Skew λ-cyclic Codes over Y_{2}

Abdullah DERTL亡 ${ }^{1 *}{ }^{*}$, Yasemin ÇENGELLENMIST룰
${ }^{1}$ Ondokuz Mayıs University, Faculty of Arts and Sciences, Mathematics Department, Samsun, Turkey
${ }^{2}$ Trakya University, Faculty of Sciences, Mathematics Department, Edirne, Turkey

Geliş / Received: 21/10/2019, Kabul / Accepted: 21/02/2020

Abstract

In the present paper, by defining two non-trivial automorphisms and Gray maps over $Y_{2}=\mathbb{Z}_{4}+u \mathbb{Z}_{4}+v \mathbb{Z}_{4}+u v \mathbb{Z}_{4}$, where $u^{2}=0, v^{2}=0, u v=v u$, the algebraic structcure of the skew λ-cyclic codes and their Gray images over the finite ring Y_{2} are determined, where $\lambda=1+u+v+u v$.

Keywords: Skew codes, Gray map, Finite rings.

Y_{2} Halkası Üzerinde Skew λ-cyclic Kodlar

Öz

Bu çalışmada, $u^{2}=0, v^{2}=0, u v=v u, \lambda=1+u+v+u v$, olmak üzere $Y_{2}=\mathbb{Z}_{4}+u \mathbb{Z}_{4}+v \mathbb{Z}_{4}+u v \mathbb{Z}_{4}$, sonlu halkası üzerinde iki farklı Gray dönüşümü ve otomorfizma tanımlanarak skew λ-cyclic kodların cebirsel yapısı ve bu kodların Gray görüntüleri belirlenmiştir.

Anahtar Kelimeler: Skew kodlar, Gray dönüşümü, Sonlu halkalar.

1. Introduction

Cyclic codes are the most studied class of linear codes with algebraic structure.

Skew polynomial rings form an important family of non-commutative rings. There are many applications in the construction of algebraic codes. As polynomials in skew polynomial ring exhibit many factorizations, there are many more ideals in a skew polynomial ring than in the commutative case. So the researchers on codes have result in the discovery of many new codes with

[^0]better Hamming distance.
Recently, Delphine Boucher et al. gave skew cyclic and skew λ-cyclic codes defined by using the skew polynomial rings with a nontrivial automorphism, which are generalization of the notion cyclic and constacyclic codes, respectively (Boucher et al., 2007; Boucher et al., 2008).
T. Abualrub, P. Seneviratre studied skew cyclic codes over $F_{2}+v F_{2}$, where $v^{2}=v$ (Abualrub and Seneviratne, 2012). T. Abualrub, A. Ghrayeb, N. Aydın, I. Siap
introduced skew quasi-cyclic codes. They obtained several new codes with Hamming distance exceeding the distance of the previously best known linear codes with comparable parameters (Abualrub et al., 2010). In (Siap et al., 2011), they studied a special type of linear codes called skew cyclic codes in the most general case. M. Bhaintwal studied skew quasi-cyclic codes over Galois rings (Bhaintwal, 2012). Wu investigated the structures of skew cyclic and skew quasi-cyclic of arbitrary length over Galois rings. They shown that the skew cyclic codes are equivalent to either cyclic and quasi-cyclic codes over Galois rings. Moreover, they gave a necessary and sufficient condition for skew cyclic codes over Galois rings to be free ($\mathrm{Wu}, 2013$).

Dertli et al. studied skew codes over the finite ring to increase the probability of obtaining the large minimum distance (Dertli et al., 2015).

In the present paper, the skew λ-cyclic codes over the finite ring Y_{2} are studied by using two different non-trivial automorphism over Y_{2}, which is motivated by the previous works.

2. Material and Methods

The ring

$$
\begin{aligned}
& Y_{2}=\mathbb{Z}_{4}+u \mathbb{Z}_{4}+v \mathbb{Z}_{4}+u v \mathbb{Z}_{4}=\{a+b u+c v+d u v: \\
& \left.a, b, c, d \in \mathbb{Z}_{4}, u^{2}=0, v^{2}=0, u v=v u\right\}
\end{aligned}
$$

is commutative ring with 4^{4} elements and characteristic 4. A linear code \wp over Y_{2} of length n is a Y_{2} submodule of Y_{2}^{n}. An element of \wp is called a codeword.

We defined two Gray maps as follows

$$
\begin{gathered}
\Psi_{1}: Y_{2} \rightarrow \mathbb{Z}_{4}^{4} \\
a+b u+c v+d u v \mapsto(a, b-a, c-a, d-a)
\end{gathered}
$$

and

$$
\begin{gathered}
\Psi_{2}: Y_{2} \rightarrow \mathbb{Z}_{4}^{8} \\
a+b u+c v+d u v \mapsto(a, 3 a, b, 3 b, c, 3 c, d, 3 d)
\end{gathered}
$$

The Gray map Ψ_{t} can be extended to Y_{2}^{n}, naturally, for $t=1,2$.

The Lee weight on \mathbb{Z}_{4}, denoted w_{L}, is defined as

$$
w_{L}(\eta)=\left\{\begin{array}{cc}
0, & \eta=0 \\
1, & \eta=1 \text { or } 3 \\
2, & \eta=2
\end{array}\right.
$$

For any $\xi \in Y_{2}$, the Lee weight of ξ is defined as

$$
w_{L}(\xi)=w_{L}\left(\Psi_{t}(\xi)\right)=\sum_{i=1}^{r} w_{L}\left(\eta_{i}\right)
$$

where $\Psi_{t}(\xi)=\left(\eta_{1}, \eta_{2}, \ldots, \eta_{r}\right)$,
$\eta_{i} \in \mathbb{Z}_{4}, i=1,2, \ldots, r, t=1,2$. The Lee weight of a vector $e=\left(e_{1}, \ldots, e_{n}\right) \in Y_{2}^{n}$ is defined to be a sum of the Lee weights of its components, that is $w_{L}(e)=\sum_{i=1}^{n} w_{L}\left(e_{i}\right)$. Moreover, for any $e_{1}, e_{2} \in Y_{2}^{n}$, the Lee distance between e_{1} and e_{2} is defined as $d_{L}\left(e_{1}, e_{2}\right)=w_{L}\left(e_{1}-e_{2}\right)$.

Theorem 2.1: The Gray map Ψ_{t} is a linear and distance preserving map, for $t=1,2$.

A code \wp over Y_{2} is a λ-cyclic code with the property that if $e=\left(e_{0}, e_{1}, \ldots, e_{n-1}\right) \in \wp$ then $v(\wp)=\left(\lambda e_{n-1}, e_{0}, \ldots, e_{n-2}\right) \in \wp$ where λ is a unit element of Y_{2}. A subset \wp of Y_{2}^{n} is a $\lambda-$ cyclic code of length n if and only if it is
polynomial representation is an ideal of $Y_{2}[x] /\left\langle x^{n}-\lambda\right\rangle$. If λ is equal to $1(-1)$, the \wp is called cyclic code (negacyclic code), respectively.

3. Research Findings

3.1. Skew codes over Y_{2}

Let Y_{2} be a finite ring and Ω_{i} be a non-trivial automorphism over Y_{2} and $\lambda=1+u+v+u v$, $i=1,2$.

Definition 3.1.1: A subset \wp of Y_{2}^{n} is called a skew λ-cyclic code of length n if \wp satisfies the following conditions, for $i=1,2$,

1) \wp is a submodule of Y_{2}^{n}
2) If $c=\left(c_{0}, c_{1}, \ldots, c_{n-1}\right) \in \wp$, then
$\sigma_{\Omega_{i}}(c)=\left(\lambda \Omega_{i}\left(c_{n-1}\right), \Omega_{i}\left(c_{0}\right), \ldots, \Omega_{i}\left(c_{n-2}\right)\right) \in \wp$, where $\sigma_{\Omega_{i}}$ is the skew λ-cyclic shift operator.

By defining two non-trivial automorphisms over Y_{2} as follows, we can define the skew λ-cyclic codes over Y_{2}.

$$
\begin{gathered}
\Omega_{1}: Y_{2} \rightarrow Y_{2} \\
a+b u+c v+d u v \mapsto a+c u+b v+d u v
\end{gathered}
$$

and

$$
\begin{gathered}
\Omega_{2}: Y_{2} \rightarrow Y_{2} \\
a+b u+c v+d u v \mapsto a-b u-c v+d u v
\end{gathered}
$$

The order of Ω_{i} is 2 , where $i=1,2$.

The rings

$$
\begin{aligned}
& Y_{2}\left[x, \Omega_{i}\right]=\left\{b_{0}+b_{1} x+\ldots+b_{n-1} x^{n-1}:\right. \\
& \left.b_{j} \in Y_{2}, n \in N, j=0,1, \ldots, n-1\right\}
\end{aligned}
$$

are called skew polynomial rings with the usual addition of polynomials and the multiplication as follows

$$
\left(a x^{s}\right)\left(b x^{l}\right)=a \Omega_{i}^{s}(b) x^{s+l}
$$

where $i=1,2$. They are non-commutative rings.

In polynomial representation, a skew λ cyclic code of length n over Y_{2} is defined as a left ideal of the quotient ring $A_{\Omega_{i}, n}=Y_{2}\left[x, \Omega_{i}\right] /\left\langle x^{n}-\lambda\right\rangle$, if the order of Ω_{i} divides n, that is n is even. If the order of Ω_{i} does not divides n, a skew λ-cyclic code of length n over Y_{2} is defined as a left $Y_{2}\left[x, \Omega_{i}\right]$-submodule of $A_{\Omega_{i}, n}$, since the set

$$
\begin{aligned}
& A_{\Omega_{i}, n}=Y_{2}\left[x, \Omega_{i}\right] /\left\langle x^{n}-\lambda\right\rangle= \\
& \left\{f_{i}(x)+\left\langle x^{n}-\lambda\right\rangle: f_{i}(x) \in Y_{2}\left[x, \Omega_{i}\right]\right\}
\end{aligned}
$$

is a left $Y_{2}\left[x, \Omega_{i}\right]$-module, for $i=1,2$.
In both case, the following is hold.
Theorem 3.1.2: Let \wp be a skew λ-cyclic code over Y_{2} and let $g(x)$ be a polynomial in \wp of minimal degree. If the leading coefficient of $g(x)$ is a unit in Y_{2}, then $\wp=\langle g(x)\rangle$, where $g(x)$ is a right divisor of $x^{n}-\lambda$.

Proof: It is proved as in the proof of Lemma 3 and Theorem 1 in (Gao et al., 2017).

Proposition 3.1.3: Let Ω_{1}, vand Ψ_{1} be as above. Then $\Psi_{1} \sigma_{\Omega_{1}}=\rho \Psi_{1} v$, where ρ is a permutation defined by

$$
\rho(x, y, k, p)=(x, k, y, p)
$$

for $x, y, k, p \in \mathbb{Z}_{4}^{n}$.
Proof: Let $e_{i}=a_{i}+b_{i} u+c_{i} v+d_{i} u v$ be the elements of Y_{2} for $i=0,1, \ldots, n-1$. Then

$$
\begin{aligned}
\sigma_{\Omega_{1}}\left(e_{0}, \ldots, e_{n-1}\right) & =\left(\lambda \Omega_{1}\left(e_{n-1}\right), \Omega_{1}\left(e_{0}\right), \ldots, \Omega_{1}\left(e_{n-2}\right)\right) \\
& =\left(\begin{array}{c}
a_{n-1}+\left(a_{n-1}+c_{n-1}\right) u+\left(a_{n-1}+b_{n-1}\right) v+ \\
\left(a_{n-1}+b_{n-1}+c_{n-1}+d_{n-1}\right) u v, a_{0}+c_{0} u+b_{0} v+d_{0} u v \\
\ldots, \ldots, a_{n-2}+c_{n-2} u+b_{n-2} v+d_{n-2} u v
\end{array}\right) .
\end{aligned}
$$

By applying Ψ_{1}, we have

$$
\Psi_{1}\left(\sigma_{\Omega_{1}}\left(e_{0}, \ldots, e_{n-1}\right)\right)=\binom{a_{n-1}, \ldots a_{n-2}, c_{n-1}, \ldots, c_{n-2}-a_{n-2}, b_{n-1}, \ldots,}{b_{n-2},-a_{n-2}, b_{n-1}+c_{n-1}+d_{n-1}, \ldots, d_{n-2}-a_{n-2}} .
$$

On the other hand

$$
\Psi_{1} v\left(e_{0}, \ldots, e_{n-1}\right)=\binom{a_{n-1}, \ldots a_{n-2}, b_{n-1}, \ldots, b_{n-2}-a_{n-2}, c_{n-1}, \ldots,}{c_{n-2},-a_{n-2}, b_{n-1}+c_{n-1}+d_{n-1}, \ldots, d_{n-2}-a_{n-2}} .
$$

If we apply ρ, we have

$$
\rho \Psi, v\left(e_{0}, \ldots, e_{n-1}\right)=\binom{a_{n-1}, \ldots a_{n-2}, c_{n-1}, \ldots, c_{n-2}-a_{n-2}, b_{n-1}, \ldots,}{b_{n-2},-a_{n-2}, b_{n-1}+c_{n-1}+d_{n-1}, \ldots, d_{n-2}-a_{n-2}}
$$

We have the expected result.
Theorem 3.1.4: The Gray image of a skew λ-cyclic code over Y_{2} of length n is permutation equivalent to a λ-cyclic code over \mathbb{Z}_{4} of length $4 n$.

Proof: Let \wp be a skew λ-cyclic code over Y_{2} of length n. That is $\sigma_{\Omega_{1}}(\wp)=\wp$. If we apply $\quad \Psi_{1}$, we have $\Psi_{1}\left(\sigma_{\Omega_{1}}(\wp)\right)=\Psi_{1}(\wp)$.

From Proposition 3.1.3, we get $\Psi_{1}\left(\sigma_{\Omega_{1}}(\wp)\right)=\Psi_{1}(\wp)=\rho \Psi_{1} v(\wp)$. So $\Psi_{1}(\wp)$ is permutation equivalent to a λ-cyclic code over \mathbb{Z}_{4} of length $4 n$.

Proposition 3.1.5: Let Ω_{2}, v and Ψ_{2} be as above. Then $\Psi_{2} \sigma_{\Omega_{2}}=\psi \Psi_{2} v$, where ψ is a permutation defined by

$$
\begin{aligned}
& \psi\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}, x_{8}\right)= \\
& \left(x_{1}, x_{2}, x_{4}, x_{3}, x_{6}, x_{5}, x_{7}, x_{8}\right) \\
& \text { for } x_{i} \in \mathbb{Z}_{4}^{n}, i=1,2, \ldots, 8
\end{aligned}
$$

Proof: It is proved as in the proof of the Proposition 3.1.3.

Theorem 3.1.6: The Gray image of a skew λ-cyclic code over Y_{2} of length n is permutation equivalent to a λ-cyclic code over \mathbb{Z}_{4} of length $8 n$.

Proof: It is proved as in the proof of the Theorem 3.1.4.

Example 3.1.7: Let $n=3$. We have
$x^{3}-\lambda=\left(x^{2}+(1-u-v+u v) x+(1-u-v)\right)(x-(1-u-v+u v))$ in $Y_{2}\left[x, \Omega_{i}\right]$, for $i=1,2$.

Let $g(x)=x-(1-u-v+u v)$. Then $g(x)$ generates a skew λ-cyclic code of length 3 with the minimum distance $d=2$. This code is permutation equivalent to $a \lambda$ cyclic code of length $12(24)$ over \mathbb{Z}_{4}.

4. Conclusion

The skew λ-cyclic codes over the finite ring Y_{2} are studied because of to increase the probability of obtaining the large minimum
distance. A new two Gray maps and two nontrivial automorphisms over Y_{2} are defined and the Gray images of skew λ-cyclic codes are determined. So, we can obtain many new codes with better Hamming distance.

5. References

Abualrub T., Seneviratne P. 2012. "On θ cyclic codes over $F_{2}+v F_{2}$ ", Australasian Journal of Com., 54, 115-126.

Abualrub T., Ghrayeb A., Aydın N., Siap I. 2010. "On the construction of skew quasicyclic codes", IEEE Transsactions on Information Theory, 56, 2081-2090.

Bhaintwal M. 2012., "Skew quasi-cyclic codes over Galois rings", Designs, codes and Cryptography, 62, 85-101.

Boucher D., Willi G., Ulmer F. 2007. "Skew cyclic codes", Applicable Algebra in Engineering, Communication and Computing, 17, 379-389.

Boucher D., Sole P., Ulmer F. 2008. "Skew constacyclic codes over Galois rings", Advances in mathematics of communications, 3, 273-292.

Dertli A., Cengellenmis Y., Eren S. 2015. On "Skew Cyclic and Quasi-cyclic Codes over $F_{2}+v F_{2}+u F_{2} "$, Palestine Journal of Mathematics, 4, 540-546.

Gao J., Fanghui M., Fu F. 2017. "Skew constacyclic codes over the ring $F_{q}+v F_{q}{ }^{"}$, Applied Mathematics and Computing, 6, 286-295.

Siap I, Abualrub T., Aydın N., Seneviratne P. 2011. "Skew cyclic codes of arbitrary length", Int. Journal of Information and Coding Theory, 2, 10-20.

Wu M. 2013. "Skew cyclic and quasi-cyclic codes of arbitrary length over Galois rings",

International Journal of Algebra, 7, 803807.

[^0]: *Corresponding Author:abdullah.dertli@gmail.com

