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Abstract: An algorithm has been proposed, to synthesize low-pass, high-pass, band-pass and band-stop lossless ladder 

networks with simple lumped elements connected via commensurate transmission lines (Unit elements, UEs). First, the 

type of the element that will be extracted is determined from the given mixed-element network function. After obtaining 

element value, it is extracted, and the two-variable reflection function of the remaining mixed-element network is 

obtained. This process is repeated until extracting all the elements. For each network type, an example is included, to 

illustrate the implementation of the related algorithm. 
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1. Introduction 
The design problem with mixed lumped and 

distributed elements requires the characterization of the 

mixed-element structures using transcendental or 

multivariable functions. The first approach deals with 

non-rational single variable transcendental functions 

and is based on the study of cascaded non-

commensurate transmission lines by Kinarivala [1]. 

First results on the synthesis of a transcendental 

driving-point impedance function as a cascade of 

lumped, lossless, two-ports and commensurate 

transmission lines were given by Riederer and 

Weinberg [2]. The other approach to describe mixed 

lumped and distributed two-ports is based on Richards 

transformation, )tanh(  p  which converts the 

transcendental functions of a distributed network into 

rational functions [3]. The attempts to generalize this 

approach to mixed lumped and distributed networks led 

to the multivariable synthesis procedures, where the 

Richards variable   is used for distributed-elements 

and the original frequency variable p  for lumped-

elements. In this way, all the network functions could 

be written as rational functions of two complex 

variables. After the work of Ozaki and Kasami [4] on 

the multivariable positive real functions, the network 

design problem with mixed lumped and distributed 

elements is attempted to be solved by many researchers 

especially using the multivariable approach. In this 

context, although there have been valuable 

contributions, a complete theory for the approximation 

and synthesis problems of mixed lumped and 

distributed networks is still not available. 

At the end of a circuit design process, after getting 

the network function which meets the design 

specifications, it is necessary to obtain the circuit 

structure and element values. So here, a synthesis 

algorithm has been proposed to extract the element values 

from the given two-variable network function of a special 

type structure called lossless ladder networks with simple 

lumped elements connected via commensurate transmission 

line. 

In the following section, the characterization of two-

variable networks is introduced. Subsequently, after giving 

the synthesis algorithm, examples are presented, to 

illustrate the utilization of the proposed algorithm. 

  

2. Characterization of Two-variable Networks 
  

 
  

Figure 1. Lossless two-port with input reflectance function 

),(11 pS . 

  

Let  2,1,; lkSkl  designate the scattering parameters of 

a lossless two-port like the one depicted in figure 1. For a 

mixed lumped and distributed element, reciprocal, lossless 

two-port, the scattering parameters may be expressed in 

Belevitch form as follows [5-8]. 
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pf

pf 
 . 

In (1),  jp   is the usual complex frequency 

variable associated with lumped-elements, and  j  

is the Richards variable associated with equal-length 

transmission lines or so called commensurate transmission 
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lines (  ptanh , where   is the commensurate delay 

of the distributed elements). 

),( pg  is th
p nn )(   degree scattering Hurwitz 

polynomial with real coefficients such that 
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Similarly, ),( ph  is a th
p nn )(   degree 

polynomial with real coefficients 
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),( pf  is a real polynomial which includes all the 

transmission zeros of the two-port network. 

Since the network is considered as a lossless two-

port terminated in a resistance, then energy 

conversation requires that 

IpSpS T  ),(),(  ,               (4) 

where I  is the identity matrix. The open form of (4) is 

given as 

).,(),(),(),(),(),(   pfpfphphpgpg (5) 

The fundamental properties of this kind of mixed-

element structures can be found in [6, 9-10]. In the 

following section, the proposed synthesis algorithm is 

given. 

  

3. Algorithm 
  

In the flowchart seen in figure 2, the proposed synthesis 

algorithm has been given. Shortly, after calculating the 

constants ( 1  and 12  ) from the given two-

variable reflection function, the types of the first and the 

second components are decided. Then the value of the first 

element and the reflection function of the remaining 

network are calculated. After extracting the second 

component, it is not necessary to decide the type of the next 

element, since the network has a ladder structure. After 

calculating all the element values, the algorithm is stopped. 
  

 

 

 

 

 

 

 

 

 

 
  

Figure 2. Flowchart of the proposed synthesis algorithm. 
  

In the following part, synthesis algorithm has been 

detailed for low-pass, high-pass, band-pass and band-stop 

mixed-element structures. 

  

3.1. Low-pass Ladders Connected with Unit 

Elements 
  

The coefficient matrices of the polynomials ),( ph  and 

),( pg , and polynomial ),( pf  describing the mixed-

element low-pass structure are as follows, 
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Step 2: 

1  2  First component Next component 

+1 -1 UE Series inductor (L) 

-1 +1 UE Parallel capacitor (C) 

h , g , f  

:Given 

Calculate 

1 , 2  

Decide the first and the 

second element types 

Calculate the 
element value 

Extract the element, 

calculate h , g  

and f  of the 

remaining 
network Stop 

Y 

All 
elements 

extracted

? 

N 
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+1 +1 Series inductor (L) UE 

-1 -1 Parallel capacitor (C) UE 

 

Step 3: 

Element 
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variable polynomials as ),(),( )(  phph RN , 
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Step 3. 

 

3.2. High-Pass Ladders Connected with Unit 

Elements 

 

The polynomial ),( pf  and the coefficient matrices of 

the polynomials ),( ph  and ),( pg  describing the 

mixed-element high-pass structure are as follows, 
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Step 1: 
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3.3. Band-Pass Ladders Connected with Unit 

Elements 

The polynomial ),( pf  and the coefficient matrices 

of the polynomials 

 ),( ph  and ),( pg  describing the mixed-element 

band-pass structure are as follows, 
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Step 2: 

1  2  First component Next component 

+1 -1 UE Series-LC section in series 

-1 +1 UE Parallel-LC section in parallel 

+1 +1 Series-LC section in series UE 
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variable polynomials as ),(),( )(  phph RN , 
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3.4. Band-Stop Ladders Connected with Unit 

Elements 
 

The coefficient matrices of the polynomials ),( ph  

and ),( pg , and polynomial ),( pf  describing the 

mixed-element band-stop structure are as follows, 
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 Step 4: Set new ),( ph , ),( pg  and ),( pf  two-

variable polynomials as ),(),( )(  phph RN , 

),(),( )(  pgpg RN , ),(),( )(  pfpf RN , and go to 

Step 3. 

 

4. Examples 
  

In this section, four examples are presented, to 

illustrate the implementation of the proposed 

algorithm. 

The given coefficient matrices of the polynomials 

),( ph  and ),( pg  and polynomial ),( pf  in the 

following examples are fictitious. They are obtained by 

multiplying the transfer scattering matrices of the 

cascaded elements and it is desired to get the same 

element values after synthesis process via the proposed 

algorithm. So the element values may not be realizable 

after a de-normalization step. Also the structures do not 

describe a filter, a matching network or something else, 

since they are also fictitious. It is not aimed to build 

and measure the network since it is not the main idea of 

this work. 
  

4.1. Low-Pass Case 
  

The coefficient matrices of the polynomials ),( ph  

and ),( pg , and polynomial ),( pf  describing the 

mixed-element low-pass structure are given as, 
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If the same algorithm is used, the extracted element 

values and the remaining network coefficient matrices 

and polynomial ),()( pf RN  are as follows, 
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42 l  and 1),(,1,0 )(  pf RN
gh , and the 

termination resistor 1r . The obtained network is 

given in figure 3. 
  

 
  

Figure 3. Synthesized low-pass mixed-element network, 

normalized element values: ,3,4,6 121  cll  

1,5,2 21  rzz . 

  

4.2. High-Pass Case 
  

The coefficient matrices of the polynomials ),( ph  

and ),( pg , and polynomial ),( pf  describing the 

mixed-element high-pass structure are given as 
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22 c  and 1),(,1,0 )(  pf RN
gh , and the 

termination resistor 1r . The obtained network is 

given in figure 4. 
  

 
  

Figure 4. Synthesized high-pass mixed-element network, 

normalized values: 1,5,4,3,2,6 21121  rzzlcc . 

  

4.3. Band-Pass Case 
  

The coefficient matrices of the polynomials ),( ph  

and ),( pg , and polynomial ),( pf  describing the 
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termination resistor 1r . The obtained network is 

given in figure 5. 
  

 
  

Figure 5. Synthesized band-pass mixed-element network , 

normalized values: 

1,2,5,3,4,6,7 212121  rccllzz . 

  

 

 

4.3. Band-Stop Case 
  

The coefficient matrices of the polynomials ),( ph  
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h , 2/12 )1()(  f . The 

polynomial ),()( pf RN  and coefficient matrices h  

and g  of the remaining network are 
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gh . If the same 

algorithm is used, the extracted element values and the 

remaining network coefficient matrices and polynomial 

),()( pf RN  are as follows, 
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62 l  and 72 c  and 

1),(,1,0 )(  pf RN
gh , and the termination 

resistor 1r . The obtained network is given in figure 

6. 
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Figure 6. Synthesized band-stop mixed-element network, 

normalized values: 

1,7,2,6,3,5,2 212121  rccllzz . 

  

5. Conclusions 
  

The unavoidable connections between lumped-

elements destroy the performance of the lumped-

element networks at high frequencies. But these 

connection lines can be used as circuit components. In 

this case, the circuits must be composed of mixed 

lumped and distributed elements. But a complete 

theory for the approximation and synthesis problems of 

mixed-element networks is still not available. 

In this paper, synthesis of lossless ladder networks 

with simple lumped elements connected with UEs is 

examined. The synthesis of mixed-element networks 

may be realized by using single variable boundary 

polynomials, namely the polynomials 

)0,(),0,(),0,( pfpgph  for lumped-element section, and 

),0(),,0(),,0(  fgh  for distributed-element section 

[11-12]. In this case, synthesis is carried out for lumped 

and distributed sections separately. Then, the 

components are mixed, to construct the mixed-element 

network. But in the presented algorithm, the synthesis 

of mixed-element network is carried out directly by 

using the two-variable reflection function of the mixed-

element network, and components are extracted 

according to the connection order in the mixed-

structure. The implementation of the proposed 

algorithms is utilized by the given examples. As a 

result, simple mixed-element network synthesis 

algorithm has been presented, which is necessary for 

the applications using this ladder-type of mixed-

element networks, e.g. design of filters, broadband 

matching networks and amplifiers [13-15]. 
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