following steps until n
offspring have been created.

i. Select a pair of chromosome
playing the role as parents. The
probability of an individual been
selected is usually a function of
fitness. The fitter the individual
is, the more likely it will be
selected to reproduce.

ii. With a probability Pc (the
crossover rate), crossover the pair
at a randomly chosen point to
form two offspring. If no
crossover takes place, form two
offspring that are exact copies of
their respective parents.

iii. Mutate the some worse
individuals in the population at
each locus with probability Pm
(the mutation rate) and place the
resulting chromosomes in the
new population.

d) Replace the current population with
the new population.

e) Go to step b.

Random search algorithms have achieved
increasing popularity as researchers recognise
the shortcomings of calculus-based and
enumerative schemes. Random walks and
random schemes that search and save the best
must be discounted because of efficiency
requirements. Random searches, in the long run,
can be expected to do no better than enumerative
schemes. Random search methods are distinct
from randomised techniques. A GA is an
example of a search procedure that uses random

choice as a tool to guide a highly exploitative
search through a coding of a parameter space.

Many search techniques require auxiliary
information in order to work properly. GAs have
no need for all this auxiliary information; they
are blind. They only require payoff values
associated with individual strings in performing
an effective search for better and better
structures. This characteristic makes a GA a
more canonical method than many search
schemes.

Many researchers have tried to improve the GAs
performance by handling some modifications on
the genetic operators and analyzing
chromosomes space properties: dealing with
genotype-phenotype mapping [1, 2], analyzing
schema theory at aim of catching some idea for
improving GAs performance [3, 19]. Some
researchers investigated the effects of GAs
operators and tried to modify GAs operators [4-
8, 15-18, 21]. Some people defined the new
version of GAs [9-14, 20-22]. In noisy
environment, fitness of an individual cannot be
evaluated precisely, but its fitness has to be
estimated [16].

Most of researchers used GAs applied
modifications on the GA operators to improve
the performance of GAs. However, there are
some problems related to GAs such as to be
trapped in local solution/solutions or diverging
from best or sub-best solution. These are
important points for improving the performance
of GAs.

In this paper, we have proposed a new method
for generating initial population [12,13]. This
method uses divide-and-conquer to generate an
initial population of good quality. By this
method, chromosomes are distributed over
chromosomes space, so, improving population
for catching solution takes less time than random
initial population. Because of chromosomes
distributed over space, to be trapped in local
solution is impossible. Consequently, best or
sub-best solution can be obtained in this way.

This paper is organized as follows. Section 2
describes the method of generating homogeneous
population and Section 3 illustrates the results of
this method to some multi-modal functions and
comparison of this method to random initial
method. Finally, the paper is concluded.

Uniform Population In Genetic Algorithms

Ali KARCI and Ahmet ARSLAN

497

2. UNIFORM POPULATION
METHOD (UP)
UP is a method to generate a population of good
quality in order to overcome some
aforementioned problems of genetic search. This
method works as follows. Initially, a dividing
factor, let r denote dividing factor, is determined
by user or program, then a chromosome is
randomly generated and it is divided into r parts.
There are 2r ways to take complement of one part
or more than one part. So, it is possible to get 2r-1
chromosomes from one randomly generated
chromosome. UP is described for values of r=1, 2,
and 3 in the following parts.

When r=1:
A chromosome is generated randomly and if the
dividing factor is 1, then the inversion of
randomly generated chromosome will be another
individual in the initial population. This case is
shown in Fig. 1(a). In this case, if there are n
randomly generated chromosomes, then the size
of initial population will be 2n.

010 CCA =

011 CCA =

(a)

011 CCA =

012 CCA =

010 CCA =

013 CCA =
(b)

Fig. 1. Generating individuals from randomly
generated individuals in case of r=1 and r=2.

When r=2:
If the dividing factor is 2, then, initially, a
chromosome is randomly generated and then this
chromosome is divided into two parts. The
generated chromosome is an individual in
population and its inversion is also another
individual in initial population. After that,
combining the inversion of rightmost part, and
leftmost part without inversion will be an
individual in initial population and combining

inversion of leftmost part, and rightmost part
without inversion will be another individual in
population. So, there are three new generated
individuals from randomly generated individual.
If each randomly generated chromosome is
divided into two parts and there are n randomly
generated chromosomes, then there will be 4n
individuals in the initial population, because there
are three individual generated from each
randomly generated chromosome. This case is
shown in Fig. 1(b).

When r=3
If randomly generated chromosome is C0 and it
will be divided into three parts then deriving other
individual from this chromosome is handled in
same manner as starting from zero in binary
coding and increasing by one in each step and this
case is shown in Fig. 2. For each individual,
derived individuals number is 7. So, if randomly
generated chromosomes number is n, then the size
of initial population will be 8n.

0120 CCCA =

0121 CCCA =

0122 CCCA =

0123 CCCA =

0124 CCCA =

0125 CCCA =

0126 CCCA =

0127 CCCA =

Fig. 2. Dividing initially random generated
chromosome into three parts and deriving other
individuals from this chromosome.

When r=General Case
If each randomly generated chromosome is
divided into r parts, then the number of derived
chromosomes from randomly generated
chromosome is 2r-1. So, the number of
chromosomes in the initial population will be (the
number of randomly generated chromosomes is n)

(2r-1)n+n=n2r (1)

Uniform Population In Genetic Algorithms

Ali KARCI and Ahmet ARSLAN

498

Hence, UP distributes the initial population
individuals over hyperspace in uniform manner.
Up to this point, we mentioned about binary or
integer encoding UP method. At this point we will
briefly describe the other types of encoding types
in UP.

Floating-Point Based Encoding. In this
encoding method, each gene is represented by a
floating-point number. Let R be a chromosome
and R=(r0r1r2...rn-1) is a chromosome of length n
and for 0≤k≤n-1. rk is a floating point number, so,
it consists of two parts: mantissa and exponent.
The mantissa may be a fraction or an integer. The
floating-point numbers used in this method are
normalized. Let rk=rmnrm(n-1)...rm1.resre(s-1)...re1 and

1-n10 r...rrR =

)r9)...(r9).(r9)...(r9(r 1ees1mmnk −−−−= (2)

Each floating-point number in the chromosome is
regarded as similar to bit in the binary encoding.
Application of UP to integer-based encoding is
same as floating-point type encoding. Another
way for taking complement of a floating-point
number is to subtract variable value from its
upper bound.

String-Based Encoding. In this encoding
method, each chromosome is represented by a
sequence of alphabetic characters. Let R be a
chromosome and R=cncn-1...c1. So, the
complement of R is

11nn cccR L−= and for 1≤k≤n

[])A(ord)c(ord)Z(ord)c(ord kk −−= (3)

where function ord(.) returns the ASSCI value of
parameter. Each character in the string is handled
as similar to bit in the binary encoding.

So, UP method can be applied to each encoding
types and the most important two problems of
GAs can be dealt with. The key point is that
dealing with GA problems will result in solution.

3. EXPERIMENTAL RESULTS
In order to illustrate the UP and random initial
population method (RIP), we will use three
multi-modal functions: Griewank, Michalewicz
and Rastrigin Functions. Fig. 3, Fig. 4 and Fig. 5
denote Griewank, Michalewicz and Rastrigin
Functions, respectively. The aim of selecting
these functions is that these functions have more
than one extreme point.

The Griewank function is

(a)

(b)

Fig. 3. Griewank Function.

1
i
100xcos

)100x(
4000

1)x,,x(f

n

1i

i

n

1i

2
in1

+






 −
−

−=

∏

∑

=

=

L

 (4)

Uniform Population In Genetic Algorithms

Ali KARCI and Ahmet ARSLAN

499

where n is the number of variables, and in this
study, we used two-variable Griewank function
and this function is depicted below.

()

() 1
2
100x

cos100xcos

)100x()100x(
4000

1)x,x(f

2
1

2
2

2
121

+






 −
−−

−+−=

and x1,x2∈[-5.0, 6.0].

The Michalewicz function is defined by equation
(5)

∑
=









π

=
n

1i

2
i20

in1

ix
sin)xsin()x,,x(f L (5)

(a)

(b)

Fig. 4. Michalewicz Function.

where n is the number of variables used in
function and Michalewicz function used in this
study is as follows.









π

+









π

=

2
220

2

2
120

121

x2sin)xsin(

x
sin)xsin()x,x(f

and x1,x2∈[-3.0, 4.0], and the graph of this
function is shown in Fig. 4.

The Rastrigin function is defined by
equation (6).

()∑
=

π−+=
n

1i
i

2
in1)x2cos(10xn10)x,,x(f L (6)

(a)

(b)

Fig. 5. Rastrigin Function.

Uniform Population In Genetic Algorithms

Ali KARCI and Ahmet ARSLAN

500

where n is the number of variables. The Rastrigin
function used in this study is as follows.

()
())x2cos(10x

)x2cos(10x20)x,x(f

2
2
2

1
2
121

π−+

π−+=

and x1, x2∈[-5.0, 6.0], and the graph of this
function is shown in Fig. 5.

With respect to experimental results, UP and RIP
can be compared in two ways: Based on the
number of iterations and the obtained

(a)

(b)

Fig. 6. (a) shows the values of function for both
methods and (b) shows the number of iterations of
both methods. Thick line (black) is beyond to UP
and dashed line (green) is beyond to RIP. These
figures were obtained after applying 50 times both
methods to Griewank function.

function results. We tried to obtained global
minimum points of each function under the range
of variables. Let C be a chromosome and then
each chromosome represents variables of
functions as follows.

C=A2m|A2e|A1m|A1e

where A2m is mantissa of x2, A2e is exponentiation
of x2, A1m is mantissa of x1, A1e is exponentiation
of x1, and | denotes concatenation of strings.

Fig. 6 shows the graphs of number of iterations
and function values of both methods for Griewank
function.

(a)

(b)

Fig. 7. (a) shows the function values of both
methods and (b) shows the number of iterations of
both methods. Thick line is beyond to UP and
dashed line is beyond to RIP. These figures were
obtained after applying 50 times both methods to
Michalewicz function.

Uniform Population In Genetic Algorithms

Ali KARCI and Ahmet ARSLAN

501

While applying both methods to Griewank
function, selection type is radiused selection*
crossover type is uniform, mutation type is
random, the population size is 96, and r=5 for
UP1. UP takes less number of iterations than RIP
and it also found better solution than RIP.
Without changing any genetic operators, both
methods were applied to Michalewicz and
Rastrigin functions. UP is again better than RIP
with respect to optimal solution and number of
iterations. The consequences are shown in Fig. 7
and Fig. 8, respectively. With respect to number
of iterations, UP is 7.5846% better than RIP for
Griewank function, UP is 6.6332% better than
RIP for Michalewicz function, and UP is also
8.0721% better than RIP for Rastrigin function.

Theorem 1: Generating initial population by UP
will result in a population of good quality.

Proof: In order to proving this theorem, let us
investigate the expected value of initial
population P. If r=2 then, we can generate 3 extra
chromosomes from a randomly generated
chromosome X1=A1A2, and without losing
generalization, let these chromosomes be

X1=A1A2, X2= 21AA , X3= 21AA , X4= 21AA
and |X1|=n. Then, the value of largest
chromosome in this population is at most 2n. So,

 X1+X4=2n and X2+X3=2n.

In the case of r=4, there are 15 extra
chromosomes generated from randomly generated
chromosome X1=A1A2A3A4. Then

43212 AAAAX = 43213 AAAAX =

43214 AAAAX = 43215 AAAAX =

43216 AAAAX = 43217 AAAAX =

43218 AAAAX = 43219 AAAAX =

432110 AAAAX = 432111 AAAAX =

432112 AAAAX = 432113 AAAAX =

432114 AAAAX = 432115 AAAAX =

432116 AAAAX =
and

X1+X16=2n X2+X15=2n X3+X14=2n

X4+X13=2n X5+X12=2n X6+X11=2n
X7+X10=2n X8+X9=2n

For all values of r, these equalities are held.

Hence, E[P]=(2n+2n)/2=2n-1 where E[P] is the
expectation of population.

(a)

(b)

Fig. 8. (a) shows the function values of both
methods and (b) shows the number of iterations of
both methods. Thick line is beyond to UP and
dashed line is beyond to RIP. These figures were
obtained after applying 50 times both methods to
Rastrigin function.

The first point for illustrating goodness of
population is its expectation and second point is
to compute change coefficient and third moment
of population. The variance of population is

∑
=

−=σ
|P|

1i

2
i

2])P[EP()P(

Uniform Population In Genetic Algorithms

Ali KARCI and Ahmet ARSLAN

502

and then change coefficient σ(P) will be less than
expectation of population. So,

1
]P[E
)P(

<
σ

This means that the population does not widen
rapidly. Another important point is to denote the
uniformity of population. If third moment of
population is equal to zero, then the population is
uniform. So,

∑
=

−=σ
|P|

1i

3
i

3])P[EP()P(

and it is trivial to observe that

P1-E[P]=-(P|P |-E[P])
P2-E[P]=-(P|P |-1-E[P])

…………..
P|P|/2-E[P]=-(P|P|/2+1-E[P])

Hence, σ3(P)=0.

So, the obtained population chromosomes are not
crowded in one part of space and they are
distributed over space uniformly/homogeneously
♦

Theorem 2: UP preserves at least one
chromosome nearest to solution chromosome than
RIP in general.

Proof: Let population P1 be generated by UP and
population P2 be generated by RIP. P1∩P2=P3,
and let S be solution chromosome. Then min
(H(P1,S)) and min(H(P2,S)) are minimum
Hamming distances between P1 and S, P2 and S,
respectively. If |S|=n, then maximum Hamming
distance is n. P1 preserves the chromosome of
Hamming distance n-min(H(P3,S)) and this
chromosome is not included in P2 ♦

Important Point: Let variables be embedded into
a chromosome as seen in Fig. 9. If each
chromosome in UP is divided into r parts, and
then there are r-1 dividing points in each
chromosome. Dividing points separate two
adjacent parts in a chromosome.

vn v2 v1

Separation Point 1

Separation Point 2Separation Point k

Fig. 9. Variables representation in each
chromosome and separation points of variables
coincide with dividing points in UP.

If dividing points coincide with separation points,
then increasing r does not matter. In this case,
population obtained by UP for each possible
values of r is same the population obtained by UP
for r=1. So, in fact, someone cannot get the
performance of UP in this case. However, this
case is rarely and it is not often met.

4. CONCLUSION
UP and RIP were applied to multi-modal
functions. UP method distributes initial
population over chromosomes space uniformly,
so, time of GA progressing decreases and
obtained function result is better than RIP result.

Initial population is distributed over chromosomes
space and then solution point has at least one
chromosome of δ-neighbourhood where
δ=hamming distance between solution point
chromosome and the nearest chromosome to
solution chromosome. However, RIP method will
not guarantee this case.

It can be seen from the expectation of population
generated by UP, and its expectation is average
of all encodable chromosomes in chromosomes
space. Another important point is that, when all
chromosomes in population have values 2n-1,
expectation of this population is also the average
of all encodable chromosomes in chromosomes
space. But the population generated by UP
cannot have such a collection of chromosomes.
This means that all chromosomes are distributed
over chromosomes space.

REFERENCES
1. R.E. Keller, W. Banzhaf,“ Evolution of

Genetic Code on a Hard Problem“, Proc. Of
the Genetic and Evolutionary Computation
Conference, San Fransisco, California, pp:50-
56, July 7-11, 2001.

2. S. Luke, “When Short Runs Beat Long
Runs”, Proc. Of the Genetic and Evolutionary

Uniform Population In Genetic Algorithms

Ali KARCI and Ahmet ARSLAN

503

Computation Conference, San Fransisco,
California, pp:74-80, July 7-11, 2001.

3. R. Poli, N. F. McPhee, « Exact Schema
Theory for GP and Variable-Length Gas w
Homologous Crossover”, Proc. Of the
Genetic and Evolutionary Computation
Conference, San Fransisco, California,
pp:104-111, July 7-11, 2001.

4. R. Poli, J.E. Rowe, N. F. McPhee, « Markov
Chain Models for GP and Variable-Length
Gas w Homologous Crossover”, Proc. Of the
Genetic and Evolutionary Computation
Conference, San Fransisco, California,
pp:112-119, July 7-11, 2001.

5. W.M. Spears, “The Role of Mutation and
Recombination in Evolutionary Algorithms”,
PhD dissertation at George Mason
University, Fairfax, Virginia, 1998.

6. M. Srinivas, L.M. Patnaik, “Genetic Search :
Analysis Using Fitness Moments”, IEEE on
Knowledge and Data Engineering, vol:8,
no:1, pp:120-133, 1996.

7. P. J. Angeline, “Two Self-Adaptive
Crossover Operations for Genetic
Programming”, Advances in Genetic
Programming: Volume 2.

8. J.A. Vasconcelos, J.A. Ramirez, R.H.C.
Takahashi, R.R. Saldanha, “Improvement in
Genetic Algorithms”, IEEE Trans. On
Magnetics, vol:37, no:5, pp:3414-3417, 2001.

9. N.Y. Nikolaev, H. Iba, “Regularization
Approach to Inductive Genetic
Programming”, IEEE Trans. On Evolutionary
Computation, vol:5, no:4, pp:359-375, 2001.

10. B. Edmonds, “Meta-Genetic Programming:
Co-evolving the Operators of Variation”,
Turk J. Elec. Engin. Vol:9, no:1, pp:13-29,
2001.

11. P.D. Stroud, “Kalman-Extended Genetic
Algorithm for Search in Nonstationary
Environments with Noisy Fitness
Evaluations”, IEEE Trans. On Evolutionary
Computation, vol:5, no:1, pp:66-77, 2001.

12. A. Karcý, A. Çýnar, “Comparison of Uniform
Distributed Initial Population Method and
Random Initial Population Method in Genetic
Search”, The 15th International Symposium
on Computer and Information Sciences,
Istanbul, Turkey, 159-166, 2000.

13. A. Karcý, A. Arslan, “Bidirectional
Evolutionary Heuristic for the Minimum
Vertex-Cover Problem”, Journal of
Computers and Electrical Engineering, (will
be appeared).

14. Y.-W. Leung, Y. Ewang, éAn Orthogonal
Genetic Algorithm with Quantization for
Global Numerical Optimization“, IEEE
Trans. On Evolutionary Computation, vol:5,
no:1, pp:41-53, 2001.

15. H.E. Aguirre, K. Tanaka, S. Oshita,
“Increasing the Robustness of Distributed
Genetic Algorithms by Parallel Cooperative-
Competitive Genetic Operators”, Proc. Of the
Genetic and Evolutionary Computation
Conference, San Fransisco, California,
pp:195-202, July 7-11, 2001.

16. J. Branke,”Reducing the Sampling Variance
When Searching for Robust Solutions”, Proc.
Of the Genetic and Evolutionary
Computation Conference, San Fransisco,
California, pp:235-242, July 7-11, 2001.

17. M. Elhadef, D.A. Coley,” Adaptive Mutation
for Semi-Separable Problems”, Proc. Of the
Genetic and Evolutionary Computation
Conference, San Fransisco, California,
pp:306-312, July 7-11, 2001.

18. J.E. Rowe, N.F. McPhee, “The Effect of
Crossover and Mutation Operators on
Variable Lengrh Linear Structures”, Proc. Of
the Genetic and Evolutionary Computation
Conference, San Fransisco, California,
pp:535-542, July 7-11, 2001.

19. C. Schumacher, M.D. Vose, L.D. Whitley,
“The No Free Lunch and Problem
Description Length”, Proc. Of the Genetic
and Evolutionary Computation Conference,
San Fransisco, California, pp:565-570, July
7-11, 2001.

20. A. Simoes, E. Costa, “On Biologically
Inspired Genetic Operators: Transformation
in the Standard Genetic Algorithm”, Proc. Of
the Genetic and Evolutionary Computation
Conference, San Fransisco, California,
pp:584-591, July 7-11, 2001.

21. J. Smith, “Modelling GAs with Self Adaptive
Mutation Rates”, Proc. Of the Genetic and
Evolutionary Computation Conference, San
Fransisco, California, pp:599-606, July 7-11,
2001.

22. R. P. Srivastava, D.E. Goldberg,
“Verification of the Theory of Genetic
Algorithm Continuation”, Proc. Of the
Genetic and Evolutionary Computation
Conference, San Fransisco, California,
pp:623-630, July 7-11, 2001.

Uniform Population In Genetic Algorithms

Ali KARCI and Ahmet ARSLAN

504

Ali Karcý received the B.S. degree in computer engineering and information
science from Bilkent University in 1994 and the M.S. degree in computer
engineering from Fýrat University in 1998. He is still a Ph.D. student of Electrical
& Electronics Engineering at Fýrat University. His areas of interest include
evolutionary computing, parallel computing, interconnection networks.

Ahmet Arslan received the B.S. degree in electrical and electronics engineering
from Fýrat University in 1984, the M.S. degree from Fýrat University in 1987 and
Ph.D. degree in computer engineering and information science from Bilkent
University in 1992. His areas of interest include genetic optimization, computer
graphics, neural networks, agent-based computing and machine learning.

