

ISTANBUL UNIVERSITY ENGINEERING FACULTY
JOURNAL OF ELECTRICAL & ELECTRONICS

YEAR
VOLUME
NUMBER

: 2002
: 2
: 2

(593-599)

Received Date : 30.5.2002
Accepted Date: 04.6.2002

OBJECT ORIENTED PROGRAMMING IN

MICROCONTROLLER BASED SYSTEMS WITH EXTREMELY
LIMITED RESOURCES

Suha FUTACI

Senior Project Manager
European Semiconductor Group

Motorola Semiconductor Products Sector

 E-mail: suha.futaci@motorola.com

ABSTRACT

In many microcontroller based embedded system projects the object oriented programming is not
considered because of the extremely limited resources and relatively large code generated by the
compilers. Usually C, assembly and mixed C-Assembly language programming is dominating these
applications. In some cases even the size of the code generated by a very efficient C compiler is
unacceptable. So in many projects the advantages of the object oriented programming are not
realized.

In this paper, the use of object oriented programming techniques in the absence of sufficient resources
is emphasized. There are significant driving factors limiting the cost of the microcontrollers and
limiting their resources. On the other hand consumers expects more functions from the
microcontroller applications. It is shown that object oriented analysis/design techniques and
programming can still be used to the extent that most of the benefits of object-oriented programming
can be realized if the suitable mechanisms are employed.

Keywords: Object-Oriented Programming, Object-Oriented design, Real-time System,
Microcontroller

1. INTRODUCTION
In today’s industry, Microcontrollers (MCU’s-
Microcontroller Units) are playing an important
role in the embedded systems. Among the many
major applications areas in which MCU’s are
heavily used are white goods, computer
peripherals, electrical appliances, air

conditioning systems, remote controls,
transportation systems, and car electronics.

A microcontroller is a microprocessor with the
processing core and all peripherals, such as,
general purpose input-output, RAM, ROM,
asynchronous serial communication, keyboard
interface and timers, are integrated into one

Object Oriented Programming In Microcontroller Based Systems With Extremely Limited Resources

Suha FUTACI

594

integrated circuit, so, in fact, it is a singlechip
microcomputer with limited resources.

The microcontrollers are being used in volume,
compared to the microprocessors of desktop
platforms. By the year 2001 Motorola sold five
billion MC68HC705KJ1 microcontroller, only a
member of a large family of 8-bit HC05 family
of microcontrollers. A white good manufacturer
typically uses a million MCU’s a year. This
brings in the challenge of reducing the cost of
microcontrollers. The resources such as memory,
central processing unit (CPU) speed are then
reduced to the point that they are merely
sufficient for the intended applications.
The software of these platforms gets complicated
as more functions are added. Simple
microcontroller applications are being replaced
with more intelligent ones that are even
interfacing to Internet. It becomes common to
have multiple microcontrollers working in
parallel and communicating over a bus, for
example, in today’s car, it is common to find
more than 40 microcontrollers serving as, engine
controller, break controller, power steering,
driver seat controller, electric mirrors controller,
all communicating over a bus. An elevator
control system has many microcontrollers. One
at the central control unit, many at the buttons on
each floor, one or more at the cabinets and again,
all are in continuous communication with each
other over a communication network. In this area
reuse of robust and tested software components
of prior applications is of great desire. [12]

We sometimes think these controls should be
more intelligent in that we expect more than they
are able to deliver to us. In some applications,
the associated software deserve more attention
than the software we use in other areas. Imagine
a microcontroller controlling a medical
respiratory support system by receiving sensory
information from a pressure sensor and makes an
error, or the one serving as oven timer, cooks
more than intended. How about the break system
happens to execute a subroutine a few
milliseconds later. We can give many examples
of this kind.

There exist a delicate balance between the
capability of applications and the resources that
can support the applications. Since the unit cost
is very important for the manufacturer and the
consumer expects more functions from the
applications, the techniques we had used to save

resources in the dark ages of computing are all
being used in this arena.

Application writers in the process of fitting an
application in this platform some times make
hard decisions diverting from the holly principles
of computer science. Sometimes the architecture
of the microcontroller, optimized for cost
reduction, forces them to work around. Hence it
is in this field where we need to use the object
oriented programming methods to increase the
software quality, reliability, reusability and
maintainability. The research challenges in the
field of component-based software engineering
for resource-constrained systems are defined in
[5].

2.OBJECT-ORIENTED
PROGRAMMING IN EMBEDDED
REAL TIME SYSTEMS
The research for applying object oriented
programming in real time embedded systems
focuses on object-oriented design by using
extended UML specifications [9] and
programming in Embedded C++ (EC++) [2],
[3],[4] or Java[6], [10] on these platforms.
Today object-oriented design is mainly done
using UML (Unified Modeling Language). The
timing constraints in real time systems
necessitate extending the UML to express the
real time behavior. For example sequence
diagrams describing the interactions between
system components may be annotated with
timing constraints. [9] MAST_RT View, a new
view in the UML description of a system, models
its real time behavior. [8]. There is an effort
going on in OMG (Object Management Group)
companies for elaborating the UML for real time.
[1] The component based software engineering
aiming at applying component technology in
resource-constrained-embedded systems is an
active research area. [5]

On the programming side, EC++ (Embedded
C++) proves to be a good enhancement of
traditional C++ for saving embedded resources.
In a comparison done between an EC++ library
and a standard C++ library, it was found out that
the size of executables generated by EC++ are
33% to 90% of traditional C++ executables in
most of the cases [11]. If the code plus data is
compared, this figure ranges between %15 and
%48. [11]. More material can be found at the

Object Oriented Programming In Microcontroller Based Systems With Extremely Limited Resources

Suha FUTACI

595

web site of “Embedded C++ Technical
Committee“[2],[3],[4].

Java, a widely used object oriented language, is
also being targeted for embedded real time
platforms. J2ME (Java Version 2 Micro Edition)
as defined in Sun Micro Systems Inc. white
paper [6] uses a small JVM called KVM that still
needs 128K to 512KB of memory.

3. REALIZING THE BENEFITS OF
OBJECT-ORIENTED
PROGRAMMING WITH
EXTREMELY LIMITED
RESOURCES
In the world of programming languages,
standards are immediately emerging after the
introduction of a new concept. We begin to
produce more and more restrictive derivatives of
the original idea. At the end, we begin to believe
that an application without strictly conforming to
these standards cannot be classified under this
category

Let’s assume that we have had highly self-
disciplined programmers and we do not need to
bind them with object oriented programming
constructs of an object oriented programming
language. We give them an object oriented
design document, possibly produced by using
UML. If they write the application in assembly
code, as objects interact by exchanging messages
while their private data and internal code are
properly encapsulated, would the resulting
software be classified as an object oriented one?

It is conceivable for the programmers to program
under some constraints to achieve the well-
established benefits of object oriented
programming, but enforcing these constraints
under a high level programming language is only
a way of doing this.

In the microcontroller world we are somewhat
forced to find another way to do it and we should
not give up because of we do not have the object
oriented programming language generating that
compact code for us. At this level we are dealing
with the MCU’s typically having 128 to 512
Bytes of RAM, 2 to 8 Kbytes of Flash
memory/ROM(Read only memory), ADC
(Analog Digital Converter), Timer and general
purpose I/O(Input-Output).

3.1.MOTOROLA
MICROCONTROLLER
ARCHITECTURE
Motorola microcontroller architecture inherently
supports object oriented programming, enabling
us to view functional modules as active objects
(Figure-1). Each functional module in the
microcontroller can work in parallel with the
others having a different thread of execution and
can generate interrupts on the key events. It has
all the critical data pertaining to its function in its
registers. So each functional module can be
viewed as hard-wired active object, capable of
accepting some messages and responding with
the corresponding actions or by returning some
results in its registers.

Take the Analog to Digital Converter, when it is
set to make continuous conversion with ADC
interrupt is enabled, it works stand alone, gets the
input from the input channel, performs the
conversion and generates an interrupt when the
conversion is completed. Let’s wrap it with the
object abstraction now. When a proper
environment is set up, it can be thought of
getting a message to set some of its registers
(internal variables) to specific values and
beginning to act accordingly by continuously
converting the analog signal levels at the input
channel to the digital values and putting the
results in its data register (a private variable).
The interrupt generated at the end of each
conversion can be used to invoke other objects
by sending them messages.

In this view, (Figure 1) if we give the
programmer a set of messages/method calls that
are acceptable by the functional modules
behaving like objects and the attributes of these
objects, we can have a infrastructure of objects
making up the microcontroller hardware. Than
the programmers will begin to think in object
oriented way about the functional modules of the
MCU.

In some embedded MCU applications there are
more than one MCU communicating over a data
communication network. We can now extend
the object-oriented conceptualization of the
MCU functional modules to the MCU level and
think MCU as a higher-level object, so MCU’s
as active objects interact with each other over the
network and cooperatively serve for completing
the real time task.

Object Oriented Programming In Microcontroller Based Systems With Extremely Limited Resources

Suha FUTACI

596

In summary we should treat the control and data
registers of a functional module as variables of
the module. The methods we should device
should be able to set the values of these variables
or return their content. Further, the interrupt
service routines associated with the events
generated by the module can do internal state

changes or invoke the methods of the other
objects wrapping the other functional modules.
The programmer should be able to design any
other object for some computation not associated
with any physical functional module.

Figure 1. MCU functional modules viewed as objects.

3.2. USING ASSEMBLY
LANGUAGE
We can design our system in object oriented way
by using UML tools. Based on this design we
can move into programming, which language
should then be used?

The limited resources such as 2 Kbytes of Flash
Memory, 128 bytes of RAM, may force us to use
Assembly language. Assembly language is error
prone and carries all sorts of problem sources in
its structure. At this point we can write the
program as if the restrictive structures of an
object oriented programming language exists.
We can integrate some syntactic sugaring and
implement parameter passing by using macros.
So it is kind of applying modular-programming
techniques in assembly language programming
in the absence of a block structured high level
language. By doing so, we can give the feeling
that the methods of the objects are called and
we can still hide data from the programmer by
forcing him/her to use only the methods of the
objects to access internal data, The programmer

writes the program in terms of method calls only
and that is easy to check.

A brief example using Motorola HC08
Microcontroller Assembly Language versus a
EC++ program doing the same thing may help us
understand the above-discussed technique. In this
example we took the Motorola
MC68HC908GP32 microcontroller and viewed
the ADC functional module of the
microcontroller as an object having a private data
space (ADC control and data registers), and
methods accessing, reading or modifying its data.
A short segment of an Embedded C++ program
is created declaring the necessary “Adc” class
and its instance “adcobj”. Some references to the
methods are made, for changing the state the of
the “adcobj”. (Figure- 2)

Another program is written in Motorola
assembly language by using P&E Micro [13]
CASM08Z macro assembler. (Figure-3) In this
program macro names are defined in such a way
that, they look like the dotted notation of method
calls of object with the name ADC. The
subroutines corresponding that functions are

Object Oriented Programming In Microcontroller Based Systems With Extremely Limited Resources

Suha FUTACI

597

called from within macros. This allows the use of
macro names like we use function names for
calls in a high level language, preventing JSR
assembly language instruction be used with the
subroutine label. The parameter passing is done
by using macro parameter mechanism and
making use of the stack. In this mechanism
macro can be thought to be receiving the
parameters. It pushes them on stack and calls its
subroutine. Subroutine pops them from the stack
and makes use of them. Subroutine returns the
control to the instruction immediately following
subroutine call in macro. Together with the way
of using macro names and macro parameter

passing, our main program’s look and feel is
more like a high-level language program rather
than assembly language program. After getting
used to this style of programming the
programmer begins to think in object oriented
way and can use object oriented design
documents as the base for programming.

There is no need to say, the size of generated
code in the case of assembly language program
in (Figure-2), is 44 bytes and 144 bytes for the
EC++ program as shown in (Figure-3) using
Metrowerks CodeWarior HC08 C/EC++
compiler.

#pragma DATA_SEG SHORT _DATA_ZEROPAGE
 class Adct
 { public:
 Adct()
 {adscr= (volatile unsigned char*)(0x3c);
 adcData= (volatile unsigned char*)(0x3d); }
 unsigned char readData()
 { return *adcData; } // Return the converted value
 void setInterruptBit()
 {(*adScr) =(*adScr) | 0x40; } // Enable ADC interrupt
 void resetInterruptBit()
 {(*adScr)=(*adScr)&0xBF; } //Disable ADC interrupt
 void setConversionBit()
 {(*adScr)|=0x20; } // Set continuous conversion bit
 void resetConversionBit()
 {(*adScr)&=0xdf; } //Reset continuous conversion bit
 void selectChannel(unsigned char x)
 {(*adScr)&=0xe0; // Select ADC channel
 (*adScr)|=x; }
 private:
 volatile unsigned char* adscr ; // ADC status control register
 volatile unsigned char* adcdata; //ADC data register };
 int main()
 {
 Adct adcobj;
 unsigned char data;
 adcobj.resetConversionBit();
 adcobj.selectChannel(5);
 adcobj.resetInterruptBit();
 data=adcobj.readData();
 }

Figure 2. EC++ program

Object Oriented Programming In Microcontroller Based Systems With Extremely Limited Resources

Suha FUTACI

598

#include "gpregs.inc"
 ORG $FFFE
 dw Main ; Reset Vector
$MACRO adc.ReadData
 JSR Adcreaddata ; call subroutine, get the result in accumulator
$MACROEND
$MACRO adc.SetInt
 JSR Adcsetinterruptbit ; call subroutine
$MACROEND
$MACRO adc.ResInt
 JSR Adcresetinterruptbit ; call subroutine
$MACROEND
$MACRO adc.SetCon
 JSR Adcsetconversionbit ; call subroutine
$MACROEND
$MACRO adc.ResCon
 JSR Adcresetconversionbit ; Call subroutine
$MACROEND
$MACRO adc.SelChan a
 CLRH
 LDHX #%1 ; get the parameter and push it onto the stack
 PSHX
 JSR Adcselectchannel ; Call subroutine
 AIS #2 ; adjust the stack pointer on return
$MACROEND
 ORG $EC00 ; MAIN PROGRAM BEGINS
 Main: adc.ResCon ; Set ADC to single conversion
 adc.SelChan 5 ; Select ADC channel 5
 adc.ResInt ; Turn ADC interrupt off.
 adcReadData ; Read the result

 ; MAIN PROGRAM ENDS
 Adcselectchannel: AIS #2 ; Adjust the stack pointer
 PULX ; Get the parameter
 MOV X+,ADSCR ; assign it to the ADSCR (register)
 AIS #-3 ;Adjust the stack pointer
 RTS ; Return form subroutine
Adcreaddata: LDA ADR ; Load the result to accumulator
 RTS ; Return
Adcsetinterruptbit: BSET 6,ADSCR ; Set interrupt bit at ADSCR
 RTS ; Return
Adcresetinterruptbit: BCLR 6,ADSCR ; Clear interrupt bit at ADSCR
 RTS ; Return
Adcsetconversionbit: BSET 5,ADSCR ; Set continuous conversion
 RTS ; Return
Adcresetconversionbit: BCLR 5,ADSCR ;Set single conversion
 RTS ; Return

Figure 3. Assembly language program

In the Assembly Language example shown in
(Figure 3) it is clear that we can achieve a level
of abstraction for viewing the functional modules
as objects even if we do not use a full blown
object-oriented language. In practice we can put

macro definitions and subroutines in include files
and separate them from the main program. The
programmer may follow the same technique for
creating his/her own objects for the code not
related with the functional modules.

Object Oriented Programming In Microcontroller Based Systems With Extremely Limited Resources

Suha FUTACI

599

4.CONCLUSION
Under the pressure of cost factors and
demanding consumers we will have to go on
writing more capable but compact programs for
the microcontrollers with extremely limited
resources. In order to make our software more
reliable, maintainable and reusable, we can still
employ object oriented design and programming
techniques even if the compilers for the high
level object-oriented languages do not help us in
many applications of this kind. Writing in
assembly, but using a carefully set environment,
simulating the object oriented constructs, seems
to be the solution for these specific cases. If we
can do that, we will also have the privilege to use
object oriented design tools right from the
beginning. By this way most of the benefits of
the object oriented design and programming may
be realized and it is better than doing it
conventionally. In this work, it is practiced and
seen that this kind of programming environment
can be set and used with little overhead. Future
efforts may concentrate on the assemblers or
simple translators facilitating this kind of
programming more.

5. ACKNOWLEDGEMENTS
J2ME, Java and all Java based marks are
trademarks or registered trademarks of Sun
Microsystems Inc. in the United States and other
Countries. OMG and UML are either registered
trademarks or trademarks of Object Management
Group, Inc. in the United States and/or other
countries. Dinkumware, is registered trademark
of Dinkumware Ltd. Metrowerks and
CodeWarrior are trademarks of Metrowerks
Corp in the United States and other Countries.
All other trademarks are property of respective
holders.

REFERENCES
1. B. Selic. “A generic framework for modeling
resources with UML”. IEEE Computer Vol 33,
page 64, June 2000.
 2. Embedded C++ Technical Committee “EC++
web site”. http://www.caravan.net/ec2plus
3. Embedded C++ Technical Committee. “The
embedded C++ programming guide lines”.
http://www.caravan.net/ec2plus/guide.html.
4. Embedded C++ Technical Committee.
“Objectives”.
http://www.caravan.net/ec2plus/objectives/ppt/ec
2ppt05.html

5.Hammer,D,K. Chaudron,M.R.V. “Component-
based software engineering for resource-
constraint systems: What are the needs”. In
proceedings of, Sixth International Workshop on
Object Oriented Real-Time Dependable
Systems,2001.
6. “Java 2 Platform Micro Edition (J2ME)
Technology for Creating Mobile Devices”.
White Paper, Sun Microsystems Inc. May
19,2000.http://java.sun.com/products/cldc/wp/K
VMwp.pdf
7. Jigorea,R. Manolache,S. Eles,P. Peng,Z.
“Modelling of real-time embedded systems in an
object-oriented design environment with UML”.
In Proceedings of the Third International
Symposium on Object-Orineted Real-Time
Distributed Computing,2000.
8. Julio L.Medina Pasaje, Michael Gonzalez
Harbour, Jose M.Drake. “MAST Real-Time
View: A Graphic UML Tool for Modeling
Object-Oriented Real-Time Systems”. .In
Proceedings of the 22nd IEEE Real-Time
Systems Symposium,2001.
9. Kuster,J. Stroop,J. “Consistent design of
embedded real-time systems with UML-RT”. In
Proceedings of the Fourth IEEE International
Symposium on Object-Oriented Real-Time
Distributed Computing, 2001.
10. Nilsson, A. Ekman,T. “Deterministic Java in
tiny embedded systems”. In Proceedings of the
Fourth IEEE International Symposium on
Object-Oriented Real-Time Distributed
Computing, 2001.
11. P.J.Plauger. “Embedded C++ Seminar “at the
Embedded Systems Conference, Chicago Ilinois,
1999.
http://www.dinkumware.com/embed9710.html
12. Muller, P.O. Stich, C. Zeidler,C.
“Components at work: Component technology
for embedded systems”. In proceedings of 27th
Euromicro Conference,2001.
13. P&E Microcomputer Systems Inc.
http://www.pemicro.com

