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Abstract: An algorithm has been proposed, to synthesize low-pass, high-pass, band-pass and band-stop lossless ladder
networks with simple lumped elements connected via commensurate transmission lines (Unit elements, UEs). First, the
type of the element that will be extracted is determined from the given mixed-element network function. After obtaining
element value, it is extracted, and the two-variable reflection function of the remaining mixed-element network is
obtained. This process is repeated until extracting all the elements. For each network type, an example is included, to

illustrate the implementation of the related algorithm.
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1. Introduction

The design problem with mixed Ilumped and
distributed elements requires the characterization of the
mixed-element structures using transcendental or
multivariable functions. The first approach deals with
non-rational single variable transcendental functions
and is based on the study of cascaded non-
commensurate transmission lines by Kinarivala [1].
First results on the synthesis of a transcendental
driving-point impedance function as a cascade of
lumped, lossless, two-ports and commensurate
transmission lines were given by Riederer and
Weinberg [2]. The other approach to describe mixed
lumped and distributed two-ports is based on Richards
transformation, A =tanh(pz) which converts the

transcendental functions of a distributed network into
rational functions [3]. The attempts to generalize this
approach to mixed lumped and distributed networks led
to the multivariable synthesis procedures, where the
Richards variable A is used for distributed-elements
and the original frequency variable p for lumped-

elements. In this way, all the network functions could
be written as rational functions of two complex
variables. After the work of Ozaki and Kasami [4] on
the multivariable positive real functions, the network
design problem with mixed lumped and distributed
elements is attempted to be solved by many researchers
especially using the multivariable approach. In this
context, although there have been valuable
contributions, a complete theory for the approximation
and synthesis problems of mixed lumped and
distributed networks is still not available.

At the end of a circuit design process, after getting
the network function which meets the design
specifications, it is necessary to obtain the circuit
structure and element values. So here, a synthesis
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algorithm has been proposed to extract the element values
from the given two-variable network function of a special
type structure called lossless ladder networks with simple
lumped elements connected via commensurate transmission
line.

In the following section, the characterization of two-
variable networks is introduced. Subsequently, after giving
the synthesis algorithm, examples are presented, to
illustrate the utilization of the proposed algorithm.

2. Characterization of Two-variable Networks

ﬂ R
Figure 1. Lossless two-port with input reflectance function
S11(p,4) -

Lossless

Sl Two-Port
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Let {Sy;k,1 =12} designate the scattering parameters of

a lossless two-port like the one depicted in figure 1. For a
mixed lumped and distributed element, reciprocal, lossless
two-port, the scattering parameters may be expressed in
Belevitch form as follows [5-8].

S(p ﬂ):{sll(pﬁ) Slz(p,i)}
' S21(p,4)  S22(p,4) 1)
1 {h(p,z) yf(—p.—z)}
a(p. AL F(p.A) —uh(=p-4)
where ﬂ:—f;s’;) :
In (1), p=o+jo is the usual complex frequency

variable associated with lumped-elements, and 1=+ jQ
is the Richards variable associated with equal-length
transmission lines or so called commensurate transmission
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lines (A1 =tanhpz, where z is the commensurate delay
of the distributed elements).

g(p,A) is (np+n,1)th degree scattering Hurwitz
polynomial with real coefficients such that
T T AT
9(p,A)=P  Agh=1" AyP, where
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3. Algorithm

In the flowchart seen in figure 2, the proposed synthesis
algorithm has been given. Shortly, after calculating the
constants (o =+ and a, =+1) from the given two-

variable reflection function, the types of the first and the

900 o1 - Jon, second components are decided. Then the value of the first
Oig O11 - G element and the reflection function of the remaining
Ag=| : ’ network are calculated. After extracting the second
component, it is not necessary to decide the type of the next
9n. 0 9n.n
’ v element, since the network has a ladder structure. After
P’ :[1 pp?... p”p} ) calculating all the element values, the algorithm is stopped.
Al = [1,1 2 .../1"1].
imi ; th Ap . Ag ., | [Calculate] | Decide the first and the
Similarly, h(p,4) is a (n,+ny) degree ) o, second element types
polynomial with real coefficients %
h(p,2)=PTApr=2T ALP , where
(p,2) h h Extract the element, | | aiculate the
calculate Ap, Ag [ element value
hoo  Mor -+ hon, and f ofthe
: remaining
A 0 3
hnpo hnpnl

f(p,4) is a real polynomial which includes all the
transmission zeros of the two-port network.
Since the network is considered as a lossless two-

Figure 2. Flowchart of the proposed synthesis algorithm.

In the following part, synthesis algorithm has been
detailed for low-pass, high-pass, band-pass and band-stop

port terminated in a resistance, then energy mixed-element structures
conversation requires that '

T . .
S(p. S (=p-A)=1, 4)  31. Low-pass Ladders Connected with Unit

where 1 is the identity matrix. The open form of (4) is
given as
9(p. AY(P,~2) =h(p, H(=p,~2) + f (p, A F (~p~-2). ()

The fundamental properties of this kind of mixed-
element structures can be found in [6, 9-10]. In the
following section, the proposed synthesis algorithm is
given.

Moo hoy hgp -

Elements

The coefficient matrices of the polynomials h(p,4) and
g(p,4), and polynomial f(p,4) describing the mixed-
element low-pass structure are as follows,

fon, 900 901 Y02 - Yon,
ho M1 Mo Pun, 010 911 Oi2 O1n, oin /2
Ah: h20 th 0 , Ag =| 00 921 0 f(p:ﬂv):(l_/l ) A
: 0 0 : : 0 0 :
ho - 0 = 0 go - O 0
Step 1:
al =+1 (ZZ =41
h(np 1) =0 h(n,1)=0
9(np ) =0 9(n, =0
h(n,.0) h(n,.0) h(n, -1.1)
g(np,O) g(np :l) g(np _111)
Step 2:
a; | a, | First component Next component
+1 | -1 UE Series inductor (L)
1|+l UE Parallel capacitor (C)
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+1 | +1 | Series inductor (L) UE
-1 -1 Parallel capacitor (C) UE
Step 3:
Element Unit Element Series Inductor Parallel Capacitor
Type
(1)
_1ESI here
1-5()
Element ih(o N 9,0+ eh(ng.0) _ 9(np.0)+ash(n, 0)
Value w5 ’ g(np —10)—eh(n, —1,0) g(np —10)—eh(n, ~1,0)
Si1° = n,
D g0.i)
i=0
Polynomial
g of the z2+1 Lo Zp+l
extracted o7 2 Pr 2 PT
element
Polynomial
h of the z%-1 Lo S,
extracted 27 2 2
element
Polynomial f
of the 2.1/2
extracted -2 1 !
element
Polynomial
g™ (G2 | _nen(p.a) h(=p)N(p.2)+g(~Pa(p. )
’ Eaans SRR —h(=p)h(p, )+ 9(-P)g(p, 4)
of the +9(-2)9(p.2)
remaining
network
Polynomial
h® (p, 2)
' g(A)h(p, 1)
h(p,4)—h A h(p,4)—h A
oft_h(_g —h(A)g(p.2) g(p)h(p. 2)—h(p)g(p. 4) g(p)h(p, 2)—h(p)g(p. 1)
remaining
network
Polynomial
tE (p, 2)
of the (-2 (- 22)m 2
remaining
network

Step 4: Set new

variable

Step 3.

polynomials

h(p,A),9(p,4A) and f(p,A) two-

as

h(p,2)=h®)(p, 2,
a(p. ) =g®™(p,2), f(p,2)=1f®)(p 1), and go to

The polynomial f(p,4) and the coefficient matrices of
the polynomials h(p,4) and g(p,1) describing the
mixed-element high-pass structure are as follows,

3.2. High-Pass Ladders Connected with Unit

Elements

f(p,2)=p"@-22)""%, \

hoo o1 o - 0 900 Y01 o - 0
hyo : hio : Y10 : 012 '
h=| o M-21 “ Mo, | Ag=| 920 On,-21 * On,-2n, |
TR P hn,-an, © Ony-11 On,-12 9n,-1n,
|"'nPO hnpl hnp2 hnpnﬂ- gnpo gnpl gnpz gnpnA»
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Step 1
(Zl =41 C(z =41
h(0,1) # 0 i 0D =0
g(0h)=0 g(0)=0
h(0,0) h(0,1) h(11)
9(0,0) 9(0.1) 9(L1)
Step 2:
o a First component Next component
+1 -1 UE Series capacitor (C)
-1 +1 UE Parallel inductor (L)
+1 +1 Series capacitor (C) UE
-1 -1 Parallel inductor (L) UE
Step 3:
Element Unit Element Parallel Inductor Series Capacitor
Type
(4)
7250 here
-5
Element ih(“ ) _ 90L0)-a3h(1.0) _ 900)-ash(L0)
Value w = P 9(0,0) + 4h(0,0) 9(0,0) + 21h(0,0)
Si1 =,
D gy
i=0
Polynomial
g of the 7241 1 1
extracted 27 A+l P 2L P 2C
element
Polynomial
h of the z2 =7 1 1
extracted 27 2L 2C
element
Polynomial f
of the 2\1/2
extracted (-2 P P
element
Polynomial
g™ (P2 ~h(-2)h(p, ) h(-p)h(p.2)~g(P)a(P. )
’ h(=p)h(p,2) - g(-p)g(p. 1) SRR R
of the +9(-2)g(p.2)
remaining
network
Polynomial
(RN)
" ott 9en(p. A 9(PN(P.D-N(PG(P.) | a(P(p.D—h(P)F(P.2)
. —h(2)g(p, 1)
remaining
network
Polynomial
& (p, 2)
of the (1222 phe - 2™
remaining
network

Step 4: Set new h(p,1),g(p,4) and

variable

polynomials  as

h(p,2)=h®(p,2),

f(p,A) two-
Step 3.

g(pA=9"™(p,2), f(p,2)=1™)(p,2), and go to
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3.3. Band-Pass Ladders Connected with Unit
Elements
The polynomial f(p,A) and the coefficient matrices

of the polynomials

h(p,4) and g(p,A) describing the mixed-element
band-pass structure are as follows,

[ hyg 0 0 - 0 ] 9o O o - 0
hyo hy, 0o 0 90 91 “0
F(p )= p™ 2@ 22 5 P . 0 0 g= g: . 0 g 0
: Ay = tho hni1 hniz hnipnl Ag= szo %pl M, %
: 00 S0 0
hnp—lo hnp—ll 0 : 0 On,-10 Gn,-11 0 S0
hho 0 0O 0 [ o O 0 ]
Step 1:
(Zl = i]. (ZZ = il
h(0,1) =0 If If If
g(01) =0 h(0)=0 | h@1)=0 h(n,.) =0
90n=0 | g@D=0 | g(n,H=0
h(0,0) h(0,1) h(1,1) h(n, 1) h(n, -11)
9(0,0) g(0)) gLy g(ny 1) g(n, —11)
Step 2:
a | ap | Firstcomponent Next component
+1 | -1 UE Series-LC section in series
1|+ UE Parallel-LC section in parallel
+1 | +1 Series-L.C section in series UE
11 Parallel-LC section in parallel UE
Step 3:
Element Unit Element Series LC Section in Series Parallel LC Section in Parallel
Type Inductor Capacitor Inductor Capacitor
2
_ 1+ 51(1)
1-5()
n,,0
here g(n;kO) 0 9(10) g(10) o T]() 0)
4 +oh(ny, —ah(1,0 +a4h(ng,,
Element . he™ = 2 _ —ah(t0) Lo - ayh(1,0) v
Value 2| g, -10) 000 | Y00 | 90,10
) _ =
s\ = =0 : ~agh(n, ~1,0) +4h(0,0) + 4h(0,0) —agh(np —1,0)
p .
71'
296D
i=0
Polynomial ) L 1 1 c
g of the Z°+1 L = B L
extracted 27 A+1 2 p+1 p+2C p+ oL 2 p+1
element
Polynomial
2 _ L 1 1 C
h of the z 11 o ES 1 S
extracted 27 2 2C 2L 2
element
Polynomial
f of the
extracted - }”2)1/ ? ! P P !
element
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Polynomial

g™ (p,2)
of the
remaining
network

—h(=A)h(p, 1)
+9(-4)9(p, 2)

~h(=p)h(p,4)
+9(=p)g(p, 4)

h(=p)h(p, )
-9(=p)g(p. 2)

h(=p)h(p,2)
-9(=p)g(p.2)

—h(=p)h(p, )
+9(=p)g(p, 4)

Polynomial

h(®N (p, 2)
of the
remaining
network

g(Ah(p, 4)
—h(4)9(p, )

g(p)h(p, 1)
—h(p)g(p.2)

g(p)h(p, 1)
—h(p)g(p.2)

a(p)h(p, 4)
—h(p)g(p.4)

g(p)h(p, 1)
—h(p)g(p.2)

Polynomial

™ (p, 2
of the
remaining
network

(1 )0 -D12

pnp/2(1_}b2)nﬂ/2

p("“ /2)71(1_/12

(n, /12)-1

@-22)

pnp/Z(l_ﬂz)nAm

Step 4: Set new h(p,1),g(p,4) and

f(p,4)

two-

3.4. Band-Stop Ladders Connected with Unit
Elements

variable  polynomials as  h(p,2)=h®V(p, 1),

RN RN .. . .
g(p.)=9™(p,2), f(p.2)=1®)(p,2), and go to The coefficient matrices of the polynomials h(p, 1)
Step 3. and g(p,A), and polynomial f(p, 1) describing the

mixed-element band-stop structure are as follows,
M1 T
0 hor  hoz - hon, . 301 302 : Zon’”
hyo hy1 ho o by, 10 1 12 ' n
: : o0 : : w0
Ane| Mg Mgy Mg e Ag =] Steg Sy Sy T Sn
2 2 h .
: o0 : 0 :
hnp_lo hnp—ll hnp_lz - hnp_an gnp—lo gnp—ll gnp—lZ gnp—lnl
i 0 bt P2 hn o, | | 9ngo Oz G2 9n,n;,

nr
tp. )= o+ m) ja-2""2.

i=1
Step 1:

o = +1 ay = +1
Np Np
If h(—=-,00>0 If h(—=,0)<0 hi.n;)
2 2 RN
gdny)
-1 +1
Step 2:
a | ap | Firstcomponent Next component
+1 | -1 Series-L.C section in parallel UE
-1 | +1 | Parallel-LC section in series UE
+1 | +1 | UE Series-LC section in parallel
-1 -1 UE Parallel-LC section in series
Step 3:
Element . Parallel LC Section in Series Series LC Section in Parallel
Unit Element - -
Type Inductor Capacitor Inductor Capacitor
148
1-5(?
where 9(1,0) 9(np.0) 9(np.0) 9(1,0)
n, +a4h(n,,0) +agh(n,,0) _
Element Zh(n*p iy |L = —oh(10) |[c=—21"°°P - 1Ny c . —@h0)
Value " o 2’ - 9(0,0) g(np -10) g(np -1,0) 9(0,0)
Sll = R—n +a1h(010) —alh(np —1,0) - alh(np —1,0) +alh(010)
7p R
2,965
i=0
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Polynomial

g of the Z%+1
extracted 27

element

A+1 2LCp? +Lp+2

2LCp? +Cp+2

Polynomial
2 p—
h of the Z°-1 1 Lp

extracted 27
element

_Cp

Polynomial
f of the
extracted
element

1-A2)M? LCp? +1

LCp? +1

Polynomial
g™ (4 ~h(-h(p.2)

of the +9(=1)9(p, )
remaining

network

—h(=p)h(p,2) +9(=P)9(p. 1)

—h(=p)h(p, 4) +g(=p)a(p, 1)

Polynomial
h™ (p. 4 g(a)h(p.2)

of the —h(2)9(p. )
remaining

network

9(p)h(p, ) —h(p)g(p. 1)

g(ph(p, A) =h(p)g(p. 1)

Polynomial
f (RN) ( p

of the
remaining
network

(1_12)0'\1 —1)/2

[f (p)/(LCp? +1)](1_,12)(ni—1)/2

f(p)/(LCp? +1) |1 42 7D/2

Step 4: Set new h(p,4),g(p,A) and f(p,A) two-
h(p, 2) =h®V(p, 1),

g(pA=9"™(p,2), f(p,2)=1™)(p2), and go to
Step 3.

variable  polynomials  as

4. Examples

In this section, four examples are presented, to
illustrate the implementation of the proposed
algorithm.

The given coefficient matrices of the polynomials
h(p,4) and g(p,4) and polynomial f(p,2) in the
following examples are fictitious. They are obtained by
multiplying the transfer scattering matrices of the
cascaded elements and it is desired to get the same
element values after synthesis process via the proposed
algorithm. So the element values may not be realizable
after a de-normalization step. Also the structures do not
describe a filter, a matching network or something else,
since they are also fictitious. It is not aimed to build
and measure the network since it is not the main idea of
this work.

4.1. Low-Pass Case

The coefficient matrices of the polynomials h(p, 1)
and g(p,4), and polynomial f(p,1) describing the
mixed-element low-pass structure are given as,

0 315 -1.05 1 385 145

|35 -38 233 |65 14 233

"=l's gsa o [M97|15 654 0 |
36 0 0 3 0 0

f(p,A) =(1-12).

m:Mzﬁzﬂ. h(31) =0 and
g(np,0) g(@B0) 36
h(np -11) hl) 654
9N, -1 921 654
Step 2: o =+1 and a, =+1, so the first component
that will be extracted is an inductor, and the element
9(np,0) +azh(n,,0)

" g(n, —10)-ayh(n, ~10)

g9(3,0)+h(3,00 36+36
T 9(20)-h(20)  15-3
The polynomials g(p), h(p) and f(p) of the inductor

Step 11 o =

gBY=0 = ap= +1.

value is

6, I, =6.

L L
are g(p)=5|0+1=3p+1, h(p)=Ep:3p, f(p)=1.

The polynomial f®™)(p,2) and coefficient matrices
A, and Ay of the remaining network are

tE(p. )= -2,

0 315 -1.05 1 385 145
Ap=05 -59 158 |A,=|35 119 158].
-6 12 0 6 12 O

If the same algorithm is used, the extracted element
values and the remaining network coefficient matrices

and polynomial f®)(p, 1) are as follows,

0 24 1 26
z=2and A, =05 7.9 Ag =135 79|
-6 0 6 0

10 (p,2) = @- 252
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_3and A, =| 0 24| |1 28
a= =12 _04["9 |2 04

t(p, 2y =0-2)"2,

z,=5and A, =m,/\g :m f RN (p, 1) =1.

l,=4 and A,=0Aq=1f™)(pa)=1, and the

termination resistor r=1. The obtained network is
given in figure 3.

I b
o—I Y Y L
z] 2 t

c1
o

Figure 3. Synthesized low-pass mixed-element network,
normalized element values: |, =6,1, =4,¢, =3,

1=2,2,=5r=1.
4.2. High-Pass Case

The coefficient matrices of the polynomials h(p, 1)
and g(p,4), and polynomial f(p,A) describing the
mixed-element high-pass structure are given as

0.0139 0 0
-0.0556 0.4910 0
"7l 01667 -02417 36375 |
0 42750 —-0.2250
0.0139 0 0
0.1111 0.4910 0
9= 05 16500 36375 (M= P2,
1 47250 1.0250
_ D00 _ 00159 _ ;. h(01) =0 and
g(0,0) 0.0139
g0h)=0 = aZ:M:M:H
g(Ll) 04910
Step 2: o =+1 and a, =+1, so the first component
that will be extracted is a capacitor, and the element
_ 9(L0)~a5h(L0) _ 0.1111+00556 _
g(0,0) + h(0,0) 0.0139+0.0139
¢, =6. The polynomials g(p),h(p) and f(p) of the

f 1 1 1 1
capacitor are —p4+—=p+—, h(p)=—=—,
p g(p)=p > p 12 (p) c 12

f(p)=p. The polynomial f®V)(p, 1) and coefficient
matrices A, and A4 of the remaining network are

Stepl: o

value is

N (p, 2) = p?a- 2%,

[—0.0833 0.3333 0

Ap =| 0.0833 -0.2792 3.5333 |,
|0 42750 —0.2250

[0.0833 03333 0

Ay =10.4167 1.6125 3.5333|.
1 4.7250 1.0250

If the same algorithm is used, the extracted element
values and the remaining network coefficient matrices

and polynomial f®\)(p, 1) are as follows,

-00833 0
z7=4and A, =| 00833 -0.8833,
0 24
[0.0833 0
Ag =|0.0833 08833, (V) (p,2) = p? -2,
1 26
l,=3 and
[0.25 —0.05} {0.25 o.05}
Ap = Ag = :
| 0 24 1 26

f (RN (p, 2) = pL—22)Y/2.

0.25 0.25
z,=5and Ah:{ 0 },Agz{ 1 }f(RN)(p,ﬂ):p

c;=2 and Ap=0,Ay=1f®)(p2)=1, and the

termination resistor r=1. The obtained network is
given in figure 4.

I Iz
o—7 Y Y\ L
z1 z2 r

C1
o

Figure 4. Synthesized high-pass mixed-element network,
normalized values: ¢, =6,¢, =2,1; =3,z =4,2, =5,r=1.

4.3. Band-Pass Case

The coefficient matrices of the polynomials h(p, 1)
and g(p,4), and polynomial f(p,1) describing the
mixed-element band-pass structure are given as
f(p,2)=p°@-4),
1 -0.1429 0
-2 650714 -43571
Ap=| 26 1866429 4.6429 |,
30 3914286 -27.1429
120 -17.1429 0
1 0.1429 0
8 659286 4.3571
Ag = 56 2033571 30.3571|
90 4085714 27.1429

120 17.1429 0

Step 1: alzmzlzﬂ

g(0,0) 1
~h(0) -0.1429
T g9(0) 01429
Step 2: o =+1 and a, =-1, so the first component
that will be extracted is a UE, and the component value
is

az
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ih(np/Zi)

S0 _ 1= _ 26+1866429+4.6429 _
1", 56+2033571+30.3571
D gy r2i)
i=0
1+8¥) -
21:—11:7. The polynomials g(1), h(1) and
150
2
f(2) are gy =EF1, .50, 9,
2y 14
2 p—
hoy-d =1, 48, f(y=a-2Y2.  The
23 14

polynomial f®)(p, 1) and coefficient matrices A,

and A, of the remaining network are

f RN (p, 2) = p2(1- 22,

1 0 1 0
-2 305 8 305
An=|26 875|, Ag=|56 925|. If the same
30 190 90 190
120 O 120 O

algorithm is used, the extracted element values and the
remaining network coefficient matrices and polynomial

FR®N)(p, 1) are as follows,
l, =4and
1 0 1 0
-2 305 8 305
b= L Ag= ,
6 875 36 925

-30 180 30 180
1 (p,2) = p?@- 2212
-1 6 1 6
¢, =5and Ay=| 0 175] , Ag=|6 185
-6 36 6 36
1 (p,2) = pa- 2%
-1 1
z,=6and Ap=| 0 |Ag=|6] f®)(pa)=p.
6 6
0 1 (rn
I, =3 and A, :LJ,AQ :M, f RN (p, 1) =1,

c;=2 and Ap=0,Ay=1f®™(p2)=1, and the

termination resistor r=1. The obtained network is
given in figure 5.

I Iz
o—F Y Y\ L
z] z e

c1
o

Figure 5. Synthesized band-pass mixed-element network ,
normalized values:
1=7,2,=6,l1=4,1,=3,¢,=50,=2,r=1.

4.3. Band-Stop Case

The coefficient matrices of the polynomials h(p, 1)
and g(p,4), and polynomial f(p,4) describing the
mixed-element band-stop structure are given as

1 385 145
0 315 -1.05
2 -51 11.2 4 91 112
An=| -6 1632 -504 | Ag=| 54 1968 696
—24 -1386 4272 60 3066 427.2
0 7938 -2646 252 9702 3654

f(p, A) = (p* +0.1905p2 +0.004)(L— 2).

Step

hey 112
g2 112

Step 2: oy =+1 and «, =+1, so the first component
that will be extracted is a UE, and the component value

1:h(2,0)=—6<0—) C!1=+1,(12 =

IS
N
Zh(np/Z,i)
s _ 5 _~6+1632-504 _ 000
1=y 54+1968+69.6
Zg(np/Z,i)
i=0
145@) .
7 - + > =2. The polynomials g(2),h(2) and
1-s{f)
2
t(2) are o =218,
2z, 4
2
-1
hy=-222-22, twm-a-2AY2.  The
27, 4

polynomial f (™) (p 1) and coefficient matrices A,
and A, of the remaining network are

£ ®N)(p, 1) = (p* +0.1905p2 +0.004)(1— 22)1/2

1 24 1 2.6
-2 -56 4 5.6
Ap=| -6 1152 || Ay =|54 1248|. If the same
—-24 -2136 60 2136
0 6048 252 6552

algorithm is used, the extracted element values and the
remaining network coefficient matrices and polynomial

f RN (p, 1) are as follows,

0 24 1 26
l,=3and c¢; =2, A, =3 -06|Ag=|3 06 |
0 1008 42 1092

£RN) (p, 2) = (p +%)(1—42)1’2 ,

0 1
1
2;=5and Ap=[3Aq=| 3 | F®(p,2)=(p?+ ).
0 42
I, =6 and Cy =7 and

Ap=0Ag=1f®™)(p2)=1, and the termination

resistor r=1. The obtained network is given in figure
6.
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1

] Z2 r

C1
o

Figure 6. Synthesized band-stop mixed-element network,
normalized values:
Zl 22, 22 :5, Il 23, |2 26, Cl :2, C2 :7, r:]..

5. Conclusions

The unavoidable connections between lumped-
elements destroy the performance of the lumped-
element networks at high frequencies. But these
connection lines can be used as circuit components. In
this case, the circuits must be composed of mixed
lumped and distributed elements. But a complete
theory for the approximation and synthesis problems of
mixed-element networks is still not available.

In this paper, synthesis of lossless ladder networks
with simple lumped elements connected with UEs is
examined. The synthesis of mixed-element networks
may be realized by using single variable boundary
polynomials, namely the polynomials
h(p,0), g(p,0), f(p,0) for lumped-element section, and

h(0, A), 9(0, 1), f(0,2) for distributed-element section

[11-12]. In this case, synthesis is carried out for lumped
and distributed sections separately. Then, the
components are mixed, to construct the mixed-element
network. But in the presented algorithm, the synthesis
of mixed-element network is carried out directly by
using the two-variable reflection function of the mixed-
element network, and components are extracted
according to the connection order in the mixed-
structure. The implementation of the proposed
algorithms is utilized by the given examples. As a
result, simple mixed-element network synthesis
algorithm has been presented, which is necessary for
the applications using this ladder-type of mixed-
element networks, e.g. design of filters, broadband
matching networks and amplifiers [13-15].
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